Ašanin, Darko

Link to this page

Authority KeyName Variants
orcid::0000-0003-1098-400X
  • Ašanin, Darko (6)
  • Ašanin, Darko P. (3)

Author's Bibliography

DNA/BSA binding affinity of pyocyanin produced by Pseudomonas aeruginosa

Andrejević, Tina; Ašanin, Darko; Pantelić, Lena; Pantović, Bojana; Nikodinović-Runić, Jasmina; Glišić, Biljana

(MDPI, 2023)

TY  - CONF
AU  - Andrejević, Tina
AU  - Ašanin, Darko
AU  - Pantelić, Lena
AU  - Pantović, Bojana
AU  - Nikodinović-Runić, Jasmina
AU  - Glišić, Biljana
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2293
AB  - Pyocyanin (PYO) is a green blue pigment that is produced extracellularly by the Gram- negative bacteria Pseudomonas aeruginosa. Its color depends on pH value. It exists in blue zwitterion form at neutral and alkaline conditions, while in an acidic environment, it becomes pink after protonation. PYO has shown the antibacterial activity, as well as the ability to inhibit the growth of fungi like Aspergillus fumigatus and Candida albicans. Moreover, it shows the high cytotoxic effect against the human pancreatic cancer cells by inducing their apoptosis. To evaluate the possible mechanism of antimicrobial activity of PYO, in the present study, we have investigated its interactions with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) by fluorescence emission spectroscopy. The obtained value of binding constant to BSA is relatively high (KA = 5.3 × 10^6 M^-1 s^-1), showing the ability of PYO to bind to this transport protein. We have also used synchronous fluorescence spectroscopy to explore the structural changes in BSA in the presence of the studied biopigment. In contrast with the mentioned results for binding to BSA, PYO has shown a low affinity to ct-DNA, what can be seen from the value of its binding constant (KA = 7.8 × 10^3 M^-1 s^-1).
PB  - MDPI
C3  - Medical Sciences Forum
T1  - DNA/BSA binding affinity of pyocyanin produced by Pseudomonas aeruginosa
VL  - n/a
DO  - 10.3390/ECMC2023-15654
ER  - 
@conference{
author = "Andrejević, Tina and Ašanin, Darko and Pantelić, Lena and Pantović, Bojana and Nikodinović-Runić, Jasmina and Glišić, Biljana",
year = "2023",
abstract = "Pyocyanin (PYO) is a green blue pigment that is produced extracellularly by the Gram- negative bacteria Pseudomonas aeruginosa. Its color depends on pH value. It exists in blue zwitterion form at neutral and alkaline conditions, while in an acidic environment, it becomes pink after protonation. PYO has shown the antibacterial activity, as well as the ability to inhibit the growth of fungi like Aspergillus fumigatus and Candida albicans. Moreover, it shows the high cytotoxic effect against the human pancreatic cancer cells by inducing their apoptosis. To evaluate the possible mechanism of antimicrobial activity of PYO, in the present study, we have investigated its interactions with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) by fluorescence emission spectroscopy. The obtained value of binding constant to BSA is relatively high (KA = 5.3 × 10^6 M^-1 s^-1), showing the ability of PYO to bind to this transport protein. We have also used synchronous fluorescence spectroscopy to explore the structural changes in BSA in the presence of the studied biopigment. In contrast with the mentioned results for binding to BSA, PYO has shown a low affinity to ct-DNA, what can be seen from the value of its binding constant (KA = 7.8 × 10^3 M^-1 s^-1).",
publisher = "MDPI",
journal = "Medical Sciences Forum",
title = "DNA/BSA binding affinity of pyocyanin produced by Pseudomonas aeruginosa",
volume = "n/a",
doi = "10.3390/ECMC2023-15654"
}
Andrejević, T., Ašanin, D., Pantelić, L., Pantović, B., Nikodinović-Runić, J.,& Glišić, B.. (2023). DNA/BSA binding affinity of pyocyanin produced by Pseudomonas aeruginosa. in Medical Sciences Forum
MDPI., n/a.
https://doi.org/10.3390/ECMC2023-15654
Andrejević T, Ašanin D, Pantelić L, Pantović B, Nikodinović-Runić J, Glišić B. DNA/BSA binding affinity of pyocyanin produced by Pseudomonas aeruginosa. in Medical Sciences Forum. 2023;n/a.
doi:10.3390/ECMC2023-15654 .
Andrejević, Tina, Ašanin, Darko, Pantelić, Lena, Pantović, Bojana, Nikodinović-Runić, Jasmina, Glišić, Biljana, "DNA/BSA binding affinity of pyocyanin produced by Pseudomonas aeruginosa" in Medical Sciences Forum, n/a (2023),
https://doi.org/10.3390/ECMC2023-15654 . .

DNA/BSA interactions and biological activity of prodigiosin and its copper(II) complex

Glišić, Biljana; Andrejević, Tina; Lazić, Jelena; Ilić-Tomić, Tatjana; Ašanin, Darko; Pantović, Bojana; Djuran, Miloš; Nikodinović-Runić, Jasmina

(Greece : University of Ioannina, 2023)

TY  - CONF
AU  - Glišić, Biljana
AU  - Andrejević, Tina
AU  - Lazić, Jelena
AU  - Ilić-Tomić, Tatjana
AU  - Ašanin, Darko
AU  - Pantović, Bojana
AU  - Djuran, Miloš
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - https://isabc2023.com/
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1926
AB  - Prodigiosin (PG) is a red biopigment produced as a secondary metabolite by
microorganisms such as Serratia marcescens and Streptomyces. In recent years, this tripyrrole
compound has attracted an increasing attention due to its antibacterial, antimalarial, and
immunosuppressive activities [1]. It is also known for its antitumor activity, inducing the cell
death by apoptosis in different human cancer cell lines [2]. Considering this, in the present
study, we investigated the interactions of prodigiosin and its copper(II) complex (CuPG; the
structural formula is presented below), whose crystal structure was determined previously [2],
with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) by fluorescence emission
spectroscopy to clarify their binding affinities toward these biomolecules. The antimicrobial
activity of the synthesized CuPG complex and PG ligand was evaluated in vitro against various
microorganisms that can lead to many infections. Moreover, CuPG and PG were evaluated in
a cell viability assay on a healthy MRC-5 cell line, as well as a panel of MDA-MB-231, A549,
A375, and HCT116 cancer cell lines.
PB  - Greece : University of Ioannina
C3  - 16th International Symposium on Applied Bioinorganic Chemistry
T1  - DNA/BSA interactions and biological activity of prodigiosin and its
copper(II) complex
SP  - 264
UR  - https://hdl.handle.net/21.15107/rcub_imagine_1926
ER  - 
@conference{
author = "Glišić, Biljana and Andrejević, Tina and Lazić, Jelena and Ilić-Tomić, Tatjana and Ašanin, Darko and Pantović, Bojana and Djuran, Miloš and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "Prodigiosin (PG) is a red biopigment produced as a secondary metabolite by
microorganisms such as Serratia marcescens and Streptomyces. In recent years, this tripyrrole
compound has attracted an increasing attention due to its antibacterial, antimalarial, and
immunosuppressive activities [1]. It is also known for its antitumor activity, inducing the cell
death by apoptosis in different human cancer cell lines [2]. Considering this, in the present
study, we investigated the interactions of prodigiosin and its copper(II) complex (CuPG; the
structural formula is presented below), whose crystal structure was determined previously [2],
with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) by fluorescence emission
spectroscopy to clarify their binding affinities toward these biomolecules. The antimicrobial
activity of the synthesized CuPG complex and PG ligand was evaluated in vitro against various
microorganisms that can lead to many infections. Moreover, CuPG and PG were evaluated in
a cell viability assay on a healthy MRC-5 cell line, as well as a panel of MDA-MB-231, A549,
A375, and HCT116 cancer cell lines.",
publisher = "Greece : University of Ioannina",
journal = "16th International Symposium on Applied Bioinorganic Chemistry",
title = "DNA/BSA interactions and biological activity of prodigiosin and its
copper(II) complex",
pages = "264",
url = "https://hdl.handle.net/21.15107/rcub_imagine_1926"
}
Glišić, B., Andrejević, T., Lazić, J., Ilić-Tomić, T., Ašanin, D., Pantović, B., Djuran, M.,& Nikodinović-Runić, J.. (2023). DNA/BSA interactions and biological activity of prodigiosin and its
copper(II) complex. in 16th International Symposium on Applied Bioinorganic Chemistry
Greece : University of Ioannina., 264.
https://hdl.handle.net/21.15107/rcub_imagine_1926
Glišić B, Andrejević T, Lazić J, Ilić-Tomić T, Ašanin D, Pantović B, Djuran M, Nikodinović-Runić J. DNA/BSA interactions and biological activity of prodigiosin and its
copper(II) complex. in 16th International Symposium on Applied Bioinorganic Chemistry. 2023;:264.
https://hdl.handle.net/21.15107/rcub_imagine_1926 .
Glišić, Biljana, Andrejević, Tina, Lazić, Jelena, Ilić-Tomić, Tatjana, Ašanin, Darko, Pantović, Bojana, Djuran, Miloš, Nikodinović-Runić, Jasmina, "DNA/BSA interactions and biological activity of prodigiosin and its
copper(II) complex" in 16th International Symposium on Applied Bioinorganic Chemistry (2023):264,
https://hdl.handle.net/21.15107/rcub_imagine_1926 .

Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine

Ašanin, Darko; Andrejević, Tina; Nenadović, Marija; Rodić, Marko; Vojnović, Sandra; Djuran, Miloš; Glišić, Biljana

(2023)

TY  - JOUR
AU  - Ašanin, Darko
AU  - Andrejević, Tina
AU  - Nenadović, Marija
AU  - Rodić, Marko
AU  - Vojnović, Sandra
AU  - Djuran, Miloš
AU  - Glišić, Biljana
PY  - 2023
UR  - https://www.sciencedirect.com/science/article/pii/S0277538723003078
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2067
AB  - In the present study, synthesis of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine (1,6-naph), {[Ag(1,6-naph)(H2O)](BF4)}n (1) and [AuCl3(1,6-naph)] (2), was reported. The methods used for the structural characterization of a new compound 1 included IR, NMR (1H and 13C) and UV-Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction analysis. The crystallographic results showed that compound 1 represents silver(I) coordination polymer, in which 1,6-naph ligand acts as a bidentate bridging ligand connecting two Ag(I) ions via its N1 and N6 nitrogen atoms, while the third coordination site of the metal ion is occupied by the water oxygen atom, resulted in a T-shape geometry. Compounds 1 and 2 were evaluated in vitro for antimicrobial activity against five bacterial and two Candida species, while their cytotoxicity was tested on the normal human lung fibroblast cell line (MRC-5). Compound 1 has manifested a remarkable antifungal activity on both tested Candida strains (C. albicans and C. parapsilosis) with minimal inhibitory concentrations (MICs) of 1.43 and 11.38 µM (0.49 and 3.9 µg/mL), respectively, while no significant antimicrobial activity was observed for 2. Moreover, silver(I) coordination polymer 1 inhibits the hyphae formation of C. albicans at subinhibitory concentration. The binding affinity of both compounds 1 and 2 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, indicating their ability to interact with these biomolecules, with compound 2 being more reactive.
T2  - Polyhedron
T1  - Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine
IS  - 1
SP  - 116585
VL  - 244
DO  - 10.1016/j.poly.2023.116585
ER  - 
@article{
author = "Ašanin, Darko and Andrejević, Tina and Nenadović, Marija and Rodić, Marko and Vojnović, Sandra and Djuran, Miloš and Glišić, Biljana",
year = "2023",
abstract = "In the present study, synthesis of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine (1,6-naph), {[Ag(1,6-naph)(H2O)](BF4)}n (1) and [AuCl3(1,6-naph)] (2), was reported. The methods used for the structural characterization of a new compound 1 included IR, NMR (1H and 13C) and UV-Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction analysis. The crystallographic results showed that compound 1 represents silver(I) coordination polymer, in which 1,6-naph ligand acts as a bidentate bridging ligand connecting two Ag(I) ions via its N1 and N6 nitrogen atoms, while the third coordination site of the metal ion is occupied by the water oxygen atom, resulted in a T-shape geometry. Compounds 1 and 2 were evaluated in vitro for antimicrobial activity against five bacterial and two Candida species, while their cytotoxicity was tested on the normal human lung fibroblast cell line (MRC-5). Compound 1 has manifested a remarkable antifungal activity on both tested Candida strains (C. albicans and C. parapsilosis) with minimal inhibitory concentrations (MICs) of 1.43 and 11.38 µM (0.49 and 3.9 µg/mL), respectively, while no significant antimicrobial activity was observed for 2. Moreover, silver(I) coordination polymer 1 inhibits the hyphae formation of C. albicans at subinhibitory concentration. The binding affinity of both compounds 1 and 2 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, indicating their ability to interact with these biomolecules, with compound 2 being more reactive.",
journal = "Polyhedron",
title = "Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine",
number = "1",
pages = "116585",
volume = "244",
doi = "10.1016/j.poly.2023.116585"
}
Ašanin, D., Andrejević, T., Nenadović, M., Rodić, M., Vojnović, S., Djuran, M.,& Glišić, B.. (2023). Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine. in Polyhedron, 244(1), 116585.
https://doi.org/10.1016/j.poly.2023.116585
Ašanin D, Andrejević T, Nenadović M, Rodić M, Vojnović S, Djuran M, Glišić B. Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine. in Polyhedron. 2023;244(1):116585.
doi:10.1016/j.poly.2023.116585 .
Ašanin, Darko, Andrejević, Tina, Nenadović, Marija, Rodić, Marko, Vojnović, Sandra, Djuran, Miloš, Glišić, Biljana, "Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine" in Polyhedron, 244, no. 1 (2023):116585,
https://doi.org/10.1016/j.poly.2023.116585 . .
1
2
2

Biotechnological production of bacterial pigment prodigiosin and bioactive properties of its metal complexes with Cu(II) and Zn(II)

Lazić, Jelena; Milovanović, Jelena; Anejević, Tina; Ašanin, Darko; Ilić-Tomić, Tatjana; Glišić, Biljana; Nikodinović-Runić, Jasmina

(2023)

TY  - CONF
AU  - Lazić, Jelena
AU  - Milovanović, Jelena
AU  - Anejević, Tina
AU  - Ašanin, Darko
AU  - Ilić-Tomić, Tatjana
AU  - Glišić, Biljana
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - https://afea.eventsair.com/10th-conference-of-mikrobiokosmos/abstract-book
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2235
AB  - Prodigiosin (PG, Fig. 1a) is a biologically active
pyrrolylpyrromethene alkaloid whose structure was
first confirmed in 1962 [1]. PG is commonly
produced by Gram-negative bacteria, such as
Serratia spp. and has an eco-physiological role [2].
Its biological activities were extensively researched,
and numerous pharmacological properties were
established, including anticancer and
immunosuppressive However, high cost of extraction and purification
still represent the bottleneck in the microbial
production of PG. Meat and fish processing wastes have high potential as raw materials for conversion
into useful products of higher value. In this study,
meat offcuts were assessed as the sole nutrient for
the fermentative production of PG from S.
marcescens. Using this substrate lowered the
cultivation medium cost and shortened the
fermentation time to 12 h, while allowing a
satisfying PG yield of 83.1 mg/L. The isolated PG
was used in one-step reactions with CuCl₂ or ZnCl₂
in terc-BuOH at 25 °C. The obtained [Cu(PG)Cl] (Fig.
1b) and [Zn(PG)₂] (Fig. 1c) complexes were
characterized by UV-Vis and IR spectroscopy and
their bioactivity potential was assessed.
Antimicrobial activity was assessed in a disc assay
against 4 human pathogens: Escherichia coli NCTC
9001, Pseudomonas aeruginosa ATCC 10332,
Staphylococcus aureus NCTC 6571, Candida
albicans ATCC 10231, but no effect was observed
for the tested concentrations of 200 μg per disc and
lower. However, the anticancer potential of the new
derivatives is promising and the bovine serum
albumin (BSA) binding study revealed that
complexes bind to BSA tightly and reversibly [4].
C3  - 10th Conference of Mikrobiokosmos
T1  - Biotechnological production of bacterial pigment prodigiosin and bioactive properties of its metal complexes with Cu(II) and Zn(II)
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2235
ER  - 
@conference{
author = "Lazić, Jelena and Milovanović, Jelena and Anejević, Tina and Ašanin, Darko and Ilić-Tomić, Tatjana and Glišić, Biljana and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "Prodigiosin (PG, Fig. 1a) is a biologically active
pyrrolylpyrromethene alkaloid whose structure was
first confirmed in 1962 [1]. PG is commonly
produced by Gram-negative bacteria, such as
Serratia spp. and has an eco-physiological role [2].
Its biological activities were extensively researched,
and numerous pharmacological properties were
established, including anticancer and
immunosuppressive However, high cost of extraction and purification
still represent the bottleneck in the microbial
production of PG. Meat and fish processing wastes have high potential as raw materials for conversion
into useful products of higher value. In this study,
meat offcuts were assessed as the sole nutrient for
the fermentative production of PG from S.
marcescens. Using this substrate lowered the
cultivation medium cost and shortened the
fermentation time to 12 h, while allowing a
satisfying PG yield of 83.1 mg/L. The isolated PG
was used in one-step reactions with CuCl₂ or ZnCl₂
in terc-BuOH at 25 °C. The obtained [Cu(PG)Cl] (Fig.
1b) and [Zn(PG)₂] (Fig. 1c) complexes were
characterized by UV-Vis and IR spectroscopy and
their bioactivity potential was assessed.
Antimicrobial activity was assessed in a disc assay
against 4 human pathogens: Escherichia coli NCTC
9001, Pseudomonas aeruginosa ATCC 10332,
Staphylococcus aureus NCTC 6571, Candida
albicans ATCC 10231, but no effect was observed
for the tested concentrations of 200 μg per disc and
lower. However, the anticancer potential of the new
derivatives is promising and the bovine serum
albumin (BSA) binding study revealed that
complexes bind to BSA tightly and reversibly [4].",
journal = "10th Conference of Mikrobiokosmos",
title = "Biotechnological production of bacterial pigment prodigiosin and bioactive properties of its metal complexes with Cu(II) and Zn(II)",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2235"
}
Lazić, J., Milovanović, J., Anejević, T., Ašanin, D., Ilić-Tomić, T., Glišić, B.,& Nikodinović-Runić, J.. (2023). Biotechnological production of bacterial pigment prodigiosin and bioactive properties of its metal complexes with Cu(II) and Zn(II). in 10th Conference of Mikrobiokosmos.
https://hdl.handle.net/21.15107/rcub_imagine_2235
Lazić J, Milovanović J, Anejević T, Ašanin D, Ilić-Tomić T, Glišić B, Nikodinović-Runić J. Biotechnological production of bacterial pigment prodigiosin and bioactive properties of its metal complexes with Cu(II) and Zn(II). in 10th Conference of Mikrobiokosmos. 2023;.
https://hdl.handle.net/21.15107/rcub_imagine_2235 .
Lazić, Jelena, Milovanović, Jelena, Anejević, Tina, Ašanin, Darko, Ilić-Tomić, Tatjana, Glišić, Biljana, Nikodinović-Runić, Jasmina, "Biotechnological production of bacterial pigment prodigiosin and bioactive properties of its metal complexes with Cu(II) and Zn(II)" in 10th Conference of Mikrobiokosmos (2023),
https://hdl.handle.net/21.15107/rcub_imagine_2235 .

Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine

Ašanin, Darko; Andrejević, Tina; Nenadović, Marija; Rodić, Marko; Vojnović, Sandra; Djuran, Miloš; Glišić, Biljana

(2023)

TY  - JOUR
AU  - Ašanin, Darko
AU  - Andrejević, Tina
AU  - Nenadović, Marija
AU  - Rodić, Marko
AU  - Vojnović, Sandra
AU  - Djuran, Miloš
AU  - Glišić, Biljana
PY  - 2023
UR  - https://www.sciencedirect.com/science/article/pii/S0277538723003078
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2076
AB  - In the present study, synthesis of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine (1,6-naph), {[Ag(1,6-naph)(H2O)](BF4)}n (1) and [AuCl3(1,6-naph)] (2), was reported. The methods used for the structural characterization of a new compound 1 included IR, NMR (1H and 13C) and UV-Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction analysis. The crystallographic results showed that compound 1 represents silver(I) coordination polymer, in which 1,6-naph ligand acts as a bidentate bridging ligand connecting two Ag(I) ions via its N1 and N6 nitrogen atoms, while the third coordination site of the metal ion is occupied by the water oxygen atom, resulted in a T-shape geometry. Compounds 1 and 2 were evaluated in vitro for antimicrobial activity against five bacterial and two Candida species, while their cytotoxicity was tested on the normal human lung fibroblast cell line (MRC-5). Compound 1 has manifested a remarkable antifungal activity on both tested Candida strains (C. albicans and C. parapsilosis) with minimal inhibitory concentrations (MICs) of 1.43 and 11.38 µM (0.49 and 3.9 µg/mL), respectively, while no significant antimicrobial activity was observed for 2. Moreover, silver(I) coordination polymer 1 inhibits the hyphae formation of C. albicans at subinhibitory concentration. The binding affinity of both compounds 1 and 2 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, indicating their ability to interact with these biomolecules, with compound 2 being more reactive.
T2  - Polyhedron
T1  - Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine
IS  - 1
SP  - 116585
VL  - 244
DO  - 10.1016/j.poly.2023.116585
ER  - 
@article{
author = "Ašanin, Darko and Andrejević, Tina and Nenadović, Marija and Rodić, Marko and Vojnović, Sandra and Djuran, Miloš and Glišić, Biljana",
year = "2023",
abstract = "In the present study, synthesis of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine (1,6-naph), {[Ag(1,6-naph)(H2O)](BF4)}n (1) and [AuCl3(1,6-naph)] (2), was reported. The methods used for the structural characterization of a new compound 1 included IR, NMR (1H and 13C) and UV-Vis spectroscopy, cyclic voltammetry and single-crystal X-ray diffraction analysis. The crystallographic results showed that compound 1 represents silver(I) coordination polymer, in which 1,6-naph ligand acts as a bidentate bridging ligand connecting two Ag(I) ions via its N1 and N6 nitrogen atoms, while the third coordination site of the metal ion is occupied by the water oxygen atom, resulted in a T-shape geometry. Compounds 1 and 2 were evaluated in vitro for antimicrobial activity against five bacterial and two Candida species, while their cytotoxicity was tested on the normal human lung fibroblast cell line (MRC-5). Compound 1 has manifested a remarkable antifungal activity on both tested Candida strains (C. albicans and C. parapsilosis) with minimal inhibitory concentrations (MICs) of 1.43 and 11.38 µM (0.49 and 3.9 µg/mL), respectively, while no significant antimicrobial activity was observed for 2. Moreover, silver(I) coordination polymer 1 inhibits the hyphae formation of C. albicans at subinhibitory concentration. The binding affinity of both compounds 1 and 2 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, indicating their ability to interact with these biomolecules, with compound 2 being more reactive.",
journal = "Polyhedron",
title = "Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine",
number = "1",
pages = "116585",
volume = "244",
doi = "10.1016/j.poly.2023.116585"
}
Ašanin, D., Andrejević, T., Nenadović, M., Rodić, M., Vojnović, S., Djuran, M.,& Glišić, B.. (2023). Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine. in Polyhedron, 244(1), 116585.
https://doi.org/10.1016/j.poly.2023.116585
Ašanin D, Andrejević T, Nenadović M, Rodić M, Vojnović S, Djuran M, Glišić B. Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine. in Polyhedron. 2023;244(1):116585.
doi:10.1016/j.poly.2023.116585 .
Ašanin, Darko, Andrejević, Tina, Nenadović, Marija, Rodić, Marko, Vojnović, Sandra, Djuran, Miloš, Glišić, Biljana, "Comparative study of antimicrobial potential and DNA/BSA binding affinity of silver(I) and gold(III) coordination compounds with 1,6-naphthyridine" in Polyhedron, 244, no. 1 (2023):116585,
https://doi.org/10.1016/j.poly.2023.116585 . .
1
2
2

Structural characterization and antimicrobial evaluation of chromium(III) and cobalt(III) complexes with 2,2-diMe-1,3-pdta: Tuning dimensionality of coordination polymer and the water content by alkyl substitution

Gitarić, Jelena; Warzajtis, Beata; Drasković, Nenad S.; Stevanović, Milena; Ašanin, Darko P.; Škaro Bogojević, Sanja; Rychlewska, Urszula; Djuran, Milos ; Glišić, Biljana

(Pergamon-Elsevier Science Ltd, Oxford, 2022)

TY  - JOUR
AU  - Gitarić, Jelena
AU  - Warzajtis, Beata
AU  - Drasković, Nenad S.
AU  - Stevanović, Milena
AU  - Ašanin, Darko P.
AU  - Škaro Bogojević, Sanja
AU  - Rychlewska, Urszula
AU  - Djuran, Milos 
AU  - Glišić, Biljana
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1599
AB  - Hexadentate 2,2-dimethyl-1,3-propanediamine-N,N,N',N'-tetraacetate (2,2-diMe-1,3-pdta) ligand, containing two methyl substituents at the central carbon atom of a 1,3-propanediamine, has been prepared and used for the synthesis of Na[Cr(2,2-diMe-1,3-pdta)].3.75H2O (1) and Na[Co(2,2-diMe-1,3-pdta)].3.88H(2)O (2) complexes. These complexes were characterized by IR and electronic absorption spectroscopy, and single-crystal X-ray diffraction analysis. NMR (H-1 and C-13) spectroscopy was additionally applied for the characterization of complex 2. Crystallographic data indicate that the two investigated crystals are isostructural and contain 2,2-diMe-1,3-pdta ligand coordinated to metal ion through 2N and 4O atoms forming an octahedral complex in which the six-membered 1,3-propanediamine chelate ring adopts a twist-boat conformation. There are four such complex anions in the symmetry independent part of the unit cell. Each complex anion is further connected to the sodium counterion(s) via the bridging carboxylate group(s). Structural changes in 2,2-diMe-1,3-pdta-Cr(III) complex stimulated solely by the presence of alkyl side groups are discussed. The present study shows that in 1,3-pdtatype complexes of Cr(III) and Co(III), the environment at coordination centre can be modified by introducing substitution in one of the carbon atoms of the diamine and the resulting difference in the subunit structure can bring about noticeable change in molecular and crystal structure. The examples illustrate the importance of the steric effect for the fine tuning of the dimensionality of the resulting coordination polymer and the water content. The antimicrobial activity of complexes 1 and 2 was evaluated against different bacterial and Candida spp., while their cytotoxic effects were tested on the normal human lung fibroblast cell line (MRC-5).
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Structural characterization and antimicrobial evaluation of chromium(III) and cobalt(III) complexes with 2,2-diMe-1,3-pdta: Tuning dimensionality of coordination polymer and the water content by alkyl substitution
VL  - 222
DO  - 10.1016/j.poly.2022.115864
ER  - 
@article{
author = "Gitarić, Jelena and Warzajtis, Beata and Drasković, Nenad S. and Stevanović, Milena and Ašanin, Darko P. and Škaro Bogojević, Sanja and Rychlewska, Urszula and Djuran, Milos  and Glišić, Biljana",
year = "2022",
abstract = "Hexadentate 2,2-dimethyl-1,3-propanediamine-N,N,N',N'-tetraacetate (2,2-diMe-1,3-pdta) ligand, containing two methyl substituents at the central carbon atom of a 1,3-propanediamine, has been prepared and used for the synthesis of Na[Cr(2,2-diMe-1,3-pdta)].3.75H2O (1) and Na[Co(2,2-diMe-1,3-pdta)].3.88H(2)O (2) complexes. These complexes were characterized by IR and electronic absorption spectroscopy, and single-crystal X-ray diffraction analysis. NMR (H-1 and C-13) spectroscopy was additionally applied for the characterization of complex 2. Crystallographic data indicate that the two investigated crystals are isostructural and contain 2,2-diMe-1,3-pdta ligand coordinated to metal ion through 2N and 4O atoms forming an octahedral complex in which the six-membered 1,3-propanediamine chelate ring adopts a twist-boat conformation. There are four such complex anions in the symmetry independent part of the unit cell. Each complex anion is further connected to the sodium counterion(s) via the bridging carboxylate group(s). Structural changes in 2,2-diMe-1,3-pdta-Cr(III) complex stimulated solely by the presence of alkyl side groups are discussed. The present study shows that in 1,3-pdtatype complexes of Cr(III) and Co(III), the environment at coordination centre can be modified by introducing substitution in one of the carbon atoms of the diamine and the resulting difference in the subunit structure can bring about noticeable change in molecular and crystal structure. The examples illustrate the importance of the steric effect for the fine tuning of the dimensionality of the resulting coordination polymer and the water content. The antimicrobial activity of complexes 1 and 2 was evaluated against different bacterial and Candida spp., while their cytotoxic effects were tested on the normal human lung fibroblast cell line (MRC-5).",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Structural characterization and antimicrobial evaluation of chromium(III) and cobalt(III) complexes with 2,2-diMe-1,3-pdta: Tuning dimensionality of coordination polymer and the water content by alkyl substitution",
volume = "222",
doi = "10.1016/j.poly.2022.115864"
}
Gitarić, J., Warzajtis, B., Drasković, N. S., Stevanović, M., Ašanin, D. P., Škaro Bogojević, S., Rychlewska, U., Djuran, M.,& Glišić, B.. (2022). Structural characterization and antimicrobial evaluation of chromium(III) and cobalt(III) complexes with 2,2-diMe-1,3-pdta: Tuning dimensionality of coordination polymer and the water content by alkyl substitution. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 222.
https://doi.org/10.1016/j.poly.2022.115864
Gitarić J, Warzajtis B, Drasković NS, Stevanović M, Ašanin DP, Škaro Bogojević S, Rychlewska U, Djuran M, Glišić B. Structural characterization and antimicrobial evaluation of chromium(III) and cobalt(III) complexes with 2,2-diMe-1,3-pdta: Tuning dimensionality of coordination polymer and the water content by alkyl substitution. in Polyhedron. 2022;222.
doi:10.1016/j.poly.2022.115864 .
Gitarić, Jelena, Warzajtis, Beata, Drasković, Nenad S., Stevanović, Milena, Ašanin, Darko P., Škaro Bogojević, Sanja, Rychlewska, Urszula, Djuran, Milos , Glišić, Biljana, "Structural characterization and antimicrobial evaluation of chromium(III) and cobalt(III) complexes with 2,2-diMe-1,3-pdta: Tuning dimensionality of coordination polymer and the water content by alkyl substitution" in Polyhedron, 222 (2022),
https://doi.org/10.1016/j.poly.2022.115864 . .
4
4

Structural Characterization, Antimicrobial Activity and BSA/DNA Binding Affinity of New Silver(I) Complexes with Thianthrene and 1,8-Naphthyridine

Ašanin, Darko P.; Škaro Bogojević, Sanja; Perdih, Franc; Andrejević, Tina P.; Milivojević, Dušan; Aleksić, Ivana; Nikodinović-Runić, Jasmina; Glišić, Biljana; Turel, Iztok; Djuran, Milos

(Basel : MDPI, 2021)

TY  - JOUR
AU  - Ašanin, Darko P.
AU  - Škaro Bogojević, Sanja
AU  - Perdih, Franc
AU  - Andrejević, Tina P.
AU  - Milivojević, Dušan
AU  - Aleksić, Ivana
AU  - Nikodinović-Runić, Jasmina
AU  - Glišić, Biljana
AU  - Turel, Iztok
AU  - Djuran, Milos
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1420
AB  - Three new silver(I) complexes [Ag(NO3)(tia)(H2O)](n) (Ag1), [Ag(CF3SO3)(1,8-naph)](n) (Ag2) and [Ag-2(1,8-naph)(2)(H2O)(1.2)](PF6)(2) (Ag3), where tia is thianthrene and 1,8-naph is 1,8-naphthyridine, were synthesized and structurally characterized by different spectroscopic and electrochemical methods and their crystal structures were determined by single-crystal X-ray diffraction analysis. Their antimicrobial potential was evaluated against four bacterial and three Candida species, and the obtained results revealed that these complexes showed significant activity toward the Gram-positive Staphylococcus aureus, Gram-negative Pseudomonas aeruginosa and the investigated Candida species with minimal inhibitory concentration (MIC) values in the range 1.56-7.81 mu g/mL. On the other hand, tia and 1,8-naph ligands were not active against the investigated strains, suggesting that their complexation with Ag(I) ion results in the formation of antimicrobial compounds. Moreover, low toxicity of the complexes was detected by in vivo model Caenorhabditis elegans. The interaction of the complexes with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied to evaluate their binding affinity towards these biomolecules for possible insights into the mode of antimicrobial activity. The binding affinity of Ag1-3 to BSA was higher than that for DNA, indicating that proteins could be more favorable binding sites for these complexes in comparison to the nucleic acids.
PB  - Basel : MDPI
T2  - Molecules
T1  - Structural Characterization, Antimicrobial Activity and BSA/DNA Binding Affinity of New Silver(I) Complexes with Thianthrene and 1,8-Naphthyridine
IS  - 7
VL  - 26
DO  - 10.3390/molecules26071871
ER  - 
@article{
author = "Ašanin, Darko P. and Škaro Bogojević, Sanja and Perdih, Franc and Andrejević, Tina P. and Milivojević, Dušan and Aleksić, Ivana and Nikodinović-Runić, Jasmina and Glišić, Biljana and Turel, Iztok and Djuran, Milos",
year = "2021",
abstract = "Three new silver(I) complexes [Ag(NO3)(tia)(H2O)](n) (Ag1), [Ag(CF3SO3)(1,8-naph)](n) (Ag2) and [Ag-2(1,8-naph)(2)(H2O)(1.2)](PF6)(2) (Ag3), where tia is thianthrene and 1,8-naph is 1,8-naphthyridine, were synthesized and structurally characterized by different spectroscopic and electrochemical methods and their crystal structures were determined by single-crystal X-ray diffraction analysis. Their antimicrobial potential was evaluated against four bacterial and three Candida species, and the obtained results revealed that these complexes showed significant activity toward the Gram-positive Staphylococcus aureus, Gram-negative Pseudomonas aeruginosa and the investigated Candida species with minimal inhibitory concentration (MIC) values in the range 1.56-7.81 mu g/mL. On the other hand, tia and 1,8-naph ligands were not active against the investigated strains, suggesting that their complexation with Ag(I) ion results in the formation of antimicrobial compounds. Moreover, low toxicity of the complexes was detected by in vivo model Caenorhabditis elegans. The interaction of the complexes with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied to evaluate their binding affinity towards these biomolecules for possible insights into the mode of antimicrobial activity. The binding affinity of Ag1-3 to BSA was higher than that for DNA, indicating that proteins could be more favorable binding sites for these complexes in comparison to the nucleic acids.",
publisher = "Basel : MDPI",
journal = "Molecules",
title = "Structural Characterization, Antimicrobial Activity and BSA/DNA Binding Affinity of New Silver(I) Complexes with Thianthrene and 1,8-Naphthyridine",
number = "7",
volume = "26",
doi = "10.3390/molecules26071871"
}
Ašanin, D. P., Škaro Bogojević, S., Perdih, F., Andrejević, T. P., Milivojević, D., Aleksić, I., Nikodinović-Runić, J., Glišić, B., Turel, I.,& Djuran, M.. (2021). Structural Characterization, Antimicrobial Activity and BSA/DNA Binding Affinity of New Silver(I) Complexes with Thianthrene and 1,8-Naphthyridine. in Molecules
Basel : MDPI., 26(7).
https://doi.org/10.3390/molecules26071871
Ašanin DP, Škaro Bogojević S, Perdih F, Andrejević TP, Milivojević D, Aleksić I, Nikodinović-Runić J, Glišić B, Turel I, Djuran M. Structural Characterization, Antimicrobial Activity and BSA/DNA Binding Affinity of New Silver(I) Complexes with Thianthrene and 1,8-Naphthyridine. in Molecules. 2021;26(7).
doi:10.3390/molecules26071871 .
Ašanin, Darko P., Škaro Bogojević, Sanja, Perdih, Franc, Andrejević, Tina P., Milivojević, Dušan, Aleksić, Ivana, Nikodinović-Runić, Jasmina, Glišić, Biljana, Turel, Iztok, Djuran, Milos, "Structural Characterization, Antimicrobial Activity and BSA/DNA Binding Affinity of New Silver(I) Complexes with Thianthrene and 1,8-Naphthyridine" in Molecules, 26, no. 7 (2021),
https://doi.org/10.3390/molecules26071871 . .
12
16
13

Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies

Stevanović, Nevena; Aleksic, Ivana; Kljun, Jakob; Ašanin, Darko; Andrejević, Tina; Nikodinović-Runić, Jasmina; Turel, Iztok; Djuran, Miloš; Glišić, Biljana

(2020)

TY  - CONF
AU  - Stevanović, Nevena
AU  - Aleksic, Ivana
AU  - Kljun, Jakob
AU  - Ašanin, Darko
AU  - Andrejević, Tina
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Djuran, Miloš
AU  - Glišić, Biljana
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1641
AB  - Over the last few decades, invasive fungal infections represent a serious problem for modern-day healthcare. Aspergillus, Candida and Cryptococcus species are the most common pathogens causing life-threatening infections. Therapeutic options for the treatment of fungal infections are presently limited to only four classes of compounds and each of these drug classes has significant therapeutic limitations, including serious toxic-side effects, resistance development and limited routes of administration. In order to overcome resistance of the clinically used antifungal triazole agents, we synthesized zinc(II) and copper(II) complexes with fluconazole (flz), {[ZnCl2(flz)2]·2C2H5OH}n (1) and {[CuCl2(flz)2].5H2O}n (2). These complexes were obtained from the reactions between ZnCl2 or CuCl2·2H2O with this antifungal agent in 1 : 2 molar ratio in ethanol at room temperature. The compounds were characterized by elemental analysis, NMR, IR and UV-Vis spectroscopy and mass spectrometry. The crystal structure of complex 1 was determined by a single-crystal X-ray diffraction analysis. The antimicrobial effect of both complexes and fluconazole was evaluated against different Candida species as well as Gram-positive and Gram-negative bacteria by means of minimal inhibitory concentrations (MICs). The obtained results have shown that, in most cases, the coordination of fluconazole to Zn(II) and Cu(II) ions leads to the enhancement of its antifungal activity. Both complexes showed strong inhibitory activity against C. albicans biofilm formation at concentrations lower than MIC values, as well as strong inhibition of C. albicans filamentation.
C3  - Electronic Conference on Medicinal Chemistry
T1  - Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies
DO  - 10.3390/ECMC2020-07373
ER  - 
@conference{
author = "Stevanović, Nevena and Aleksic, Ivana and Kljun, Jakob and Ašanin, Darko and Andrejević, Tina and Nikodinović-Runić, Jasmina and Turel, Iztok and Djuran, Miloš and Glišić, Biljana",
year = "2020",
abstract = "Over the last few decades, invasive fungal infections represent a serious problem for modern-day healthcare. Aspergillus, Candida and Cryptococcus species are the most common pathogens causing life-threatening infections. Therapeutic options for the treatment of fungal infections are presently limited to only four classes of compounds and each of these drug classes has significant therapeutic limitations, including serious toxic-side effects, resistance development and limited routes of administration. In order to overcome resistance of the clinically used antifungal triazole agents, we synthesized zinc(II) and copper(II) complexes with fluconazole (flz), {[ZnCl2(flz)2]·2C2H5OH}n (1) and {[CuCl2(flz)2].5H2O}n (2). These complexes were obtained from the reactions between ZnCl2 or CuCl2·2H2O with this antifungal agent in 1 : 2 molar ratio in ethanol at room temperature. The compounds were characterized by elemental analysis, NMR, IR and UV-Vis spectroscopy and mass spectrometry. The crystal structure of complex 1 was determined by a single-crystal X-ray diffraction analysis. The antimicrobial effect of both complexes and fluconazole was evaluated against different Candida species as well as Gram-positive and Gram-negative bacteria by means of minimal inhibitory concentrations (MICs). The obtained results have shown that, in most cases, the coordination of fluconazole to Zn(II) and Cu(II) ions leads to the enhancement of its antifungal activity. Both complexes showed strong inhibitory activity against C. albicans biofilm formation at concentrations lower than MIC values, as well as strong inhibition of C. albicans filamentation.",
journal = "Electronic Conference on Medicinal Chemistry",
title = "Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies",
doi = "10.3390/ECMC2020-07373"
}
Stevanović, N., Aleksic, I., Kljun, J., Ašanin, D., Andrejević, T., Nikodinović-Runić, J., Turel, I., Djuran, M.,& Glišić, B.. (2020). Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies. in Electronic Conference on Medicinal Chemistry.
https://doi.org/10.3390/ECMC2020-07373
Stevanović N, Aleksic I, Kljun J, Ašanin D, Andrejević T, Nikodinović-Runić J, Turel I, Djuran M, Glišić B. Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies. in Electronic Conference on Medicinal Chemistry. 2020;.
doi:10.3390/ECMC2020-07373 .
Stevanović, Nevena, Aleksic, Ivana, Kljun, Jakob, Ašanin, Darko, Andrejević, Tina, Nikodinović-Runić, Jasmina, Turel, Iztok, Djuran, Miloš, Glišić, Biljana, "Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies" in Electronic Conference on Medicinal Chemistry (2020),
https://doi.org/10.3390/ECMC2020-07373 . .

Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules

Ašanin, Darko P.; Andrejević, Tina P.; Škaro Bogojević, Sanja; Stevanović, Nevena Lj; Aleksic, Ivana; Milivojević, Dušan; Perdih, Franc; Turel, Iztok; Djuran, Miloš I.; Glišić, Biljana

(MDPI : Basel,Switzerland, 2020)

TY  - CONF
AU  - Ašanin, Darko P.
AU  - Andrejević, Tina P.
AU  - Škaro Bogojević, Sanja
AU  - Stevanović, Nevena Lj
AU  - Aleksic, Ivana
AU  - Milivojević, Dušan
AU  - Perdih, Franc
AU  - Turel, Iztok
AU  - Djuran, Miloš I.
AU  - Glišić, Biljana
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1632
AB  - New silver(I) complex with thianthrene (tia), [Ag(NO3)(tia)(H2O)]n, was synthesized by the reaction of AgNO3 with an equimolar amount of tia in ethanol/dichloromethane (v/v 1:1) at room temperature, and characterized by NMR, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction analysis. The antimicrobial activity of the synthesized complex was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and Candida spp. This complex showed significant activity toward important human pathogens Gram-positive Staphylococcus aureus and Candida parapsilosis with minimal inhibitory concentrations (MICs) being 3.91 µg/mL. The interaction of [Ag(NO3)(tia)(H2O)]n with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied to evaluate the binding affinity towards these biomolecules for possible insights on the mode of antimicrobial activity. The binding affinity of the investigated complex to BSA is higher than that for DNA, indicating that proteins could be more favorable binding sites for this complex in comparison to the nucleic acids.
PB  - MDPI : Basel,Switzerland
C3  - The 1st International Electronic Conference on Applied Sciences
T1  - Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules
IS  - 1
SP  - 4
VL  - 67
DO  - 10.3390/ASEC2020-07534
ER  - 
@conference{
author = "Ašanin, Darko P. and Andrejević, Tina P. and Škaro Bogojević, Sanja and Stevanović, Nevena Lj and Aleksic, Ivana and Milivojević, Dušan and Perdih, Franc and Turel, Iztok and Djuran, Miloš I. and Glišić, Biljana",
year = "2020",
abstract = "New silver(I) complex with thianthrene (tia), [Ag(NO3)(tia)(H2O)]n, was synthesized by the reaction of AgNO3 with an equimolar amount of tia in ethanol/dichloromethane (v/v 1:1) at room temperature, and characterized by NMR, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction analysis. The antimicrobial activity of the synthesized complex was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and Candida spp. This complex showed significant activity toward important human pathogens Gram-positive Staphylococcus aureus and Candida parapsilosis with minimal inhibitory concentrations (MICs) being 3.91 µg/mL. The interaction of [Ag(NO3)(tia)(H2O)]n with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied to evaluate the binding affinity towards these biomolecules for possible insights on the mode of antimicrobial activity. The binding affinity of the investigated complex to BSA is higher than that for DNA, indicating that proteins could be more favorable binding sites for this complex in comparison to the nucleic acids.",
publisher = "MDPI : Basel,Switzerland",
journal = "The 1st International Electronic Conference on Applied Sciences",
title = "Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules",
number = "1",
pages = "4",
volume = "67",
doi = "10.3390/ASEC2020-07534"
}
Ašanin, D. P., Andrejević, T. P., Škaro Bogojević, S., Stevanović, N. L., Aleksic, I., Milivojević, D., Perdih, F., Turel, I., Djuran, M. I.,& Glišić, B.. (2020). Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules. in The 1st International Electronic Conference on Applied Sciences
MDPI : Basel,Switzerland., 67(1), 4.
https://doi.org/10.3390/ASEC2020-07534
Ašanin DP, Andrejević TP, Škaro Bogojević S, Stevanović NL, Aleksic I, Milivojević D, Perdih F, Turel I, Djuran MI, Glišić B. Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules. in The 1st International Electronic Conference on Applied Sciences. 2020;67(1):4.
doi:10.3390/ASEC2020-07534 .
Ašanin, Darko P., Andrejević, Tina P., Škaro Bogojević, Sanja, Stevanović, Nevena Lj, Aleksic, Ivana, Milivojević, Dušan, Perdih, Franc, Turel, Iztok, Djuran, Miloš I., Glišić, Biljana, "Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules" in The 1st International Electronic Conference on Applied Sciences, 67, no. 1 (2020):4,
https://doi.org/10.3390/ASEC2020-07534 . .
1
1