This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 870292 (BioICEP) and by the National Natural Science Foundation of China (Nos. 31961133016, 31961133015, and 31961133014).

Link to this page

This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 870292 (BioICEP) and by the National Natural Science Foundation of China (Nos. 31961133016, 31961133015, and 31961133014).

Authors

Publications

Supporting information: Pantelic, B., Skaro Bogojevic, S., Milivojevic, D., Ilic-Tomic, T., Lončarević, B., Beskoski, V., Maslak, V., Guzik, M., Makryniotis, K., Taxeidis, G., Siaperas, R., Topakas, E., & Nikodinovic-Runic, J. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. Catalysts, 13(2), Art. 2. https://doi.org/10.3390/catal13020278

Pantelić, Brana; Škaro Bogojević, Sanja; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lončarević, Branka; Beskoski, Vladimir; Maslak, Veselin; Guzik, Maciej; Makryniotis, Konstantinos; Taxeidis, George; Siaperas, Romanos; Topakas, Evangelos; Nikodinović-Runić, Jasmina

(2023)

TY  - DATA
AU  - Pantelić, Brana
AU  - Škaro Bogojević, Sanja
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lončarević, Branka
AU  - Beskoski, Vladimir
AU  - Maslak, Veselin
AU  - Guzik, Maciej
AU  - Makryniotis, Konstantinos
AU  - Taxeidis, George
AU  - Siaperas, Romanos
AU  - Topakas, Evangelos
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - https://www.mdpi.com/2073-4344/13/2/278
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1792
T2  - Catalysts
T1  - Supporting information: Pantelic, B., Skaro Bogojevic, S., Milivojevic, D., Ilic-Tomic, T., Lončarević, B., Beskoski, V., Maslak, V., Guzik, M., Makryniotis, K., Taxeidis, G., Siaperas, R., Topakas, E., & Nikodinovic-Runic, J. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. Catalysts, 13(2), Art. 2. https://doi.org/10.3390/catal13020278
IS  - 2
SP  - 278
VL  - 13
UR  - https://hdl.handle.net/21.15107/rcub_imagine_1792
ER  - 
@misc{
author = "Pantelić, Brana and Škaro Bogojević, Sanja and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lončarević, Branka and Beskoski, Vladimir and Maslak, Veselin and Guzik, Maciej and Makryniotis, Konstantinos and Taxeidis, George and Siaperas, Romanos and Topakas, Evangelos and Nikodinović-Runić, Jasmina",
year = "2023",
journal = "Catalysts",
title = "Supporting information: Pantelic, B., Skaro Bogojevic, S., Milivojevic, D., Ilic-Tomic, T., Lončarević, B., Beskoski, V., Maslak, V., Guzik, M., Makryniotis, K., Taxeidis, G., Siaperas, R., Topakas, E., & Nikodinovic-Runic, J. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. Catalysts, 13(2), Art. 2. https://doi.org/10.3390/catal13020278",
number = "2",
pages = "278",
volume = "13",
url = "https://hdl.handle.net/21.15107/rcub_imagine_1792"
}
Pantelić, B., Škaro Bogojević, S., Milivojević, D., Ilić-Tomić, T., Lončarević, B., Beskoski, V., Maslak, V., Guzik, M., Makryniotis, K., Taxeidis, G., Siaperas, R., Topakas, E.,& Nikodinović-Runić, J.. (2023). Supporting information: Pantelic, B., Skaro Bogojevic, S., Milivojevic, D., Ilic-Tomic, T., Lončarević, B., Beskoski, V., Maslak, V., Guzik, M., Makryniotis, K., Taxeidis, G., Siaperas, R., Topakas, E., & Nikodinovic-Runic, J. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. Catalysts, 13(2), Art. 2. https://doi.org/10.3390/catal13020278. in Catalysts, 13(2), 278.
https://hdl.handle.net/21.15107/rcub_imagine_1792
Pantelić B, Škaro Bogojević S, Milivojević D, Ilić-Tomić T, Lončarević B, Beskoski V, Maslak V, Guzik M, Makryniotis K, Taxeidis G, Siaperas R, Topakas E, Nikodinović-Runić J. Supporting information: Pantelic, B., Skaro Bogojevic, S., Milivojevic, D., Ilic-Tomic, T., Lončarević, B., Beskoski, V., Maslak, V., Guzik, M., Makryniotis, K., Taxeidis, G., Siaperas, R., Topakas, E., & Nikodinovic-Runic, J. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. Catalysts, 13(2), Art. 2. https://doi.org/10.3390/catal13020278. in Catalysts. 2023;13(2):278.
https://hdl.handle.net/21.15107/rcub_imagine_1792 .
Pantelić, Brana, Škaro Bogojević, Sanja, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lončarević, Branka, Beskoski, Vladimir, Maslak, Veselin, Guzik, Maciej, Makryniotis, Konstantinos, Taxeidis, George, Siaperas, Romanos, Topakas, Evangelos, Nikodinović-Runić, Jasmina, "Supporting information: Pantelic, B., Skaro Bogojevic, S., Milivojevic, D., Ilic-Tomic, T., Lončarević, B., Beskoski, V., Maslak, V., Guzik, M., Makryniotis, K., Taxeidis, G., Siaperas, R., Topakas, E., & Nikodinovic-Runic, J. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. Catalysts, 13(2), Art. 2. https://doi.org/10.3390/catal13020278" in Catalysts, 13, no. 2 (2023):278,
https://hdl.handle.net/21.15107/rcub_imagine_1792 .

Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts

Pantelić, Brana; Škaro Bogojević, Sanja; Milivojević, Dušan; Ilić-Tomić, Tatjana; Lončarević, Branka; Beskoski, Vladimir; Maslak, Veselin; Guzik, Maciej; Makryniotis, Konstantinos; Taxeidis, George; Siaperas, Romanos; Topakas, Evangelos; Nikodinović-Runić, Jasmina

(2023)

TY  - JOUR
AU  - Pantelić, Brana
AU  - Škaro Bogojević, Sanja
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Lončarević, Branka
AU  - Beskoski, Vladimir
AU  - Maslak, Veselin
AU  - Guzik, Maciej
AU  - Makryniotis, Konstantinos
AU  - Taxeidis, George
AU  - Siaperas, Romanos
AU  - Topakas, Evangelos
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - https://www.mdpi.com/2073-4344/13/2/278
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1790
AB  - Polyurethanes (PUs) are an exceedingly heterogeneous group of plastic polymers, widely used in a variety of industries from construction to medical implants. In the past decades, we have witnessed the accumulation of PU waste and its detrimental environmental impacts. PUs have been identified as one of the most toxic polymers leaching hazardous compounds derived both from the polymer itself and the additives used in production. Further environmental impact assessment, identification and characterization of substances derived from PU materials and establishing efficient degradation strategies are crucial. Thus, a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation. Overall, the compounds exhibited low in vitro cytotoxicity against a healthy human fibroblast cell line and virtually no toxic effect on the nematode Caenorhabditis elegans up to 500 µg mL−1, and two of the substrates showed moderate aquatic ecotoxicity with EC50 values 53 µg mL−1 and 45 µg mL−1, respectively, on Aliivibrio fischeri. The compounds were successfully applied to study the mechanism of ester and urethane bond cleaving preference of known plastic-degrading enzymes and were used to single out a novel PU-degrading biocatalyst, Amycolatopsis mediterranei ISP5501, among 220 microbial strains. A. mediterranei ISP5501 can also degrade commercially available polyether and polyester PU materials, reducing the average molecular number of the polymer up to 13.5%. This study uncovered a biocatalyst capable of degrading different types of PUs and identified potential enzymes responsible as a key step in developing biotechnological process for PU waste treatment options.
T2  - Catalysts
T2  - Catalysts
T1  - Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts
IS  - 2
SP  - 278
VL  - 13
DO  - 10.3390/catal13020278
ER  - 
@article{
author = "Pantelić, Brana and Škaro Bogojević, Sanja and Milivojević, Dušan and Ilić-Tomić, Tatjana and Lončarević, Branka and Beskoski, Vladimir and Maslak, Veselin and Guzik, Maciej and Makryniotis, Konstantinos and Taxeidis, George and Siaperas, Romanos and Topakas, Evangelos and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "Polyurethanes (PUs) are an exceedingly heterogeneous group of plastic polymers, widely used in a variety of industries from construction to medical implants. In the past decades, we have witnessed the accumulation of PU waste and its detrimental environmental impacts. PUs have been identified as one of the most toxic polymers leaching hazardous compounds derived both from the polymer itself and the additives used in production. Further environmental impact assessment, identification and characterization of substances derived from PU materials and establishing efficient degradation strategies are crucial. Thus, a selection of eight synthetic model compounds which represent partial PU hydrolysis products were synthesized and characterized both in terms of toxicity and suitability to be used as substrates for the identification of novel biocatalysts for PU biodegradation. Overall, the compounds exhibited low in vitro cytotoxicity against a healthy human fibroblast cell line and virtually no toxic effect on the nematode Caenorhabditis elegans up to 500 µg mL−1, and two of the substrates showed moderate aquatic ecotoxicity with EC50 values 53 µg mL−1 and 45 µg mL−1, respectively, on Aliivibrio fischeri. The compounds were successfully applied to study the mechanism of ester and urethane bond cleaving preference of known plastic-degrading enzymes and were used to single out a novel PU-degrading biocatalyst, Amycolatopsis mediterranei ISP5501, among 220 microbial strains. A. mediterranei ISP5501 can also degrade commercially available polyether and polyester PU materials, reducing the average molecular number of the polymer up to 13.5%. This study uncovered a biocatalyst capable of degrading different types of PUs and identified potential enzymes responsible as a key step in developing biotechnological process for PU waste treatment options.",
journal = "Catalysts, Catalysts",
title = "Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts",
number = "2",
pages = "278",
volume = "13",
doi = "10.3390/catal13020278"
}
Pantelić, B., Škaro Bogojević, S., Milivojević, D., Ilić-Tomić, T., Lončarević, B., Beskoski, V., Maslak, V., Guzik, M., Makryniotis, K., Taxeidis, G., Siaperas, R., Topakas, E.,& Nikodinović-Runić, J.. (2023). Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. in Catalysts, 13(2), 278.
https://doi.org/10.3390/catal13020278
Pantelić B, Škaro Bogojević S, Milivojević D, Ilić-Tomić T, Lončarević B, Beskoski V, Maslak V, Guzik M, Makryniotis K, Taxeidis G, Siaperas R, Topakas E, Nikodinović-Runić J. Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts. in Catalysts. 2023;13(2):278.
doi:10.3390/catal13020278 .
Pantelić, Brana, Škaro Bogojević, Sanja, Milivojević, Dušan, Ilić-Tomić, Tatjana, Lončarević, Branka, Beskoski, Vladimir, Maslak, Veselin, Guzik, Maciej, Makryniotis, Konstantinos, Taxeidis, George, Siaperas, Romanos, Topakas, Evangelos, Nikodinović-Runić, Jasmina, "Set of Small Molecule Polyurethane (PU) Model Substrates: Ecotoxicity Evaluation and Identification of PU Degrading Biocatalysts" in Catalysts, 13, no. 2 (2023):278,
https://doi.org/10.3390/catal13020278 . .
2
6
5