B. Rokić, Miloš

Link to this page

Authority KeyName Variants
d212c43a-da8b-4aef-bc17-c3b9ee0fa904
  • B. Rokić, Miloš (1)
  • Rokić, Miloš (1)
Projects

Author's Bibliography

GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY

Atanasković, Marija; Morić, Ivana; B. Rokić, Miloš; Đokić, Anđela; Pantović, Jelena; Despotović, Dragana; Šenerović, Lidija

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Atanasković, Marija
AU  - Morić, Ivana
AU  - B. Rokić, Miloš
AU  - Đokić, Anđela
AU  - Pantović, Jelena
AU  - Despotović, Dragana
AU  - Šenerović, Lidija
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2369
AB  - The formation of biofilms by foodborne pathogens
is a constant challenge in the food industry,
leading to an increased risk of contamination and
compromising food safety. Many of the chemicals
commonly used for sanitation in the food industry
are unable to remove biofilms, are harmful
to surfaces and can be toxic. The effectiveness
of disinfectants can be improved using enzymes
that specifically target biofilm components such
as exopolysaccharides, extracellular DNA, or proteins.
In this study we investigated the potential
of glycoside hydrolases originating from the
gill microbiota of freshwater fish to control biofilm
formation in the most common foodborne
pathogens. We demonstrated that β-glucosidase
from Microbacterium sp. BG28 (BglB-BG28) effectively
inhibits cellulose-rich biofilms formed by
Salmonella enteritidis, S. typhimurium, S. infantis,
and Escherichia coli. When these bacteria were cultivated overnight with 200 μL/mL enzyme, up
to 80% less biofilm was formed. By fluorescence
microscopy, we visualised the inhibition of biofilms
on plastic, glass and aluminium, materials
commonly used in the food industry. When used
as a pre-treatment, BglB-BG28 increased the
bactericidal efficacy of Oxicid®S, a commercially
available surface disinfectant. Its effectiveness at
temperatures up to 50 °C and in a pH range from
4 to 8 together with compatibility with non-ionic
detergents and high tolerance to sodium chloride
and glucose give BglB-BG28 advantages in
harsh and diverse industrial environments. Importantly,
no toxicity to Caenorhabditis elegans
was observed at enzyme concentrations of up
to 1 mg/ml. Overall, these results demonstrate
the suitability of the β-glucosidase BglB-BG28 for
the formulation of a novel enzyme-based disinfectant
to be used in food processing facilities.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY
EP  - 42
SP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2369
ER  - 
@conference{
author = "Atanasković, Marija and Morić, Ivana and B. Rokić, Miloš and Đokić, Anđela and Pantović, Jelena and Despotović, Dragana and Šenerović, Lidija",
year = "2024",
abstract = "The formation of biofilms by foodborne pathogens
is a constant challenge in the food industry,
leading to an increased risk of contamination and
compromising food safety. Many of the chemicals
commonly used for sanitation in the food industry
are unable to remove biofilms, are harmful
to surfaces and can be toxic. The effectiveness
of disinfectants can be improved using enzymes
that specifically target biofilm components such
as exopolysaccharides, extracellular DNA, or proteins.
In this study we investigated the potential
of glycoside hydrolases originating from the
gill microbiota of freshwater fish to control biofilm
formation in the most common foodborne
pathogens. We demonstrated that β-glucosidase
from Microbacterium sp. BG28 (BglB-BG28) effectively
inhibits cellulose-rich biofilms formed by
Salmonella enteritidis, S. typhimurium, S. infantis,
and Escherichia coli. When these bacteria were cultivated overnight with 200 μL/mL enzyme, up
to 80% less biofilm was formed. By fluorescence
microscopy, we visualised the inhibition of biofilms
on plastic, glass and aluminium, materials
commonly used in the food industry. When used
as a pre-treatment, BglB-BG28 increased the
bactericidal efficacy of Oxicid®S, a commercially
available surface disinfectant. Its effectiveness at
temperatures up to 50 °C and in a pH range from
4 to 8 together with compatibility with non-ionic
detergents and high tolerance to sodium chloride
and glucose give BglB-BG28 advantages in
harsh and diverse industrial environments. Importantly,
no toxicity to Caenorhabditis elegans
was observed at enzyme concentrations of up
to 1 mg/ml. Overall, these results demonstrate
the suitability of the β-glucosidase BglB-BG28 for
the formulation of a novel enzyme-based disinfectant
to be used in food processing facilities.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2369"
}
Atanasković, M., Morić, I., B. Rokić, M., Đokić, A., Pantović, J., Despotović, D.,& Šenerović, L.. (2024). GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 42-42.
https://hdl.handle.net/21.15107/rcub_imagine_2369
Atanasković M, Morić I, B. Rokić M, Đokić A, Pantović J, Despotović D, Šenerović L. GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:42-42.
https://hdl.handle.net/21.15107/rcub_imagine_2369 .
Atanasković, Marija, Morić, Ivana, B. Rokić, Miloš, Đokić, Anđela, Pantović, Jelena, Despotović, Dragana, Šenerović, Lidija, "GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):42-42,
https://hdl.handle.net/21.15107/rcub_imagine_2369 .

NEW APPROACHES IN THE TREATMENT OF CHRONIC BACTERIAL INFECTIONS

Đokić, Lidija; Rokić, Miloš; Šenerović, Lidija

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Đokić, Lidija
AU  - Rokić, Miloš
AU  - Šenerović, Lidija
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2376
AB  - The rapid emergence and spread of multidrug-
resistant pathogens present a global
healthcare challenge. One common cause of
resistance and/or tolerance to antibiotics is
biofilms, a complex communities of bacteria
embedded in a self-produced matrix. Biofilm
formation and maturation are regulated by
quorum sensing, a cell density-dependent communication
system that relies on the synthesis,
diffusion, and detection of small signaling molecules
- autoinducers (AIs). Quorum quenching
(QQ) enzymes that cut Ais emerged as a promising
strategy for persistent bacterial infections.
However, a significant drawback for the use of
QQ enzymes as therapeutics is their poor stability
and efficacy in vivo. Since one of the major
health issues linked to biofilm development is
persistent wound infections, our goal was to
improve enzyme properties by immobilizing it
on a natural biopolymer to make it suitable for
use as a wound dressing. The best candidate for immobilization was YtnP lactonase from Bacillus
paralicheniformis ZP1, as in concentrations
higher than 25 μg/mL it improved the survival of
Pseudomonas aeruginosa PAO1-infected zebrafish,
rescuing 80% of embryos. When combined
with tobramycin or gentamicin, the survival
rate of zebrafish embryos increased to 100%.
Purified YtnP lactonase at a concentration of 1
mg was immobilized on 10 mg of polymer disks
by crosslinking with glutaraldehyde. Specific
modifications of the polymer were also made to
eliminate the use of glutaraldehyde, which is a
skin irritant. In in vivo experiments on a murine
chronic wound model, immobilized enzyme
inhibited biofilm development, cleared already
formed biofilms, and overall improved wound
healing. These results provide a foundation for
the development of advanced wound dressings
that will prevent infection development in
wounds and enable proper therapy for infected
chronic wounds.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - NEW APPROACHES IN THE TREATMENT OF CHRONIC BACTERIAL INFECTIONS
EP  - 126
SP  - 126
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2376
ER  - 
@conference{
author = "Đokić, Lidija and Rokić, Miloš and Šenerović, Lidija",
year = "2024",
abstract = "The rapid emergence and spread of multidrug-
resistant pathogens present a global
healthcare challenge. One common cause of
resistance and/or tolerance to antibiotics is
biofilms, a complex communities of bacteria
embedded in a self-produced matrix. Biofilm
formation and maturation are regulated by
quorum sensing, a cell density-dependent communication
system that relies on the synthesis,
diffusion, and detection of small signaling molecules
- autoinducers (AIs). Quorum quenching
(QQ) enzymes that cut Ais emerged as a promising
strategy for persistent bacterial infections.
However, a significant drawback for the use of
QQ enzymes as therapeutics is their poor stability
and efficacy in vivo. Since one of the major
health issues linked to biofilm development is
persistent wound infections, our goal was to
improve enzyme properties by immobilizing it
on a natural biopolymer to make it suitable for
use as a wound dressing. The best candidate for immobilization was YtnP lactonase from Bacillus
paralicheniformis ZP1, as in concentrations
higher than 25 μg/mL it improved the survival of
Pseudomonas aeruginosa PAO1-infected zebrafish,
rescuing 80% of embryos. When combined
with tobramycin or gentamicin, the survival
rate of zebrafish embryos increased to 100%.
Purified YtnP lactonase at a concentration of 1
mg was immobilized on 10 mg of polymer disks
by crosslinking with glutaraldehyde. Specific
modifications of the polymer were also made to
eliminate the use of glutaraldehyde, which is a
skin irritant. In in vivo experiments on a murine
chronic wound model, immobilized enzyme
inhibited biofilm development, cleared already
formed biofilms, and overall improved wound
healing. These results provide a foundation for
the development of advanced wound dressings
that will prevent infection development in
wounds and enable proper therapy for infected
chronic wounds.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "NEW APPROACHES IN THE TREATMENT OF CHRONIC BACTERIAL INFECTIONS",
pages = "126-126",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2376"
}
Đokić, L., Rokić, M.,& Šenerović, L.. (2024). NEW APPROACHES IN THE TREATMENT OF CHRONIC BACTERIAL INFECTIONS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 126-126.
https://hdl.handle.net/21.15107/rcub_imagine_2376
Đokić L, Rokić M, Šenerović L. NEW APPROACHES IN THE TREATMENT OF CHRONIC BACTERIAL INFECTIONS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:126-126.
https://hdl.handle.net/21.15107/rcub_imagine_2376 .
Đokić, Lidija, Rokić, Miloš, Šenerović, Lidija, "NEW APPROACHES IN THE TREATMENT OF CHRONIC BACTERIAL INFECTIONS" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):126-126,
https://hdl.handle.net/21.15107/rcub_imagine_2376 .