Ruas-Madiedo, Patricia

Link to this page

Authority KeyName Variants
orcid::0000-0001-6158-9320
  • Ruas-Madiedo, Patricia (3)
Projects

Author's Bibliography

Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11

Živković, Milica; Miljković, Marija; Ruas-Madiedo, Patricia; Strahinić, Ivana; Tolinački, Maja; Golić, Nataša; Kojić, Milan

(Amer Soc Microbiology, Washington, 2015)

TY  - JOUR
AU  - Živković, Milica
AU  - Miljković, Marija
AU  - Ruas-Madiedo, Patricia
AU  - Strahinić, Ivana
AU  - Tolinački, Maja
AU  - Golić, Nataša
AU  - Kojić, Milan
PY  - 2015
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/886
AB  - Lactobacillus paraplantarum BGCG11, a putative probiotic strain isolated from a soft, white, artisanal cheese, produces a high-molecular-weight heteropolysaccharide, exopolysaccharide (EPS)-CG11, responsible for the ropy phenotype and immunomodulatory activity of the strain. In this study, a 26.4-kb region originating from the pCG1 plasmid, previously shown to be responsible for the production of EPS-CG11 and a ropy phenotype, was cloned, sequenced, and functionally characterized. In this region 16 putative open reading frames (ORFs), encoding enzymes for the production of EPS-CG11, were organized in specific loci involved in the biosynthesis of the repeat unit, polymerization, export, regulation, and chain length determination. Interestingly, downstream of the eps gene cluster, a putative transposase gene was identified, followed by an additional rfb gene cluster containing the rfbACBD genes, the ones most probably responsible for dTDP-L-rhamnose biosynthesis. The functional analysis showed that the production of the high-molecular-weight fraction of EPS-CG11 was absent in two knockout mutants, one in the eps and the other in the rfb gene cluster, as confirmed by size exclusion chromatography analysis. Therefore, both eps and rfb genes clusters are prerequisites for the production of high-molecular-weight EPS-CG11 and for the ropy phenotype of strain L. paraplantarum BGCG11.
PB  - Amer Soc Microbiology, Washington
T2  - Applied and Environmental Microbiology
T1  - Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11
EP  - 1396
IS  - 4
SP  - 1387
VL  - 81
DO  - 10.1128/AEM.03028-14
ER  - 
@article{
author = "Živković, Milica and Miljković, Marija and Ruas-Madiedo, Patricia and Strahinić, Ivana and Tolinački, Maja and Golić, Nataša and Kojić, Milan",
year = "2015",
abstract = "Lactobacillus paraplantarum BGCG11, a putative probiotic strain isolated from a soft, white, artisanal cheese, produces a high-molecular-weight heteropolysaccharide, exopolysaccharide (EPS)-CG11, responsible for the ropy phenotype and immunomodulatory activity of the strain. In this study, a 26.4-kb region originating from the pCG1 plasmid, previously shown to be responsible for the production of EPS-CG11 and a ropy phenotype, was cloned, sequenced, and functionally characterized. In this region 16 putative open reading frames (ORFs), encoding enzymes for the production of EPS-CG11, were organized in specific loci involved in the biosynthesis of the repeat unit, polymerization, export, regulation, and chain length determination. Interestingly, downstream of the eps gene cluster, a putative transposase gene was identified, followed by an additional rfb gene cluster containing the rfbACBD genes, the ones most probably responsible for dTDP-L-rhamnose biosynthesis. The functional analysis showed that the production of the high-molecular-weight fraction of EPS-CG11 was absent in two knockout mutants, one in the eps and the other in the rfb gene cluster, as confirmed by size exclusion chromatography analysis. Therefore, both eps and rfb genes clusters are prerequisites for the production of high-molecular-weight EPS-CG11 and for the ropy phenotype of strain L. paraplantarum BGCG11.",
publisher = "Amer Soc Microbiology, Washington",
journal = "Applied and Environmental Microbiology",
title = "Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11",
pages = "1396-1387",
number = "4",
volume = "81",
doi = "10.1128/AEM.03028-14"
}
Živković, M., Miljković, M., Ruas-Madiedo, P., Strahinić, I., Tolinački, M., Golić, N.,& Kojić, M.. (2015). Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11. in Applied and Environmental Microbiology
Amer Soc Microbiology, Washington., 81(4), 1387-1396.
https://doi.org/10.1128/AEM.03028-14
Živković M, Miljković M, Ruas-Madiedo P, Strahinić I, Tolinački M, Golić N, Kojić M. Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11. in Applied and Environmental Microbiology. 2015;81(4):1387-1396.
doi:10.1128/AEM.03028-14 .
Živković, Milica, Miljković, Marija, Ruas-Madiedo, Patricia, Strahinić, Ivana, Tolinački, Maja, Golić, Nataša, Kojić, Milan, "Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11" in Applied and Environmental Microbiology, 81, no. 4 (2015):1387-1396,
https://doi.org/10.1128/AEM.03028-14 . .
37
11
33

Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX

Živković, Milica; Hidalgo-Cantabrana, Claudio; Kojić, Milan; Gueimonde, Miguel; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Živković, Milica
AU  - Hidalgo-Cantabrana, Claudio
AU  - Kojić, Milan
AU  - Gueimonde, Miguel
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2015
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1623
AB  - The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.
PB  - Elsevier Science Bv, Amsterdam
T2  - Food Research International
T1  - Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX
EP  - 207
SP  - 199
VL  - 74
DO  - 10.1016/j.foodres.2015.05.012
ER  - 
@article{
author = "Živković, Milica and Hidalgo-Cantabrana, Claudio and Kojić, Milan and Gueimonde, Miguel and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2015",
abstract = "The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Food Research International",
title = "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX",
pages = "207-199",
volume = "74",
doi = "10.1016/j.foodres.2015.05.012"
}
Živković, M., Hidalgo-Cantabrana, C., Kojić, M., Gueimonde, M., Golić, N.,& Ruas-Madiedo, P.. (2015). Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International
Elsevier Science Bv, Amsterdam., 74, 199-207.
https://doi.org/10.1016/j.foodres.2015.05.012
Živković M, Hidalgo-Cantabrana C, Kojić M, Gueimonde M, Golić N, Ruas-Madiedo P. Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International. 2015;74:199-207.
doi:10.1016/j.foodres.2015.05.012 .
Živković, Milica, Hidalgo-Cantabrana, Claudio, Kojić, Milan, Gueimonde, Miguel, Golić, Nataša, Ruas-Madiedo, Patricia, "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX" in Food Research International, 74 (2015):199-207,
https://doi.org/10.1016/j.foodres.2015.05.012 . .
1
31
12
35

Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX

Živković, Milica; Hidalgo-Cantabrana, Claudio; Kojić, Milan; Gueimonde, Miguel; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Živković, Milica
AU  - Hidalgo-Cantabrana, Claudio
AU  - Kojić, Milan
AU  - Gueimonde, Miguel
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2015
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/794
AB  - The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.
PB  - Elsevier Science Bv, Amsterdam
T2  - Food Research International
T1  - Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX
EP  - 207
SP  - 199
VL  - 74
DO  - 10.1016/j.foodres.2015.05.012
ER  - 
@article{
author = "Živković, Milica and Hidalgo-Cantabrana, Claudio and Kojić, Milan and Gueimonde, Miguel and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2015",
abstract = "The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Food Research International",
title = "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX",
pages = "207-199",
volume = "74",
doi = "10.1016/j.foodres.2015.05.012"
}
Živković, M., Hidalgo-Cantabrana, C., Kojić, M., Gueimonde, M., Golić, N.,& Ruas-Madiedo, P.. (2015). Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International
Elsevier Science Bv, Amsterdam., 74, 199-207.
https://doi.org/10.1016/j.foodres.2015.05.012
Živković M, Hidalgo-Cantabrana C, Kojić M, Gueimonde M, Golić N, Ruas-Madiedo P. Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International. 2015;74:199-207.
doi:10.1016/j.foodres.2015.05.012 .
Živković, Milica, Hidalgo-Cantabrana, Claudio, Kojić, Milan, Gueimonde, Miguel, Golić, Nataša, Ruas-Madiedo, Patricia, "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX" in Food Research International, 74 (2015):199-207,
https://doi.org/10.1016/j.foodres.2015.05.012 . .
1
31
12
35