info:eu-repo/grantAgreement/ScienceFundRS/Promis/6062673/RS//

Link to this page

info:eu-repo/grantAgreement/ScienceFundRS/Promis/6062673/RS//

Authors

Publications

Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response

Milanović, Marijana; Bekić, Marina; Đokić, Jelena; Vučević, Dragana; Čolić, Miodrag; Tomić, Sergej

(Ivyspring International, 2024)

TY  - JOUR
AU  - Milanović, Marijana
AU  - Bekić, Marina
AU  - Đokić, Jelena
AU  - Vučević, Dragana
AU  - Čolić, Miodrag
AU  - Tomić, Sergej
PY  - 2024
UR  - https://www.ijbs.com/v20p1064.htm
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2313
AB  - Alpha-ketoglutarate (αKG) emerged as a key regulator of energetic and redox metabolism in cells, affecting the immune response in various conditions. However, it remained unclear how the exogenous αKG modulates the functions of dendritic cells (DCs), key cells regulating T-cell response. Here we found that non-toxic doses of αKG display anti-inflammatory properties in human APC-T cell interaction models. In a model of monocyte-derived (mo)DCs, αKG impaired the differentiation, and the maturation of moDCs induced with lipopolysaccharide (LPS)/interferon (IFN)-γ, and decreased their capacity to induce Th1 cells. However, αKG also promoted IL-1β secretion by mature moDCs, despite inflammasome downregulation, potentiating their Th17 polarizing capacity. αKG induced the expression of anti-oxidative enzymes and hypoxia-induced factor (HIF)-1α in moDCs, activated Akt/FoxO1 pathway and increased autophagy flux, oxidative phosphorylation (OXPHOS) and glycolysis. This correlated with a higher capacity of immature αKG-moDCs to induce Th2 cells, and conventional regulatory T cells in an indolamine-dioxygenase (IDO)-1-dependent manner. Additionally, αKG increased moDCs’ capacity to induce non-conventional T regulatory (Tr)-1 and IL-10-producing CD8+T cells via up-regulated immunoglobulin-like transcript (ILT3) expression in OXPHOS-dependent manner. These results suggested that exogenous αKG-altered redox metabolism in moDCs contributed to their tolerogenic properties, which could be relevant for designing more efficient therapeutic approaches in DCs-mediated immunotherapies.
PB  - Ivyspring International
T2  - International Journal of Biological Sciences
T2  - International Journal of Biological Sciences
T1  - Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response
EP  - 1087
IS  - 3
SP  - 1064
VL  - 20
DO  - 10.7150/ijbs.91109
ER  - 
@article{
author = "Milanović, Marijana and Bekić, Marina and Đokić, Jelena and Vučević, Dragana and Čolić, Miodrag and Tomić, Sergej",
year = "2024",
abstract = "Alpha-ketoglutarate (αKG) emerged as a key regulator of energetic and redox metabolism in cells, affecting the immune response in various conditions. However, it remained unclear how the exogenous αKG modulates the functions of dendritic cells (DCs), key cells regulating T-cell response. Here we found that non-toxic doses of αKG display anti-inflammatory properties in human APC-T cell interaction models. In a model of monocyte-derived (mo)DCs, αKG impaired the differentiation, and the maturation of moDCs induced with lipopolysaccharide (LPS)/interferon (IFN)-γ, and decreased their capacity to induce Th1 cells. However, αKG also promoted IL-1β secretion by mature moDCs, despite inflammasome downregulation, potentiating their Th17 polarizing capacity. αKG induced the expression of anti-oxidative enzymes and hypoxia-induced factor (HIF)-1α in moDCs, activated Akt/FoxO1 pathway and increased autophagy flux, oxidative phosphorylation (OXPHOS) and glycolysis. This correlated with a higher capacity of immature αKG-moDCs to induce Th2 cells, and conventional regulatory T cells in an indolamine-dioxygenase (IDO)-1-dependent manner. Additionally, αKG increased moDCs’ capacity to induce non-conventional T regulatory (Tr)-1 and IL-10-producing CD8+T cells via up-regulated immunoglobulin-like transcript (ILT3) expression in OXPHOS-dependent manner. These results suggested that exogenous αKG-altered redox metabolism in moDCs contributed to their tolerogenic properties, which could be relevant for designing more efficient therapeutic approaches in DCs-mediated immunotherapies.",
publisher = "Ivyspring International",
journal = "International Journal of Biological Sciences, International Journal of Biological Sciences",
title = "Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response",
pages = "1087-1064",
number = "3",
volume = "20",
doi = "10.7150/ijbs.91109"
}
Milanović, M., Bekić, M., Đokić, J., Vučević, D., Čolić, M.,& Tomić, S.. (2024). Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response. in International Journal of Biological Sciences
Ivyspring International., 20(3), 1064-1087.
https://doi.org/10.7150/ijbs.91109
Milanović M, Bekić M, Đokić J, Vučević D, Čolić M, Tomić S. Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response. in International Journal of Biological Sciences. 2024;20(3):1064-1087.
doi:10.7150/ijbs.91109 .
Milanović, Marijana, Bekić, Marina, Đokić, Jelena, Vučević, Dragana, Čolić, Miodrag, Tomić, Sergej, "Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response" in International Journal of Biological Sciences, 20, no. 3 (2024):1064-1087,
https://doi.org/10.7150/ijbs.91109 . .

NANOMATERIALS-BASED STRATEGY FOR MYELOID CELLS ACTIVATION RESULTS IN EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS AMELIORATION AND GUT MICROBIOTA MODULATION

Radojević, Dušan; Bekić, Marina; Ilić, Nataša; Đokić, Jelena; Stojanović, Dušica; Vasilev, Saša; Gruden-Movsesijan, Alisa; Tomić, Sergej

(2023)

TY  - CONF
AU  - Radojević, Dušan
AU  - Bekić, Marina
AU  - Ilić, Nataša
AU  - Đokić, Jelena
AU  - Stojanović, Dušica
AU  - Vasilev, Saša
AU  - Gruden-Movsesijan, Alisa
AU  - Tomić, Sergej
PY  - 2023
UR  - https://www.microbiota-site.com/
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2188
AB  - ntroduction: Recent studies implicated overactivated myeloid cells and gut microbiome, along with our work, 
in multiple sclerosis (MS) pathogenesis. As we have shown before, prostaglandin (PG)E2 promotes 
suppressive properties of myeloid cells leading to amelioration of symptoms in myelin oligodendrocyte 
glycoprotein 
(MOG)-induced experimental autoimmune encephalomyelitis 
(EAE). Additionally, we 
investigated how the changes of gut microbiota associate with EAE and the effects of therapy.
Materials & Methods: MOG35-55 in Complete Freund Adjuvans was used for EAE induction in C57BL/6 
mice. Gold nanoparticles (GNP) conjugated with PGE2 and MOG were applied on the day 1, 3, 5, 7, and 9 
post-immunization. We performed extensive immunophenotyping and metagenomic analysis in order to 
decipher association between gut microbiome and efficacy of GNP-MOG-PGE2 treatment.
Results: GNP-MOG-PGE2 treatment alleviates EAE symptoms, decreased levels of pro-inflammatory 
cytokines in sera, and increased proportion of suppressive MDSCs in CNS-infiltrates. Furthermore, EAE 
induction significantly affected species richness, while GNP-MOG-PGE2 treatment increased the gut 
microbiota diversity and preserved the richness of species with immunomodulatory properties.
Conclusion: Taken together, our data indicate that targeted activation of myeloid cells by GNP-MOG-PGE2 
together with gut microbiota modification is very promising therapeutic strategy for MS.
C3  - 10th ISM World Congress on Targeting Microbiota
T1  - NANOMATERIALS-BASED STRATEGY FOR MYELOID CELLS ACTIVATION RESULTS IN  EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS AMELIORATION  AND GUT MICROBIOTA MODULATION
EP  - 77
SP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2188
ER  - 
@conference{
author = "Radojević, Dušan and Bekić, Marina and Ilić, Nataša and Đokić, Jelena and Stojanović, Dušica and Vasilev, Saša and Gruden-Movsesijan, Alisa and Tomić, Sergej",
year = "2023",
abstract = "ntroduction: Recent studies implicated overactivated myeloid cells and gut microbiome, along with our work, 
in multiple sclerosis (MS) pathogenesis. As we have shown before, prostaglandin (PG)E2 promotes 
suppressive properties of myeloid cells leading to amelioration of symptoms in myelin oligodendrocyte 
glycoprotein 
(MOG)-induced experimental autoimmune encephalomyelitis 
(EAE). Additionally, we 
investigated how the changes of gut microbiota associate with EAE and the effects of therapy.
Materials & Methods: MOG35-55 in Complete Freund Adjuvans was used for EAE induction in C57BL/6 
mice. Gold nanoparticles (GNP) conjugated with PGE2 and MOG were applied on the day 1, 3, 5, 7, and 9 
post-immunization. We performed extensive immunophenotyping and metagenomic analysis in order to 
decipher association between gut microbiome and efficacy of GNP-MOG-PGE2 treatment.
Results: GNP-MOG-PGE2 treatment alleviates EAE symptoms, decreased levels of pro-inflammatory 
cytokines in sera, and increased proportion of suppressive MDSCs in CNS-infiltrates. Furthermore, EAE 
induction significantly affected species richness, while GNP-MOG-PGE2 treatment increased the gut 
microbiota diversity and preserved the richness of species with immunomodulatory properties.
Conclusion: Taken together, our data indicate that targeted activation of myeloid cells by GNP-MOG-PGE2 
together with gut microbiota modification is very promising therapeutic strategy for MS.",
journal = "10th ISM World Congress on Targeting Microbiota",
title = "NANOMATERIALS-BASED STRATEGY FOR MYELOID CELLS ACTIVATION RESULTS IN  EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS AMELIORATION  AND GUT MICROBIOTA MODULATION",
pages = "77-77",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2188"
}
Radojević, D., Bekić, M., Ilić, N., Đokić, J., Stojanović, D., Vasilev, S., Gruden-Movsesijan, A.,& Tomić, S.. (2023). NANOMATERIALS-BASED STRATEGY FOR MYELOID CELLS ACTIVATION RESULTS IN  EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS AMELIORATION  AND GUT MICROBIOTA MODULATION. in 10th ISM World Congress on Targeting Microbiota, 77-77.
https://hdl.handle.net/21.15107/rcub_imagine_2188
Radojević D, Bekić M, Ilić N, Đokić J, Stojanović D, Vasilev S, Gruden-Movsesijan A, Tomić S. NANOMATERIALS-BASED STRATEGY FOR MYELOID CELLS ACTIVATION RESULTS IN  EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS AMELIORATION  AND GUT MICROBIOTA MODULATION. in 10th ISM World Congress on Targeting Microbiota. 2023;:77-77.
https://hdl.handle.net/21.15107/rcub_imagine_2188 .
Radojević, Dušan, Bekić, Marina, Ilić, Nataša, Đokić, Jelena, Stojanović, Dušica, Vasilev, Saša, Gruden-Movsesijan, Alisa, Tomić, Sergej, "NANOMATERIALS-BASED STRATEGY FOR MYELOID CELLS ACTIVATION RESULTS IN  EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS AMELIORATION  AND GUT MICROBIOTA MODULATION" in 10th ISM World Congress on Targeting Microbiota (2023):77-77,
https://hdl.handle.net/21.15107/rcub_imagine_2188 .

Shotgun metagenomics reveals gut microbiota features associated with the efficacy of myeloid derived suppressor cells in the prevention of neuroinflammation

Bekić, Marina; Đokić, Jelena; Radojević, Dušan; Vučević, Dragana; Vasilev, Saša; Tomić, Sergej

(Belgrade : Institute of molecular genetics and genetic engineering, 2023)

TY  - CONF
AU  - Bekić, Marina
AU  - Đokić, Jelena
AU  - Radojević, Dušan
AU  - Vučević, Dragana
AU  - Vasilev, Saša
AU  - Tomić, Sergej
PY  - 2023
UR  - https://belbi.bg.ac.rs/
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2042
AB  - Although genetic predisposition to Multiple Sclerosis (MS) may play an essential role in disease
development, myeloid cell overactivation and gut microbiota dysbiosis are key contributors to MS
pathogenesis. Myeloid-Derived Suppressor Cells (MDSC)s are immature myeloid cells with strong
immunosuppressive functions which can be exploited in the treatment of autoimmune diseases.
Considering the limited data on MDSCs application in MS therapy and their poorly studied effects
on the gut microbiota, we have investigated the therapeutic potential of mice MDSC differentiated
according to the standard protocol (MDSC) and modified with the addition of prostaglandin (PG)
E2 (MDSC-PGE2) to ameliorate experimental autoimmune encephalomyelitis (EAE) induced with
MOG35-55/CFA/PtX in C57BL/6 mice. Additionally, we analyzed the changes in gut microbiota
features in control and MDSC-treated animals by using a shotgun metagenomics approach. In
mice, PGE2-activated MDSC significantly inhibited the onset and clinical course of EAE. This effect
correlated with increased IL-10, TGF-β, IL-4 production, and Arginase-1 level in MDSC-PGE2,
as well as with reduced leukocyte infiltrates in the spinal cord. MDSC-PGE2 protective effect is
also reflected in the maintenance of gut microbiota composition based on Kraken2/Bracken2
and LEfSe analysis. We observed an increase of MS-associated species Romboutsia ilealis in
the control EAE group, while in both MDSC treatments the increase in relative abundances of
Muribaculum gordoncarteri and Duncaniella dubiosis, associated with immunoregulatory properties,
was observed. Microbial metabolic pathways profiling using Humann3 pipeline also reveals the
increase in pathways involved in the production of potentially immunoregulatory metabolites
in the MDSC-PGE2 group. In conclusion, we pointed to the significant association between the
efficacy of MDSC-PGE2 treatment and gut microbiota features which can be further exploited in
order to improve MDSC-based EAE therapy.
PB  - Belgrade : Institute of molecular genetics and genetic engineering
C3  - 4th Belgrade Bioinformatics Conference
T1  - Shotgun metagenomics reveals gut microbiota features associated with the efficacy of myeloid derived suppressor cells in the prevention of neuroinflammation
EP  - 97
SP  - 97
VL  - 4
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2042
ER  - 
@conference{
author = "Bekić, Marina and Đokić, Jelena and Radojević, Dušan and Vučević, Dragana and Vasilev, Saša and Tomić, Sergej",
year = "2023",
abstract = "Although genetic predisposition to Multiple Sclerosis (MS) may play an essential role in disease
development, myeloid cell overactivation and gut microbiota dysbiosis are key contributors to MS
pathogenesis. Myeloid-Derived Suppressor Cells (MDSC)s are immature myeloid cells with strong
immunosuppressive functions which can be exploited in the treatment of autoimmune diseases.
Considering the limited data on MDSCs application in MS therapy and their poorly studied effects
on the gut microbiota, we have investigated the therapeutic potential of mice MDSC differentiated
according to the standard protocol (MDSC) and modified with the addition of prostaglandin (PG)
E2 (MDSC-PGE2) to ameliorate experimental autoimmune encephalomyelitis (EAE) induced with
MOG35-55/CFA/PtX in C57BL/6 mice. Additionally, we analyzed the changes in gut microbiota
features in control and MDSC-treated animals by using a shotgun metagenomics approach. In
mice, PGE2-activated MDSC significantly inhibited the onset and clinical course of EAE. This effect
correlated with increased IL-10, TGF-β, IL-4 production, and Arginase-1 level in MDSC-PGE2,
as well as with reduced leukocyte infiltrates in the spinal cord. MDSC-PGE2 protective effect is
also reflected in the maintenance of gut microbiota composition based on Kraken2/Bracken2
and LEfSe analysis. We observed an increase of MS-associated species Romboutsia ilealis in
the control EAE group, while in both MDSC treatments the increase in relative abundances of
Muribaculum gordoncarteri and Duncaniella dubiosis, associated with immunoregulatory properties,
was observed. Microbial metabolic pathways profiling using Humann3 pipeline also reveals the
increase in pathways involved in the production of potentially immunoregulatory metabolites
in the MDSC-PGE2 group. In conclusion, we pointed to the significant association between the
efficacy of MDSC-PGE2 treatment and gut microbiota features which can be further exploited in
order to improve MDSC-based EAE therapy.",
publisher = "Belgrade : Institute of molecular genetics and genetic engineering",
journal = "4th Belgrade Bioinformatics Conference",
title = "Shotgun metagenomics reveals gut microbiota features associated with the efficacy of myeloid derived suppressor cells in the prevention of neuroinflammation",
pages = "97-97",
volume = "4",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2042"
}
Bekić, M., Đokić, J., Radojević, D., Vučević, D., Vasilev, S.,& Tomić, S.. (2023). Shotgun metagenomics reveals gut microbiota features associated with the efficacy of myeloid derived suppressor cells in the prevention of neuroinflammation. in 4th Belgrade Bioinformatics Conference
Belgrade : Institute of molecular genetics and genetic engineering., 4, 97-97.
https://hdl.handle.net/21.15107/rcub_imagine_2042
Bekić M, Đokić J, Radojević D, Vučević D, Vasilev S, Tomić S. Shotgun metagenomics reveals gut microbiota features associated with the efficacy of myeloid derived suppressor cells in the prevention of neuroinflammation. in 4th Belgrade Bioinformatics Conference. 2023;4:97-97.
https://hdl.handle.net/21.15107/rcub_imagine_2042 .
Bekić, Marina, Đokić, Jelena, Radojević, Dušan, Vučević, Dragana, Vasilev, Saša, Tomić, Sergej, "Shotgun metagenomics reveals gut microbiota features associated with the efficacy of myeloid derived suppressor cells in the prevention of neuroinflammation" in 4th Belgrade Bioinformatics Conference, 4 (2023):97-97,
https://hdl.handle.net/21.15107/rcub_imagine_2042 .

Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis

Radojević, Dušan; Bekić, Marina; Gruden-Movsesijan, Alisa; Ilić, Nataša; Dinić, Miroslav; Bisenić, Aleksandar; Golić, Nataša; Vucević, Dragana; Đokić, Jelena; Tomić, Sergej

(Taylor & Francis Inc, Philadelphia, 2022)

TY  - JOUR
AU  - Radojević, Dušan
AU  - Bekić, Marina
AU  - Gruden-Movsesijan, Alisa
AU  - Ilić, Nataša
AU  - Dinić, Miroslav
AU  - Bisenić, Aleksandar
AU  - Golić, Nataša
AU  - Vucević, Dragana
AU  - Đokić, Jelena
AU  - Tomić, Sergej
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1540
AB  - Over-activated myeloid cells and disturbance in gut microbiota composition are critical factors contributing to the pathogenesis of Multiple Sclerosis (MS). Myeloid-derived suppressor cells (MDSCs) emerged as promising regulators of chronic inflammatory diseases, including autoimmune diseases. However, it remained unclear whether MDSCs display any therapeutic potential in MS, and how this therapy modulates gut microbiota composition. Here, we assessed the potential of in vitro generated bone marrow-derived MDSCs to ameliorate experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats and investigated how their application associates with the changes in gut microbiota composition. MDSCs differentiated with prostaglandin (PG)E2 (MDSC-PGE2) and control MDSCs (differentiated without PGE2) displayed strong immunosuppressive properties in vitro, but only MDSC-PGE2 significantly ameliorated EAE symptoms. This effect correlated with a reduced infiltration of Th17 and IFN-gamma-producing NK cells, and an increased proportion of regulatory T cells in the CNS and spleen. Importantly, both MDSCs and MDSC-PGE2 prevented EAE-induced reduction of gut microbiota diversity, but only MDSC-PGE2 prevented the extensive alterations in gut microbiota composition following their early migration into Payer's patches and mesenteric lymph nodes. This phenomenon was related to the significant enrichment of gut microbial taxa with potential immunoregulatory properties, as well as higher levels of butyrate, propionate, and putrescine in feces. This study provides new insights into the host-microbiota interactions in EAE, suggesting that activated MDSCs could be potentially used as an efficient therapy for acute phases of MS. Considering a significant association between the efficacy of MDSC-PGE2 and gut microbiota composition, our findings also provide a rationale for further exploring the specific microbial metabolites in MS therapy.
PB  - Taylor & Francis Inc, Philadelphia
T2  - Gut Microbes
T1  - Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis
IS  - 1
VL  - 14
DO  - 10.1080/19490976.2022.2127455
ER  - 
@article{
author = "Radojević, Dušan and Bekić, Marina and Gruden-Movsesijan, Alisa and Ilić, Nataša and Dinić, Miroslav and Bisenić, Aleksandar and Golić, Nataša and Vucević, Dragana and Đokić, Jelena and Tomić, Sergej",
year = "2022",
abstract = "Over-activated myeloid cells and disturbance in gut microbiota composition are critical factors contributing to the pathogenesis of Multiple Sclerosis (MS). Myeloid-derived suppressor cells (MDSCs) emerged as promising regulators of chronic inflammatory diseases, including autoimmune diseases. However, it remained unclear whether MDSCs display any therapeutic potential in MS, and how this therapy modulates gut microbiota composition. Here, we assessed the potential of in vitro generated bone marrow-derived MDSCs to ameliorate experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats and investigated how their application associates with the changes in gut microbiota composition. MDSCs differentiated with prostaglandin (PG)E2 (MDSC-PGE2) and control MDSCs (differentiated without PGE2) displayed strong immunosuppressive properties in vitro, but only MDSC-PGE2 significantly ameliorated EAE symptoms. This effect correlated with a reduced infiltration of Th17 and IFN-gamma-producing NK cells, and an increased proportion of regulatory T cells in the CNS and spleen. Importantly, both MDSCs and MDSC-PGE2 prevented EAE-induced reduction of gut microbiota diversity, but only MDSC-PGE2 prevented the extensive alterations in gut microbiota composition following their early migration into Payer's patches and mesenteric lymph nodes. This phenomenon was related to the significant enrichment of gut microbial taxa with potential immunoregulatory properties, as well as higher levels of butyrate, propionate, and putrescine in feces. This study provides new insights into the host-microbiota interactions in EAE, suggesting that activated MDSCs could be potentially used as an efficient therapy for acute phases of MS. Considering a significant association between the efficacy of MDSC-PGE2 and gut microbiota composition, our findings also provide a rationale for further exploring the specific microbial metabolites in MS therapy.",
publisher = "Taylor & Francis Inc, Philadelphia",
journal = "Gut Microbes",
title = "Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis",
number = "1",
volume = "14",
doi = "10.1080/19490976.2022.2127455"
}
Radojević, D., Bekić, M., Gruden-Movsesijan, A., Ilić, N., Dinić, M., Bisenić, A., Golić, N., Vucević, D., Đokić, J.,& Tomić, S.. (2022). Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis. in Gut Microbes
Taylor & Francis Inc, Philadelphia., 14(1).
https://doi.org/10.1080/19490976.2022.2127455
Radojević D, Bekić M, Gruden-Movsesijan A, Ilić N, Dinić M, Bisenić A, Golić N, Vucević D, Đokić J, Tomić S. Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis. in Gut Microbes. 2022;14(1).
doi:10.1080/19490976.2022.2127455 .
Radojević, Dušan, Bekić, Marina, Gruden-Movsesijan, Alisa, Ilić, Nataša, Dinić, Miroslav, Bisenić, Aleksandar, Golić, Nataša, Vucević, Dragana, Đokić, Jelena, Tomić, Sergej, "Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis" in Gut Microbes, 14, no. 1 (2022),
https://doi.org/10.1080/19490976.2022.2127455 . .
5
9
5

Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro

Radojević, Dušan; Tomić, Sergej; Mihajlović, Dusan; Tolinački, Maja; Pavlović, Bojan; Vucević, Dragana; Bojić, Svetlana; Golić, Nataša; Čolić, Miodrag; Đokić, Jelena

(Taylor & Francis Inc, Philadelphia, 2021)

TY  - JOUR
AU  - Radojević, Dušan
AU  - Tomić, Sergej
AU  - Mihajlović, Dusan
AU  - Tolinački, Maja
AU  - Pavlović, Bojan
AU  - Vucević, Dragana
AU  - Bojić, Svetlana
AU  - Golić, Nataša
AU  - Čolić, Miodrag
AU  - Đokić, Jelena
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1475
AB  - Although promising for active immunization in cancer patients, dendritic cells (DCs) vaccines generated in vitro display high inter-individual variability in their immunogenicity, which mostly limits their therapeutic efficacy. Gut microbiota composition is a key emerging factor affecting individuals' immune responses, but it is unknown how it affects the variability of donors' precursor cells to differentiate into immunogenic DCs in vitro. By analyzing gut microbiota composition in 14 healthy donors, along with the phenotype and cytokines production by monocyte-derived DCs, we found significant correlations between immunogenic properties of DC and microbiota composition. Namely, donors who had higher alpha-diversity of gut microbiota and higher abundance of short-chain fatty acid (SCFAs) and SCFA-producing bacteria in feces, displayed lower expression of CD1a on immature (im)DC and higher expression of ILT-3, costimulatory molecules (CD86, CD40) proinflammatory cytokines (TNF-alpha, IL-6, IL-8) and IL-12p70/IL-10 ratio, all of which correlated with their lower maturation potential and immunogenicity upon stimulation with LPS/IFN gamma, a well-known Th1 polarizing cocktail. In contrast, imDCs generated from donors with lower alpha-diversity and higher abundance of Bifidobacterium and Collinsella in feces displayed higher CD1a expression and higher potential to up-regulate CD86 and CD40, increase TNF-alpha, IL-6, IL-8 production, and IL-12p70/IL-10 ratio upon stimulation. These results emphasize the important role of gut microbiota on the capacity of donor precursor cells to differentiate into immunogenic DCs suitable for cancer therapy, which could be harnessed for improving the actual and future DC-based cancer therapies.
PB  - Taylor & Francis Inc, Philadelphia
T2  - Gut Microbes
T1  - Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro
IS  - 1
VL  - 13
DO  - 10.1080/19490976.2021.1921927
ER  - 
@article{
author = "Radojević, Dušan and Tomić, Sergej and Mihajlović, Dusan and Tolinački, Maja and Pavlović, Bojan and Vucević, Dragana and Bojić, Svetlana and Golić, Nataša and Čolić, Miodrag and Đokić, Jelena",
year = "2021",
abstract = "Although promising for active immunization in cancer patients, dendritic cells (DCs) vaccines generated in vitro display high inter-individual variability in their immunogenicity, which mostly limits their therapeutic efficacy. Gut microbiota composition is a key emerging factor affecting individuals' immune responses, but it is unknown how it affects the variability of donors' precursor cells to differentiate into immunogenic DCs in vitro. By analyzing gut microbiota composition in 14 healthy donors, along with the phenotype and cytokines production by monocyte-derived DCs, we found significant correlations between immunogenic properties of DC and microbiota composition. Namely, donors who had higher alpha-diversity of gut microbiota and higher abundance of short-chain fatty acid (SCFAs) and SCFA-producing bacteria in feces, displayed lower expression of CD1a on immature (im)DC and higher expression of ILT-3, costimulatory molecules (CD86, CD40) proinflammatory cytokines (TNF-alpha, IL-6, IL-8) and IL-12p70/IL-10 ratio, all of which correlated with their lower maturation potential and immunogenicity upon stimulation with LPS/IFN gamma, a well-known Th1 polarizing cocktail. In contrast, imDCs generated from donors with lower alpha-diversity and higher abundance of Bifidobacterium and Collinsella in feces displayed higher CD1a expression and higher potential to up-regulate CD86 and CD40, increase TNF-alpha, IL-6, IL-8 production, and IL-12p70/IL-10 ratio upon stimulation. These results emphasize the important role of gut microbiota on the capacity of donor precursor cells to differentiate into immunogenic DCs suitable for cancer therapy, which could be harnessed for improving the actual and future DC-based cancer therapies.",
publisher = "Taylor & Francis Inc, Philadelphia",
journal = "Gut Microbes",
title = "Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro",
number = "1",
volume = "13",
doi = "10.1080/19490976.2021.1921927"
}
Radojević, D., Tomić, S., Mihajlović, D., Tolinački, M., Pavlović, B., Vucević, D., Bojić, S., Golić, N., Čolić, M.,& Đokić, J.. (2021). Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro. in Gut Microbes
Taylor & Francis Inc, Philadelphia., 13(1).
https://doi.org/10.1080/19490976.2021.1921927
Radojević D, Tomić S, Mihajlović D, Tolinački M, Pavlović B, Vucević D, Bojić S, Golić N, Čolić M, Đokić J. Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro. in Gut Microbes. 2021;13(1).
doi:10.1080/19490976.2021.1921927 .
Radojević, Dušan, Tomić, Sergej, Mihajlović, Dusan, Tolinački, Maja, Pavlović, Bojan, Vucević, Dragana, Bojić, Svetlana, Golić, Nataša, Čolić, Miodrag, Đokić, Jelena, "Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro" in Gut Microbes, 13, no. 1 (2021),
https://doi.org/10.1080/19490976.2021.1921927 . .
10
11
11