Ivanović, Stefan

Link to this page

Authority KeyName Variants
orcid::0000-0002-3291-9818
  • Ivanović, Stefan (2)
Projects

Author's Bibliography

Bisaurones - enzymatic production and biological evaluation

Novakovi, Miroslav M.; Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Novakovi, Miroslav M.
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1310
AB  - TheTrametes versicolorlaccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e.two regioisomeric pairs of diasteromers,1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3 ',4 ') catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds1,3and4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound2, isolated as a mixture containingca.25% of compound1,was proposed by the comparison of(1)H NMR data to compound1and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers1,3and4,were evaluated for their cytotoxic and antioxidative propertiesin vitrousing a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. TheC. coggygriabark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.
PB  - Royal Soc Chemistry, Cambridge
T2  - New Journal of Chemistry
T1  - Bisaurones - enzymatic production and biological evaluation
EP  - 9655
IS  - 23
SP  - 9647
VL  - 44
DO  - 10.1039/d0nj00758g
ER  - 
@article{
author = "Novakovi, Miroslav M. and Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "TheTrametes versicolorlaccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e.two regioisomeric pairs of diasteromers,1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3 ',4 ') catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds1,3and4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound2, isolated as a mixture containingca.25% of compound1,was proposed by the comparison of(1)H NMR data to compound1and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers1,3and4,were evaluated for their cytotoxic and antioxidative propertiesin vitrousing a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. TheC. coggygriabark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "New Journal of Chemistry",
title = "Bisaurones - enzymatic production and biological evaluation",
pages = "9655-9647",
number = "23",
volume = "44",
doi = "10.1039/d0nj00758g"
}
Novakovi, M. M., Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Bisaurones - enzymatic production and biological evaluation. in New Journal of Chemistry
Royal Soc Chemistry, Cambridge., 44(23), 9647-9655.
https://doi.org/10.1039/d0nj00758g
Novakovi MM, Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Bisaurones - enzymatic production and biological evaluation. in New Journal of Chemistry. 2020;44(23):9647-9655.
doi:10.1039/d0nj00758g .
Novakovi, Miroslav M., Ilić-Tomić, Tatjana, Tešević, Vele, Simić, Katarina, Ivanović, Stefan, Simić, Stefan, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Bisaurones - enzymatic production and biological evaluation" in New Journal of Chemistry, 44, no. 23 (2020):9647-9655,
https://doi.org/10.1039/d0nj00758g . .
1
1

Bisaurones - enzymatic production and biological evaluation

Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1761
AB  - TheTrametes versicolorlaccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e.two regioisomeric pairs of diasteromers,1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3 ',4 ') catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds1,3and4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound2, isolated as a mixture containingca.25% of compound1,was proposed by the comparison of(1)H NMR data to compound1and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers1,3and4,were evaluated for their cytotoxic and antioxidative propertiesin vitrousing a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. TheC. coggygriabark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.
PB  - Royal Soc Chemistry, Cambridge
T2  - New Journal of Chemistry
T1  - Bisaurones - enzymatic production and biological evaluation
EP  - 9655
IS  - 23
SP  - 9647
VL  - 44
DO  - 10.1039/d0nj00758g
ER  - 
@article{
author = "Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "TheTrametes versicolorlaccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e.two regioisomeric pairs of diasteromers,1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3 ',4 ') catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds1,3and4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound2, isolated as a mixture containingca.25% of compound1,was proposed by the comparison of(1)H NMR data to compound1and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers1,3and4,were evaluated for their cytotoxic and antioxidative propertiesin vitrousing a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. TheC. coggygriabark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "New Journal of Chemistry",
title = "Bisaurones - enzymatic production and biological evaluation",
pages = "9655-9647",
number = "23",
volume = "44",
doi = "10.1039/d0nj00758g"
}
Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Bisaurones - enzymatic production and biological evaluation. in New Journal of Chemistry
Royal Soc Chemistry, Cambridge., 44(23), 9647-9655.
https://doi.org/10.1039/d0nj00758g
Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Bisaurones - enzymatic production and biological evaluation. in New Journal of Chemistry. 2020;44(23):9647-9655.
doi:10.1039/d0nj00758g .
Ilić-Tomić, Tatjana, Tešević, Vele, Simić, Katarina, Ivanović, Stefan, Simić, Stefan, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Bisaurones - enzymatic production and biological evaluation" in New Journal of Chemistry, 44, no. 23 (2020):9647-9655,
https://doi.org/10.1039/d0nj00758g . .
1
1