Casey, William T.

Link to this page

Authority KeyName Variants
12cf5827-81af-40c8-acec-69304cc5833f
  • Casey, William T. (2)
  • Casey, William (1)
Projects

Author's Bibliography

Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials

Jaksić, Jovana; Ostojić, Sanja; Micić, Darko; Vujosević, Zorana Tokic; Milovanović, Jelena; Karkalić, Radovan; O'Connor, Kevin; Kenny, Shane T.; Casey, William; Nikodinović-Runić, Jasmina; Maslak, Veselin

(Hoboken : Wiley, 2020)

TY  - JOUR
AU  - Jaksić, Jovana
AU  - Ostojić, Sanja
AU  - Micić, Darko
AU  - Vujosević, Zorana Tokic
AU  - Milovanović, Jelena
AU  - Karkalić, Radovan
AU  - O'Connor, Kevin
AU  - Kenny, Shane T.
AU  - Casey, William
AU  - Nikodinović-Runić, Jasmina
AU  - Maslak, Veselin
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1399
AB  - In the present work, we describe the chemical synthesis of 3-HFAs as prominent derivatives of fatty acids and assess if they could be applied as phase change materials (PCM). In addition, 3-HFAs were obtained by depolymerization of a bacterial biopolymeric material, polyhydroxyalkanoate. Thermal properties of 3-hydoxyoctanoic, decanoic, and dodecanoic acids are reported for the first time. These materials showed the potential to be applied as PCM in temperature range from 33 degrees C to 66 degrees C. In order to expand the temperature range for application of 3-HFAs as PCM, eutectic mass ratios of three kinds of binary mixtures of 3-HFAs were calculated, and their properties were predicted using the Schroder-van Laar equation. Thermal properties of these mixtures were validated by differential scanning calorimetry (DSC) analysis. These results showed that eutectics considerably expanded the scope of applications of 3-HFAs as PCMs. 3-HFAs originating from biotechnologically obtained polyhydroxyalkanoates also showed potential to be applied in development of PCMs.
PB  - Hoboken : Wiley
T2  - International Journal of Energy Research
T1  - Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials
EP  - 1302
IS  - 2
SP  - 1294
VL  - 44
DO  - 10.1002/er.4934
ER  - 
@article{
author = "Jaksić, Jovana and Ostojić, Sanja and Micić, Darko and Vujosević, Zorana Tokic and Milovanović, Jelena and Karkalić, Radovan and O'Connor, Kevin and Kenny, Shane T. and Casey, William and Nikodinović-Runić, Jasmina and Maslak, Veselin",
year = "2020",
abstract = "In the present work, we describe the chemical synthesis of 3-HFAs as prominent derivatives of fatty acids and assess if they could be applied as phase change materials (PCM). In addition, 3-HFAs were obtained by depolymerization of a bacterial biopolymeric material, polyhydroxyalkanoate. Thermal properties of 3-hydoxyoctanoic, decanoic, and dodecanoic acids are reported for the first time. These materials showed the potential to be applied as PCM in temperature range from 33 degrees C to 66 degrees C. In order to expand the temperature range for application of 3-HFAs as PCM, eutectic mass ratios of three kinds of binary mixtures of 3-HFAs were calculated, and their properties were predicted using the Schroder-van Laar equation. Thermal properties of these mixtures were validated by differential scanning calorimetry (DSC) analysis. These results showed that eutectics considerably expanded the scope of applications of 3-HFAs as PCMs. 3-HFAs originating from biotechnologically obtained polyhydroxyalkanoates also showed potential to be applied in development of PCMs.",
publisher = "Hoboken : Wiley",
journal = "International Journal of Energy Research",
title = "Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials",
pages = "1302-1294",
number = "2",
volume = "44",
doi = "10.1002/er.4934"
}
Jaksić, J., Ostojić, S., Micić, D., Vujosević, Z. T., Milovanović, J., Karkalić, R., O'Connor, K., Kenny, S. T., Casey, W., Nikodinović-Runić, J.,& Maslak, V.. (2020). Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials. in International Journal of Energy Research
Hoboken : Wiley., 44(2), 1294-1302.
https://doi.org/10.1002/er.4934
Jaksić J, Ostojić S, Micić D, Vujosević ZT, Milovanović J, Karkalić R, O'Connor K, Kenny ST, Casey W, Nikodinović-Runić J, Maslak V. Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials. in International Journal of Energy Research. 2020;44(2):1294-1302.
doi:10.1002/er.4934 .
Jaksić, Jovana, Ostojić, Sanja, Micić, Darko, Vujosević, Zorana Tokic, Milovanović, Jelena, Karkalić, Radovan, O'Connor, Kevin, Kenny, Shane T., Casey, William, Nikodinović-Runić, Jasmina, Maslak, Veselin, "Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials" in International Journal of Energy Research, 44, no. 2 (2020):1294-1302,
https://doi.org/10.1002/er.4934 . .
8
4
8

Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids

Guzik, Maciej W.; Narancić, Tanja; Ilić-Tomić, Tatjana; Vojnović, Sandra; Kenny, Shane T.; Casey, William T.; Duane, Gearoid F.; Casey, Eoin; Woods, Trevor; Babu, Ramesh; Nikodinović-Runić, Jasmina; O'Connor, Kevin

(Microbiology Soc, London, 2014)

TY  - JOUR
AU  - Guzik, Maciej W.
AU  - Narancić, Tanja
AU  - Ilić-Tomić, Tatjana
AU  - Vojnović, Sandra
AU  - Kenny, Shane T.
AU  - Casey, William T.
AU  - Duane, Gearoid F.
AU  - Casey, Eoin
AU  - Woods, Trevor
AU  - Babu, Ramesh
AU  - Nikodinović-Runić, Jasmina
AU  - O'Connor, Kevin 
PY  - 2014
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/749
AB  - Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (beta-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 degrees C and pH 6.5-7.
PB  - Microbiology Soc, London
T2  - Microbiology-Sgm
T1  - Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids
EP  - 1771
SP  - 1760
VL  - 160
DO  - 10.1099/mic.0.078758-0
ER  - 
@article{
author = "Guzik, Maciej W. and Narancić, Tanja and Ilić-Tomić, Tatjana and Vojnović, Sandra and Kenny, Shane T. and Casey, William T. and Duane, Gearoid F. and Casey, Eoin and Woods, Trevor and Babu, Ramesh and Nikodinović-Runić, Jasmina and O'Connor, Kevin ",
year = "2014",
abstract = "Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (beta-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 degrees C and pH 6.5-7.",
publisher = "Microbiology Soc, London",
journal = "Microbiology-Sgm",
title = "Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids",
pages = "1771-1760",
volume = "160",
doi = "10.1099/mic.0.078758-0"
}
Guzik, M. W., Narancić, T., Ilić-Tomić, T., Vojnović, S., Kenny, S. T., Casey, W. T., Duane, G. F., Casey, E., Woods, T., Babu, R., Nikodinović-Runić, J.,& O'Connor, K.. (2014). Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. in Microbiology-Sgm
Microbiology Soc, London., 160, 1760-1771.
https://doi.org/10.1099/mic.0.078758-0
Guzik MW, Narancić T, Ilić-Tomić T, Vojnović S, Kenny ST, Casey WT, Duane GF, Casey E, Woods T, Babu R, Nikodinović-Runić J, O'Connor K. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. in Microbiology-Sgm. 2014;160:1760-1771.
doi:10.1099/mic.0.078758-0 .
Guzik, Maciej W., Narancić, Tanja, Ilić-Tomić, Tatjana, Vojnović, Sandra, Kenny, Shane T., Casey, William T., Duane, Gearoid F., Casey, Eoin, Woods, Trevor, Babu, Ramesh, Nikodinović-Runić, Jasmina, O'Connor, Kevin , "Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids" in Microbiology-Sgm, 160 (2014):1760-1771,
https://doi.org/10.1099/mic.0.078758-0 . .
22
13
18

The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440

Casey, William T.; Nikodinović-Runić, Jasmina; Fonseca Garcia, Pilar; Guzik, Maciej W.; McGrath, John W.; Quinn, John P.; Cagney, Gerard; Auxiliadora Prieto, Maria; O'Connor, Kevin

(Wiley, Hoboken, 2013)

TY  - JOUR
AU  - Casey, William T.
AU  - Nikodinović-Runić, Jasmina
AU  - Fonseca Garcia, Pilar
AU  - Guzik, Maciej W.
AU  - McGrath, John W.
AU  - Quinn, John P.
AU  - Cagney, Gerard
AU  - Auxiliadora Prieto, Maria
AU  - O'Connor, Kevin 
PY  - 2013
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/628
AB  - The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putidaKT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by ppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and ppk strains under all growth conditions tested. In the ppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. ppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42h of lag period compared with 24h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the ppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.
PB  - Wiley, Hoboken
T2  - Environmental Microbiology Reports
T1  - The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440
EP  - 746
IS  - 5
SP  - 740
VL  - 5
DO  - 10.1111/1758-2229.12076
ER  - 
@article{
author = "Casey, William T. and Nikodinović-Runić, Jasmina and Fonseca Garcia, Pilar and Guzik, Maciej W. and McGrath, John W. and Quinn, John P. and Cagney, Gerard and Auxiliadora Prieto, Maria and O'Connor, Kevin ",
year = "2013",
abstract = "The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putidaKT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by ppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and ppk strains under all growth conditions tested. In the ppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. ppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42h of lag period compared with 24h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the ppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.",
publisher = "Wiley, Hoboken",
journal = "Environmental Microbiology Reports",
title = "The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440",
pages = "746-740",
number = "5",
volume = "5",
doi = "10.1111/1758-2229.12076"
}
Casey, W. T., Nikodinović-Runić, J., Fonseca Garcia, P., Guzik, M. W., McGrath, J. W., Quinn, J. P., Cagney, G., Auxiliadora Prieto, M.,& O'Connor, K.. (2013). The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440. in Environmental Microbiology Reports
Wiley, Hoboken., 5(5), 740-746.
https://doi.org/10.1111/1758-2229.12076
Casey WT, Nikodinović-Runić J, Fonseca Garcia P, Guzik MW, McGrath JW, Quinn JP, Cagney G, Auxiliadora Prieto M, O'Connor K. The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440. in Environmental Microbiology Reports. 2013;5(5):740-746.
doi:10.1111/1758-2229.12076 .
Casey, William T., Nikodinović-Runić, Jasmina, Fonseca Garcia, Pilar, Guzik, Maciej W., McGrath, John W., Quinn, John P., Cagney, Gerard, Auxiliadora Prieto, Maria, O'Connor, Kevin , "The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440" in Environmental Microbiology Reports, 5, no. 5 (2013):740-746,
https://doi.org/10.1111/1758-2229.12076 . .
13
8
11