Savić, Nada D.

Link to this page

Authority KeyName Variants
orcid::0000-0002-6593-3499
  • Savić, Nada D. (12)
  • Savić, Nada (2)
Projects

Author's Bibliography

Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I)

Stevanović, Nevena Lj.; Glišić, Biljana; Vojnović, Sandra; Wadepohl, Hubert; Andrejević, Tina P.; Durić, Sonja Z.; Savić, Nada D.; Nikodinović-Runić, Jasmina; Djuran, Milos ; Pavić, Aleksandar

(Elsevier, Amsterdam, 2021)

TY  - JOUR
AU  - Stevanović, Nevena Lj.
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Wadepohl, Hubert
AU  - Andrejević, Tina P.
AU  - Durić, Sonja Z.
AU  - Savić, Nada D.
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos 
AU  - Pavić, Aleksandar
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1424
AB  - In order to develop a novel antifungal agent, we synthesized and completely structurally characterized the silver(I) complex with the known antimycotic itraconazole (itraco), [Ag(itraco-N)(2)]NO3 center dot H2O (Agitraco). The spectroscopic and crystallographic results revealed that, in this complex, two itraco ligands are monodentately coordinated to the Ag(I) ion via the triazole nitrogen atom forming a cationic [Ag(itraco-N)(2)]+ part, which is neutralized by the nitrate anion. The antifungal effect of silver(I) complex and itraconazole was evaluated against four different Candida species (C. albicans, C. glabrata, C. parapsilosis and C. krusei) by means of minimal inhibitory concentrations (MICs). Agitraco complex shows enhanced antifungal activity than itraco, being 2.3- and 4.5-fold more active against C. albicans and C. glabrata, respectively. The complex was also more efficient in inhibiting yeast to hyphae transition process in C. albicans, which is an important step in its pathogenesis. Part of the improved activity of Agitraco could be attributed to the greater induction of reactive oxygen species in Candida spp. with respect to itraco. The toxicity evaluation in the zebrafish model (Danio rerio) suggests that the Agitraco complex has better therapeutic profile and improved antifungal efficacy with respect to the parent drug, which were also proven in vivo using the zebrafish model of lethal disseminated candidiasis. Interaction of Agitraco with bovine serum albumin (BSA) was investigated with the aim to assess its binding affinity toward this biomolecule.
PB  - Elsevier, Amsterdam
T2  - Journal of Molecular Structure
T1  - Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I)
VL  - 1232
DO  - 10.1016/j.molstruc.2021.130006
ER  - 
@article{
author = "Stevanović, Nevena Lj. and Glišić, Biljana and Vojnović, Sandra and Wadepohl, Hubert and Andrejević, Tina P. and Durić, Sonja Z. and Savić, Nada D. and Nikodinović-Runić, Jasmina and Djuran, Milos  and Pavić, Aleksandar",
year = "2021",
abstract = "In order to develop a novel antifungal agent, we synthesized and completely structurally characterized the silver(I) complex with the known antimycotic itraconazole (itraco), [Ag(itraco-N)(2)]NO3 center dot H2O (Agitraco). The spectroscopic and crystallographic results revealed that, in this complex, two itraco ligands are monodentately coordinated to the Ag(I) ion via the triazole nitrogen atom forming a cationic [Ag(itraco-N)(2)]+ part, which is neutralized by the nitrate anion. The antifungal effect of silver(I) complex and itraconazole was evaluated against four different Candida species (C. albicans, C. glabrata, C. parapsilosis and C. krusei) by means of minimal inhibitory concentrations (MICs). Agitraco complex shows enhanced antifungal activity than itraco, being 2.3- and 4.5-fold more active against C. albicans and C. glabrata, respectively. The complex was also more efficient in inhibiting yeast to hyphae transition process in C. albicans, which is an important step in its pathogenesis. Part of the improved activity of Agitraco could be attributed to the greater induction of reactive oxygen species in Candida spp. with respect to itraco. The toxicity evaluation in the zebrafish model (Danio rerio) suggests that the Agitraco complex has better therapeutic profile and improved antifungal efficacy with respect to the parent drug, which were also proven in vivo using the zebrafish model of lethal disseminated candidiasis. Interaction of Agitraco with bovine serum albumin (BSA) was investigated with the aim to assess its binding affinity toward this biomolecule.",
publisher = "Elsevier, Amsterdam",
journal = "Journal of Molecular Structure",
title = "Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I)",
volume = "1232",
doi = "10.1016/j.molstruc.2021.130006"
}
Stevanović, N. Lj., Glišić, B., Vojnović, S., Wadepohl, H., Andrejević, T. P., Durić, S. Z., Savić, N. D., Nikodinović-Runić, J., Djuran, M.,& Pavić, A.. (2021). Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I). in Journal of Molecular Structure
Elsevier, Amsterdam., 1232.
https://doi.org/10.1016/j.molstruc.2021.130006
Stevanović NL, Glišić B, Vojnović S, Wadepohl H, Andrejević TP, Durić SZ, Savić ND, Nikodinović-Runić J, Djuran M, Pavić A. Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I). in Journal of Molecular Structure. 2021;1232.
doi:10.1016/j.molstruc.2021.130006 .
Stevanović, Nevena Lj., Glišić, Biljana, Vojnović, Sandra, Wadepohl, Hubert, Andrejević, Tina P., Durić, Sonja Z., Savić, Nada D., Nikodinović-Runić, Jasmina, Djuran, Milos , Pavić, Aleksandar, "Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I)" in Journal of Molecular Structure, 1232 (2021),
https://doi.org/10.1016/j.molstruc.2021.130006 . .
10
10

New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center

Durić, Sonja; Vojnović, Sandra; Pavić, Aleksandar; Mojicević, Marija; Wadepohl, Hubert; Savić, Nada D.; Popsavin, Mirjana; Nikodinović-Runić, Jasmina; Djuran, Milos ; Glišić, Biljana

(Elsevier Science Inc, New York, 2020)

TY  - JOUR
AU  - Durić, Sonja
AU  - Vojnović, Sandra
AU  - Pavić, Aleksandar
AU  - Mojicević, Marija
AU  - Wadepohl, Hubert
AU  - Savić, Nada D.
AU  - Popsavin, Mirjana
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos 
AU  - Glišić, Biljana
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1377
AB  - New polynuclear silver(I) complexes with 1,5-naphthyridine (1,5-naph), [Ag(NO3)(1,5-naph)](n) (Ag1), [Ag (CF3COO)(1,5-naph)]n (Ag2) and [Ag(CF3SO3)(1,5-naph)](n) (Ag3) were synthesized by the reaction of the corresponding silver(I) salt and 1,5-naph in ethanol at room temperature. These complexes were characterized by NMR, IR and UV Vis spectroscopy, while their crystal structures were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,5-naph acts as a bridging ligand between two Ag(I) ions, while the remaining coordination sites are occupied by oxygen atom(s) of the corresponding anion. The antimicrobial efficiency of these silver(I) complexes was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi. The complexes showed good to moderate antibacterial activity with the minimal inhibitory concentration (MIC) values being in the range 2.5-100 mu g/mL (6.5-333.3 mu M), while their antifungal activity against the investigated Candida spp. was significantly higher (MIC = 0.78-6.25 mu g/mL; 2.6-20.8 mu M). Moreover, complexes Ag1 and Ag2 effectively inhibited C. albicans biofilms formation, while Ag1 was also shown to inhibit the formation of mixed C. albicans/Pseudomonas aeruginosa biofilms. Toxicological evaluations on zebrafish (Dario rerio) embryos revealed that all silver(I) complexes could be applied as antifungal agents, whereas Ag3 had the best therapeutic potential showing both the lowest MIC values against the tested Candida strains and the non-toxic in vivo response in the zebrafish embryos at these doses.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center
VL  - 203
DO  - 10.1016/j.jinorgbio.2019.110872
ER  - 
@article{
author = "Durić, Sonja and Vojnović, Sandra and Pavić, Aleksandar and Mojicević, Marija and Wadepohl, Hubert and Savić, Nada D. and Popsavin, Mirjana and Nikodinović-Runić, Jasmina and Djuran, Milos  and Glišić, Biljana",
year = "2020",
abstract = "New polynuclear silver(I) complexes with 1,5-naphthyridine (1,5-naph), [Ag(NO3)(1,5-naph)](n) (Ag1), [Ag (CF3COO)(1,5-naph)]n (Ag2) and [Ag(CF3SO3)(1,5-naph)](n) (Ag3) were synthesized by the reaction of the corresponding silver(I) salt and 1,5-naph in ethanol at room temperature. These complexes were characterized by NMR, IR and UV Vis spectroscopy, while their crystal structures were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,5-naph acts as a bridging ligand between two Ag(I) ions, while the remaining coordination sites are occupied by oxygen atom(s) of the corresponding anion. The antimicrobial efficiency of these silver(I) complexes was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi. The complexes showed good to moderate antibacterial activity with the minimal inhibitory concentration (MIC) values being in the range 2.5-100 mu g/mL (6.5-333.3 mu M), while their antifungal activity against the investigated Candida spp. was significantly higher (MIC = 0.78-6.25 mu g/mL; 2.6-20.8 mu M). Moreover, complexes Ag1 and Ag2 effectively inhibited C. albicans biofilms formation, while Ag1 was also shown to inhibit the formation of mixed C. albicans/Pseudomonas aeruginosa biofilms. Toxicological evaluations on zebrafish (Dario rerio) embryos revealed that all silver(I) complexes could be applied as antifungal agents, whereas Ag3 had the best therapeutic potential showing both the lowest MIC values against the tested Candida strains and the non-toxic in vivo response in the zebrafish embryos at these doses.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center",
volume = "203",
doi = "10.1016/j.jinorgbio.2019.110872"
}
Durić, S., Vojnović, S., Pavić, A., Mojicević, M., Wadepohl, H., Savić, N. D., Popsavin, M., Nikodinović-Runić, J., Djuran, M.,& Glišić, B.. (2020). New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 203.
https://doi.org/10.1016/j.jinorgbio.2019.110872
Durić S, Vojnović S, Pavić A, Mojicević M, Wadepohl H, Savić ND, Popsavin M, Nikodinović-Runić J, Djuran M, Glišić B. New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center. in Journal of Inorganic Biochemistry. 2020;203.
doi:10.1016/j.jinorgbio.2019.110872 .
Durić, Sonja, Vojnović, Sandra, Pavić, Aleksandar, Mojicević, Marija, Wadepohl, Hubert, Savić, Nada D., Popsavin, Mirjana, Nikodinović-Runić, Jasmina, Djuran, Milos , Glišić, Biljana, "New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center" in Journal of Inorganic Biochemistry, 203 (2020),
https://doi.org/10.1016/j.jinorgbio.2019.110872 . .
1
18
18

Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands

Durić, Sonja Z.; Vojnović, Sandra; Andrejević, Tina P.; Stevanović, Nevena Lj.; Savić, Nada D.; Nikodinović-Runić, Jasmina; Glišić, Biljana; Djuran, Milos

(Hindawi Ltd, London, 2020)

TY  - JOUR
AU  - Durić, Sonja Z.
AU  - Vojnović, Sandra
AU  - Andrejević, Tina P.
AU  - Stevanović, Nevena Lj.
AU  - Savić, Nada D.
AU  - Nikodinović-Runić, Jasmina
AU  - Glišić, Biljana
AU  - Djuran, Milos 
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1401
AB  - 1,2-Bis(4-pyridyl)ethane (bpa) and 1,2-bis(4-pyridyl)ethene (bpe) were used for the synthesis of polynuclear silver(I) complexes, {[Ag(bpa)]NO3}(n) (1), {[Ag(bpa)(2)](CF3SO3H2O)-H-.}(n) (2) and {[Ag(bpe)]CF3SO3}(n) (3). In complexes 1-3, the corresponding nitrogen-containing heterocycle acts as a bridging ligand between two Ag(I) ions. In vitro antimicrobial activity of these complexes, along with the ligands used for their synthesis, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi. The silver(I) complexes 1-3 showed selectivity towards Candida spp. and Gram-negative Escherichia coli in comparison to the other investigated bacterial strains, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MICs) between 2.5 and 25 mu g/mL and the growth of E. coli, with MIC value being 12.5 mu g/mL. Importantly, complex 2 significantly reduced C. albicans filamentation, an essential process for its pathogenesis. Antiproliferative effect on the normal human lung fibroblast cell line MRC-5 was also evaluated with the aim of determining the therapeutic potential of the complexes 1-3. The interactions of these complexes with calf thymus DNA (ctDNA) and bovine serum albumin (BSA) were studied to evaluate their binding activities towards these biomolecules for possible insights on their mode of action.
PB  - Hindawi Ltd, London
T2  - Bioinorganic Chemistry and Applications
T1  - Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands
VL  - 2020
DO  - 10.1155/2020/3812050
ER  - 
@article{
author = "Durić, Sonja Z. and Vojnović, Sandra and Andrejević, Tina P. and Stevanović, Nevena Lj. and Savić, Nada D. and Nikodinović-Runić, Jasmina and Glišić, Biljana and Djuran, Milos ",
year = "2020",
abstract = "1,2-Bis(4-pyridyl)ethane (bpa) and 1,2-bis(4-pyridyl)ethene (bpe) were used for the synthesis of polynuclear silver(I) complexes, {[Ag(bpa)]NO3}(n) (1), {[Ag(bpa)(2)](CF3SO3H2O)-H-.}(n) (2) and {[Ag(bpe)]CF3SO3}(n) (3). In complexes 1-3, the corresponding nitrogen-containing heterocycle acts as a bridging ligand between two Ag(I) ions. In vitro antimicrobial activity of these complexes, along with the ligands used for their synthesis, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi. The silver(I) complexes 1-3 showed selectivity towards Candida spp. and Gram-negative Escherichia coli in comparison to the other investigated bacterial strains, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MICs) between 2.5 and 25 mu g/mL and the growth of E. coli, with MIC value being 12.5 mu g/mL. Importantly, complex 2 significantly reduced C. albicans filamentation, an essential process for its pathogenesis. Antiproliferative effect on the normal human lung fibroblast cell line MRC-5 was also evaluated with the aim of determining the therapeutic potential of the complexes 1-3. The interactions of these complexes with calf thymus DNA (ctDNA) and bovine serum albumin (BSA) were studied to evaluate their binding activities towards these biomolecules for possible insights on their mode of action.",
publisher = "Hindawi Ltd, London",
journal = "Bioinorganic Chemistry and Applications",
title = "Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands",
volume = "2020",
doi = "10.1155/2020/3812050"
}
Durić, S. Z., Vojnović, S., Andrejević, T. P., Stevanović, N. Lj., Savić, N. D., Nikodinović-Runić, J., Glišić, B.,& Djuran, M.. (2020). Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands. in Bioinorganic Chemistry and Applications
Hindawi Ltd, London., 2020.
https://doi.org/10.1155/2020/3812050
Durić SZ, Vojnović S, Andrejević TP, Stevanović NL, Savić ND, Nikodinović-Runić J, Glišić B, Djuran M. Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands. in Bioinorganic Chemistry and Applications. 2020;2020.
doi:10.1155/2020/3812050 .
Durić, Sonja Z., Vojnović, Sandra, Andrejević, Tina P., Stevanović, Nevena Lj., Savić, Nada D., Nikodinović-Runić, Jasmina, Glišić, Biljana, Djuran, Milos , "Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands" in Bioinorganic Chemistry and Applications, 2020 (2020),
https://doi.org/10.1155/2020/3812050 . .
15
10

Dinuclear silver(I) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes

Savić, Nada D.; Petković, Branka B.; Vojnović, Sandra; Mojicević, Marija; Wadepohl, Hubert; Olaifa, Kayode; Marsili, Enrico; Nikodinović-Runić, Jasmina; Djuran, Milos; Glišić, Biljana

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Savić, Nada D.
AU  - Petković, Branka B.
AU  - Vojnović, Sandra
AU  - Mojicević, Marija
AU  - Wadepohl, Hubert
AU  - Olaifa, Kayode
AU  - Marsili, Enrico
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos
AU  - Glišić, Biljana
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1313
AB  - New dinuclear silver(i) complexes withN,N ',N '',N '''-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc), [Ag-2(NO3)(tpmc)]NO3 center dot 1.7H(2)O (1), [Ag-2(CF3SO3)(2)(tpmc)] (2), and [Ag-2(tpmc)](BF4)(2) (3) were synthesized and characterized by NMR (H-1 and(13)C), IR and UV- Vis spectroscopy, cyclic voltammetry and molar conductivity measurements. The molecular structures of the complexes were determined by single-crystal X-ray diffraction analysis. The spectroscopic and crystallographic data showed that the structure of the complexes strongly depends on the nature of the counteranion of silver(i) salt used for their synthesis. The antimicrobial activity of complexes1-3was examined against Gram-positive and Gram-negative bacteria and different species of unicellular fungus Candida spp. The ability of these complexes to inhibit the formation of Candida biofilms and to eradicate the already formed biofilms was tested in the standard microtiter plate-based assay. In addition, a bioelectrochemical testing of the antimicrobial activity of complex 1 against early biofilm was also performed. The obtained results indicated that complexes 1-3 showed increased activity toward Gram-negative bacteria and Candida spp. and could inhibit the formation of biofilms. In most cases, these complexes had positive selectivity indices and showed similar or even better activity with respect to the clinically used silver(i) sulfadiazine (AgSD). The values of the binding constants for complexes 1-3 to bovine serum albumin (BSA) were found to be high enough to indicate their binding to this biomolecule, but not so high as to prevent their release upon arrival at the target site. Moreover, the positive values of partition coefficients for these complexes indicated their ability to be transported through the cell membrane. Once inside the cell, complexes 1-3 could induce the formation of the reactive oxygen species (ROS) in C. albicanscells and/or interact with DNA. Taken together, silver(i) complexes with the tpmc ligand could be considered as novel antimicrobial compounds with favourable pharmacological properties, being safer than AgSD.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Dinuclear silver(I) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes
EP  - 10894
IS  - 31
SP  - 10880
VL  - 49
DO  - 10.1039/d0dt01272f
ER  - 
@article{
author = "Savić, Nada D. and Petković, Branka B. and Vojnović, Sandra and Mojicević, Marija and Wadepohl, Hubert and Olaifa, Kayode and Marsili, Enrico and Nikodinović-Runić, Jasmina and Djuran, Milos and Glišić, Biljana",
year = "2020",
abstract = "New dinuclear silver(i) complexes withN,N ',N '',N '''-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc), [Ag-2(NO3)(tpmc)]NO3 center dot 1.7H(2)O (1), [Ag-2(CF3SO3)(2)(tpmc)] (2), and [Ag-2(tpmc)](BF4)(2) (3) were synthesized and characterized by NMR (H-1 and(13)C), IR and UV- Vis spectroscopy, cyclic voltammetry and molar conductivity measurements. The molecular structures of the complexes were determined by single-crystal X-ray diffraction analysis. The spectroscopic and crystallographic data showed that the structure of the complexes strongly depends on the nature of the counteranion of silver(i) salt used for their synthesis. The antimicrobial activity of complexes1-3was examined against Gram-positive and Gram-negative bacteria and different species of unicellular fungus Candida spp. The ability of these complexes to inhibit the formation of Candida biofilms and to eradicate the already formed biofilms was tested in the standard microtiter plate-based assay. In addition, a bioelectrochemical testing of the antimicrobial activity of complex 1 against early biofilm was also performed. The obtained results indicated that complexes 1-3 showed increased activity toward Gram-negative bacteria and Candida spp. and could inhibit the formation of biofilms. In most cases, these complexes had positive selectivity indices and showed similar or even better activity with respect to the clinically used silver(i) sulfadiazine (AgSD). The values of the binding constants for complexes 1-3 to bovine serum albumin (BSA) were found to be high enough to indicate their binding to this biomolecule, but not so high as to prevent their release upon arrival at the target site. Moreover, the positive values of partition coefficients for these complexes indicated their ability to be transported through the cell membrane. Once inside the cell, complexes 1-3 could induce the formation of the reactive oxygen species (ROS) in C. albicanscells and/or interact with DNA. Taken together, silver(i) complexes with the tpmc ligand could be considered as novel antimicrobial compounds with favourable pharmacological properties, being safer than AgSD.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Dinuclear silver(I) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes",
pages = "10894-10880",
number = "31",
volume = "49",
doi = "10.1039/d0dt01272f"
}
Savić, N. D., Petković, B. B., Vojnović, S., Mojicević, M., Wadepohl, H., Olaifa, K., Marsili, E., Nikodinović-Runić, J., Djuran, M.,& Glišić, B.. (2020). Dinuclear silver(I) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 49(31), 10880-10894.
https://doi.org/10.1039/d0dt01272f
Savić ND, Petković BB, Vojnović S, Mojicević M, Wadepohl H, Olaifa K, Marsili E, Nikodinović-Runić J, Djuran M, Glišić B. Dinuclear silver(I) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes. in Dalton Transactions. 2020;49(31):10880-10894.
doi:10.1039/d0dt01272f .
Savić, Nada D., Petković, Branka B., Vojnović, Sandra, Mojicević, Marija, Wadepohl, Hubert, Olaifa, Kayode, Marsili, Enrico, Nikodinović-Runić, Jasmina, Djuran, Milos, Glišić, Biljana, "Dinuclear silver(I) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes" in Dalton Transactions, 49, no. 31 (2020):10880-10894,
https://doi.org/10.1039/d0dt01272f . .
17
17

Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection

Pavić, Aleksandar; Savić, Nada D.; Glišić, Biljana; Crochet, Aurelien; Vojnović, Sandra; Kurutos, Atanas; Stanković, Dalibor; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Djuran, Milos

(Elsevier Science Inc, New York, 2019)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Savić, Nada D.
AU  - Glišić, Biljana
AU  - Crochet, Aurelien
AU  - Vojnović, Sandra
AU  - Kurutos, Atanas
AU  - Stanković, Dalibor
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1261
AB  - Five novel silver(I) complexes with 4,7-phenanthroline (4,7-phen), [Ag(NO3-O)(4,7-phen-mu-N4,N7)](n) (1), [Ag(ClO4-O)(4,7-phen-mu-N4,N7)](n) (2), [Ag(CF3COO-O)(4,7-phen-mu-N4,N7)](n) (3), [Ag-2(H2O)(0.58)(4,7-phen)(3)](SbF6)(2) (4) and {[Ag-2(H2O)(4,7-phen-mu-N4,N7)(2)](n)(BF4)(2)}(n) (5) were synthesized, structurally elucidated and biologically evaluated. These complexes showed selectivity towards Candida spp. in comparison to the tested bacteria and effectively inhibited the growth of four different Candida species, particularly of C. albicans strains, with minimal inhibitory concentrations (MICs) in the range of 2.0-10.0 mu M. In order to evaluate the therapeutic potential of 1-5, in vivo toxicity studies were conducted in the zebrafish model. Based on the favorable therapeutic profiles, complexes 1, 3 and 5 were selected for the evaluation of their antifungal efficacy in vivo using the zebrafish model of lethal disseminated candidiasis. Complexes 1 and 3 efficiently controlled and prevented fungal filamentation even at sub-MIC doses, while drastically increased the survival of the infected embryos. Moreover, at the MIC doses, both complexes totally prevented C. albicans filamentation and rescued almost all infected fish of the fatal infection outcome. On the other side, complex 5, which demonstrated the highest antifungal activity in vitro, affected the neutrophils occurrence of the infected host, failed to inhibit the C. albicans cells filamentation and showed a poor potential to cure candidal infection, highlighting the importance of the in vivo activity evaluation early in the therapeutic design and development process. The mechanism of action of the investigated silver(I) complexes was related to the induction of reactive oxygen species (ROS) response in C. albicans, with DNA being one of the possible target biomolecules.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection
EP  - 163
SP  - 149
VL  - 195
DO  - 10.1016/j.jinorgbio.2019.03.017
ER  - 
@article{
author = "Pavić, Aleksandar and Savić, Nada D. and Glišić, Biljana and Crochet, Aurelien and Vojnović, Sandra and Kurutos, Atanas and Stanković, Dalibor and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Djuran, Milos",
year = "2019",
abstract = "Five novel silver(I) complexes with 4,7-phenanthroline (4,7-phen), [Ag(NO3-O)(4,7-phen-mu-N4,N7)](n) (1), [Ag(ClO4-O)(4,7-phen-mu-N4,N7)](n) (2), [Ag(CF3COO-O)(4,7-phen-mu-N4,N7)](n) (3), [Ag-2(H2O)(0.58)(4,7-phen)(3)](SbF6)(2) (4) and {[Ag-2(H2O)(4,7-phen-mu-N4,N7)(2)](n)(BF4)(2)}(n) (5) were synthesized, structurally elucidated and biologically evaluated. These complexes showed selectivity towards Candida spp. in comparison to the tested bacteria and effectively inhibited the growth of four different Candida species, particularly of C. albicans strains, with minimal inhibitory concentrations (MICs) in the range of 2.0-10.0 mu M. In order to evaluate the therapeutic potential of 1-5, in vivo toxicity studies were conducted in the zebrafish model. Based on the favorable therapeutic profiles, complexes 1, 3 and 5 were selected for the evaluation of their antifungal efficacy in vivo using the zebrafish model of lethal disseminated candidiasis. Complexes 1 and 3 efficiently controlled and prevented fungal filamentation even at sub-MIC doses, while drastically increased the survival of the infected embryos. Moreover, at the MIC doses, both complexes totally prevented C. albicans filamentation and rescued almost all infected fish of the fatal infection outcome. On the other side, complex 5, which demonstrated the highest antifungal activity in vitro, affected the neutrophils occurrence of the infected host, failed to inhibit the C. albicans cells filamentation and showed a poor potential to cure candidal infection, highlighting the importance of the in vivo activity evaluation early in the therapeutic design and development process. The mechanism of action of the investigated silver(I) complexes was related to the induction of reactive oxygen species (ROS) response in C. albicans, with DNA being one of the possible target biomolecules.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection",
pages = "163-149",
volume = "195",
doi = "10.1016/j.jinorgbio.2019.03.017"
}
Pavić, A., Savić, N. D., Glišić, B., Crochet, A., Vojnović, S., Kurutos, A., Stanković, D., Fromm, K. M., Nikodinović-Runić, J.,& Djuran, M.. (2019). Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 195, 149-163.
https://doi.org/10.1016/j.jinorgbio.2019.03.017
Pavić A, Savić ND, Glišić B, Crochet A, Vojnović S, Kurutos A, Stanković D, Fromm KM, Nikodinović-Runić J, Djuran M. Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection. in Journal of Inorganic Biochemistry. 2019;195:149-163.
doi:10.1016/j.jinorgbio.2019.03.017 .
Pavić, Aleksandar, Savić, Nada D., Glišić, Biljana, Crochet, Aurelien, Vojnović, Sandra, Kurutos, Atanas, Stanković, Dalibor, Fromm, Katharina M., Nikodinović-Runić, Jasmina, Djuran, Milos, "Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection" in Journal of Inorganic Biochemistry, 195 (2019):149-163,
https://doi.org/10.1016/j.jinorgbio.2019.03.017 . .
1
17
12
16

Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth

Savić, Nada D.; Vojnović, Sandra; Glišić, Biljana; Crochet, Aurelien; Pavić, Aleksandar; Janjić, Goran V.; Pekmezović, Marina; Opsenica, Igor M.; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Djuran, Milos

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2018)

TY  - JOUR
AU  - Savić, Nada D.
AU  - Vojnović, Sandra
AU  - Glišić, Biljana
AU  - Crochet, Aurelien
AU  - Pavić, Aleksandar
AU  - Janjić, Goran V.
AU  - Pekmezović, Marina
AU  - Opsenica, Igor M.
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1098
AB  - Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth
EP  - 773
SP  - 760
VL  - 156
DO  - 10.1016/j.ejmech.2018.07.049
ER  - 
@article{
author = "Savić, Nada D. and Vojnović, Sandra and Glišić, Biljana and Crochet, Aurelien and Pavić, Aleksandar and Janjić, Goran V. and Pekmezović, Marina and Opsenica, Igor M. and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Djuran, Milos",
year = "2018",
abstract = "Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth",
pages = "773-760",
volume = "156",
doi = "10.1016/j.ejmech.2018.07.049"
}
Savić, N. D., Vojnović, S., Glišić, B., Crochet, A., Pavić, A., Janjić, G. V., Pekmezović, M., Opsenica, I. M., Fromm, K. M., Nikodinović-Runić, J.,& Djuran, M.. (2018). Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux., 156, 760-773.
https://doi.org/10.1016/j.ejmech.2018.07.049
Savić ND, Vojnović S, Glišić B, Crochet A, Pavić A, Janjić GV, Pekmezović M, Opsenica IM, Fromm KM, Nikodinović-Runić J, Djuran M. Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. in European Journal of Medicinal Chemistry. 2018;156:760-773.
doi:10.1016/j.ejmech.2018.07.049 .
Savić, Nada D., Vojnović, Sandra, Glišić, Biljana, Crochet, Aurelien, Pavić, Aleksandar, Janjić, Goran V., Pekmezović, Marina, Opsenica, Igor M., Fromm, Katharina M., Nikodinović-Runić, Jasmina, Djuran, Milos, "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth" in European Journal of Medicinal Chemistry, 156 (2018):760-773,
https://doi.org/10.1016/j.ejmech.2018.07.049 . .
6
38
26
37

Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib

Pavić, Aleksandar; Glišić, Biljana; Vojnović, Sandra; Warzajtis, Beata; Savić, Nada D.; Antić, Marija; Radenković, Slavko; Janjić, Goran V.; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Elsevier Science Inc, New York, 2017)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Warzajtis, Beata
AU  - Savić, Nada D.
AU  - Antić, Marija
AU  - Radenković, Slavko
AU  - Janjić, Goran V.
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1756
AB  - Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib
EP  - 168
SP  - 156
VL  - 174
DO  - 10.1016/j.jinorgbio.2017.06.009
ER  - 
@article{
author = "Pavić, Aleksandar and Glišić, Biljana and Vojnović, Sandra and Warzajtis, Beata and Savić, Nada D. and Antić, Marija and Radenković, Slavko and Janjić, Goran V. and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2017",
abstract = "Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib",
pages = "168-156",
volume = "174",
doi = "10.1016/j.jinorgbio.2017.06.009"
}
Pavić, A., Glišić, B., Vojnović, S., Warzajtis, B., Savić, N. D., Antić, M., Radenković, S., Janjić, G. V., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2017). Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 174, 156-168.
https://doi.org/10.1016/j.jinorgbio.2017.06.009
Pavić A, Glišić B, Vojnović S, Warzajtis B, Savić ND, Antić M, Radenković S, Janjić GV, Nikodinović-Runić J, Rychlewska U, Djuran MI. Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry. 2017;174:156-168.
doi:10.1016/j.jinorgbio.2017.06.009 .
Pavić, Aleksandar, Glišić, Biljana, Vojnović, Sandra, Warzajtis, Beata, Savić, Nada D., Antić, Marija, Radenković, Slavko, Janjić, Goran V., Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib" in Journal of Inorganic Biochemistry, 174 (2017):156-168,
https://doi.org/10.1016/j.jinorgbio.2017.06.009 . .
22
20
24

Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion

Warżajtis, Beata; Glišić, Biljana; Savić, Nada; Pavić, Aleksandar; Vojnović, Sandra; Veselinović, Aleksandar; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Đuran, Miloš

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Warżajtis, Beata
AU  - Glišić, Biljana
AU  - Savić, Nada
AU  - Pavić, Aleksandar
AU  - Vojnović, Sandra
AU  - Veselinović, Aleksandar
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Đuran, Miloš
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1807
AB  - Gold(III) complexes with different L-histidine-containing dipeptides, [Au(Gly-L-His-N-A,N-P,N3)Cl]Cl center dot 3H(2)O (1a), [Au(Gly-L-His-N-A,N-P,N-3)Cl]NO3 center dot 1.25H(2)O (1b), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (2a), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl]NO3 center dot 2.5H(2)O (2b), [Au(L-Val-L-His-N-A,N-P,N-3)Cl]Cl center dot 2H(2)O (3), [Au(L-Leu-L-His-N-A,N-P,N-3)Cl]Cl (4a) and [Au(L-Leu-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(III) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(III) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(III) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion
EP  - 2608
IS  - 8
SP  - 2594
VL  - 46
DO  - 10.1039/c6dt04862e
ER  - 
@article{
author = "Warżajtis, Beata and Glišić, Biljana and Savić, Nada and Pavić, Aleksandar and Vojnović, Sandra and Veselinović, Aleksandar and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Đuran, Miloš",
year = "2017",
abstract = "Gold(III) complexes with different L-histidine-containing dipeptides, [Au(Gly-L-His-N-A,N-P,N3)Cl]Cl center dot 3H(2)O (1a), [Au(Gly-L-His-N-A,N-P,N-3)Cl]NO3 center dot 1.25H(2)O (1b), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (2a), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl]NO3 center dot 2.5H(2)O (2b), [Au(L-Val-L-His-N-A,N-P,N-3)Cl]Cl center dot 2H(2)O (3), [Au(L-Leu-L-His-N-A,N-P,N-3)Cl]Cl (4a) and [Au(L-Leu-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(III) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(III) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(III) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion",
pages = "2608-2594",
number = "8",
volume = "46",
doi = "10.1039/c6dt04862e"
}
Warżajtis, B., Glišić, B., Savić, N., Pavić, A., Vojnović, S., Veselinović, A., Nikodinović-Runić, J., Rychlewska, U.,& Đuran, M.. (2017). Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 46(8), 2594-2608.
https://doi.org/10.1039/c6dt04862e
Warżajtis B, Glišić B, Savić N, Pavić A, Vojnović S, Veselinović A, Nikodinović-Runić J, Rychlewska U, Đuran M. Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. in Dalton Transactions. 2017;46(8):2594-2608.
doi:10.1039/c6dt04862e .
Warżajtis, Beata, Glišić, Biljana, Savić, Nada, Pavić, Aleksandar, Vojnović, Sandra, Veselinović, Aleksandar, Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Đuran, Miloš, "Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion" in Dalton Transactions, 46, no. 8 (2017):2594-2608,
https://doi.org/10.1039/c6dt04862e . .
1
22
14
22

Supplementary data for article: Warzajtis, B.; Glišić, B. D.; Savić, N. D.; Pavic, A.; Vojnovic, S.; Veselinović, A.; Nikodinovic-Runic, J.; Rychlewska, U.; Djuran, M. I. Mononuclear Gold(Iii) Complexes with l-Histidine-Containing Dipeptides: Tuning the Structural and Biological Properties by Variation of the N-Terminal Amino Acid and Counter Anion. Dalton Transactions 2017, 46 (8), 2594–2608. https://doi.org/10.1039/c6dt04862e

Warżajtis, Beata; Glišić, Biljana; Savić, Nada; Pavić, Aleksandar; Vojnović, Sandra; Veselinović, Aleksandar; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Đuran, Miloš

(Royal Soc Chemistry, Cambridge, 2017)

TY  - DATA
AU  - Warżajtis, Beata
AU  - Glišić, Biljana
AU  - Savić, Nada
AU  - Pavić, Aleksandar
AU  - Vojnović, Sandra
AU  - Veselinović, Aleksandar
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Đuran, Miloš
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1808
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Supplementary data for article:           Warzajtis, B.; Glišić, B. D.; Savić, N. D.; Pavic, A.; Vojnovic, S.; Veselinović, A.; Nikodinovic-Runic, J.; Rychlewska, U.; Djuran, M. I. Mononuclear Gold(Iii) Complexes with l-Histidine-Containing Dipeptides: Tuning the Structural and Biological Properties by Variation of the N-Terminal Amino Acid and Counter Anion. Dalton Transactions 2017, 46 (8), 2594–2608. https://doi.org/10.1039/c6dt04862e
UR  - https://hdl.handle.net/21.15107/rcub_imagine_1808
ER  - 
@misc{
author = "Warżajtis, Beata and Glišić, Biljana and Savić, Nada and Pavić, Aleksandar and Vojnović, Sandra and Veselinović, Aleksandar and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Đuran, Miloš",
year = "2017",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Supplementary data for article:           Warzajtis, B.; Glišić, B. D.; Savić, N. D.; Pavic, A.; Vojnovic, S.; Veselinović, A.; Nikodinovic-Runic, J.; Rychlewska, U.; Djuran, M. I. Mononuclear Gold(Iii) Complexes with l-Histidine-Containing Dipeptides: Tuning the Structural and Biological Properties by Variation of the N-Terminal Amino Acid and Counter Anion. Dalton Transactions 2017, 46 (8), 2594–2608. https://doi.org/10.1039/c6dt04862e",
url = "https://hdl.handle.net/21.15107/rcub_imagine_1808"
}
Warżajtis, B., Glišić, B., Savić, N., Pavić, A., Vojnović, S., Veselinović, A., Nikodinović-Runić, J., Rychlewska, U.,& Đuran, M.. (2017). Supplementary data for article:           Warzajtis, B.; Glišić, B. D.; Savić, N. D.; Pavic, A.; Vojnovic, S.; Veselinović, A.; Nikodinovic-Runic, J.; Rychlewska, U.; Djuran, M. I. Mononuclear Gold(Iii) Complexes with l-Histidine-Containing Dipeptides: Tuning the Structural and Biological Properties by Variation of the N-Terminal Amino Acid and Counter Anion. Dalton Transactions 2017, 46 (8), 2594–2608. https://doi.org/10.1039/c6dt04862e. in Dalton Transactions
Royal Soc Chemistry, Cambridge..
https://hdl.handle.net/21.15107/rcub_imagine_1808
Warżajtis B, Glišić B, Savić N, Pavić A, Vojnović S, Veselinović A, Nikodinović-Runić J, Rychlewska U, Đuran M. Supplementary data for article:           Warzajtis, B.; Glišić, B. D.; Savić, N. D.; Pavic, A.; Vojnovic, S.; Veselinović, A.; Nikodinovic-Runic, J.; Rychlewska, U.; Djuran, M. I. Mononuclear Gold(Iii) Complexes with l-Histidine-Containing Dipeptides: Tuning the Structural and Biological Properties by Variation of the N-Terminal Amino Acid and Counter Anion. Dalton Transactions 2017, 46 (8), 2594–2608. https://doi.org/10.1039/c6dt04862e. in Dalton Transactions. 2017;.
https://hdl.handle.net/21.15107/rcub_imagine_1808 .
Warżajtis, Beata, Glišić, Biljana, Savić, Nada, Pavić, Aleksandar, Vojnović, Sandra, Veselinović, Aleksandar, Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Đuran, Miloš, "Supplementary data for article:           Warzajtis, B.; Glišić, B. D.; Savić, N. D.; Pavic, A.; Vojnovic, S.; Veselinović, A.; Nikodinovic-Runic, J.; Rychlewska, U.; Djuran, M. I. Mononuclear Gold(Iii) Complexes with l-Histidine-Containing Dipeptides: Tuning the Structural and Biological Properties by Variation of the N-Terminal Amino Acid and Counter Anion. Dalton Transactions 2017, 46 (8), 2594–2608. https://doi.org/10.1039/c6dt04862e" in Dalton Transactions (2017),
https://hdl.handle.net/21.15107/rcub_imagine_1808 .

Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib

Pavić, Aleksandar; Glišić, Biljana; Vojnović, Sandra; Warzajtis, Beata; Savić, Nada D.; Antić, Marija; Radenković, Slavko; Janjić, Goran V.; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Elsevier Science Inc, New York, 2017)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Warzajtis, Beata
AU  - Savić, Nada D.
AU  - Antić, Marija
AU  - Radenković, Slavko
AU  - Janjić, Goran V.
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1011
AB  - Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib
EP  - 168
SP  - 156
VL  - 174
DO  - 10.1016/j.jinorgbio.2017.06.009
ER  - 
@article{
author = "Pavić, Aleksandar and Glišić, Biljana and Vojnović, Sandra and Warzajtis, Beata and Savić, Nada D. and Antić, Marija and Radenković, Slavko and Janjić, Goran V. and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2017",
abstract = "Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib",
pages = "168-156",
volume = "174",
doi = "10.1016/j.jinorgbio.2017.06.009"
}
Pavić, A., Glišić, B., Vojnović, S., Warzajtis, B., Savić, N. D., Antić, M., Radenković, S., Janjić, G. V., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2017). Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 174, 156-168.
https://doi.org/10.1016/j.jinorgbio.2017.06.009
Pavić A, Glišić B, Vojnović S, Warzajtis B, Savić ND, Antić M, Radenković S, Janjić GV, Nikodinović-Runić J, Rychlewska U, Djuran MI. Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry. 2017;174:156-168.
doi:10.1016/j.jinorgbio.2017.06.009 .
Pavić, Aleksandar, Glišić, Biljana, Vojnović, Sandra, Warzajtis, Beata, Savić, Nada D., Antić, Marija, Radenković, Slavko, Janjić, Goran V., Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib" in Journal of Inorganic Biochemistry, 174 (2017):156-168,
https://doi.org/10.1016/j.jinorgbio.2017.06.009 . .
22
20
24

Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion

Warzajtis, Beata; Glišić, Biljana; Savić, Nada D.; Pavić, Aleksandar; Vojnović, Sandra; Veselinović, Aleksandar; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Warzajtis, Beata
AU  - Glišić, Biljana
AU  - Savić, Nada D.
AU  - Pavić, Aleksandar
AU  - Vojnović, Sandra
AU  - Veselinović, Aleksandar
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1050
AB  - Gold(III) complexes with different L-histidine-containing dipeptides, [Au(Gly-L-His-N-A,N-P,N3)Cl]Cl center dot 3H(2)O (1a), [Au(Gly-L-His-N-A,N-P,N-3)Cl]NO3 center dot 1.25H(2)O (1b), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (2a), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl]NO3 center dot 2.5H(2)O (2b), [Au(L-Val-L-His-N-A,N-P,N-3)Cl]Cl center dot 2H(2)O (3), [Au(L-Leu-L-His-N-A,N-P,N-3)Cl]Cl (4a) and [Au(L-Leu-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(III) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(III) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(III) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion
EP  - 2608
IS  - 8
SP  - 2594
VL  - 46
DO  - 10.1039/c6dt04862e
ER  - 
@article{
author = "Warzajtis, Beata and Glišić, Biljana and Savić, Nada D. and Pavić, Aleksandar and Vojnović, Sandra and Veselinović, Aleksandar and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2017",
abstract = "Gold(III) complexes with different L-histidine-containing dipeptides, [Au(Gly-L-His-N-A,N-P,N3)Cl]Cl center dot 3H(2)O (1a), [Au(Gly-L-His-N-A,N-P,N-3)Cl]NO3 center dot 1.25H(2)O (1b), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (2a), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl]NO3 center dot 2.5H(2)O (2b), [Au(L-Val-L-His-N-A,N-P,N-3)Cl]Cl center dot 2H(2)O (3), [Au(L-Leu-L-His-N-A,N-P,N-3)Cl]Cl (4a) and [Au(L-Leu-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(III) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(III) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(III) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion",
pages = "2608-2594",
number = "8",
volume = "46",
doi = "10.1039/c6dt04862e"
}
Warzajtis, B., Glišić, B., Savić, N. D., Pavić, A., Vojnović, S., Veselinović, A., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2017). Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 46(8), 2594-2608.
https://doi.org/10.1039/c6dt04862e
Warzajtis B, Glišić B, Savić ND, Pavić A, Vojnović S, Veselinović A, Nikodinović-Runić J, Rychlewska U, Djuran MI. Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. in Dalton Transactions. 2017;46(8):2594-2608.
doi:10.1039/c6dt04862e .
Warzajtis, Beata, Glišić, Biljana, Savić, Nada D., Pavić, Aleksandar, Vojnović, Sandra, Veselinović, Aleksandar, Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion" in Dalton Transactions, 46, no. 8 (2017):2594-2608,
https://doi.org/10.1039/c6dt04862e . .
1
22
14
22

Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity

Glišić, Biljana; Savić, Nada D.; Warzajtis, Beata; Đokić, Lidija; Ilić-Tomić, Tatjana; Antić, Marija; Radenković, Slavko; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Royal Soc Chemistry, Cambridge, 2016)

TY  - JOUR
AU  - Glišić, Biljana
AU  - Savić, Nada D.
AU  - Warzajtis, Beata
AU  - Đokić, Lidija
AU  - Ilić-Tomić, Tatjana
AU  - Antić, Marija
AU  - Radenković, Slavko
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2016
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/913
AB  - Dinuclear gold(III) complexes {[AuCl3](2)(mu-4,4'-bipy)} (1) and {[AuCl3](2)(mu-bpe)} (2) with bridging aromatic nitrogen-containing heterocyclic ligands, 4,4'-bipyridine (4,4'-bipy) and 1,2-bis(4-pyridyl)ethane (bpe), were synthesized and characterized by NMR (H-1 and C-13), UV-vis and IR spectroscopic techniques. The crystal structure of 1 was determined by single-crystal X-ray diffraction analysis, while the DFT M06-2X method was applied in order to optimize the structures of 1 and 2. A detailed mechanistic study was performed using the same DFT approach in order to shed light on the disparate coordination modes of the presently investigated N-heterocyclic ligands and the monocyclic pyrazine, which contains two nitrogen atoms within one ring, toward the AuCl3 fragment. The investigation of the solution stability of 1 and 2 in DMSO revealed that both complexes were sufficiently stable in this solvent at room temperature. Complexes 1 and 2, along with K[AuCl4] and the N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of Gram-positive and Gram-negative bacteria and the fungus Candida albicans. In most cases, complexes 1 and 2 have higher antibacterial activity than K[AuCl4] (MICs for 1 and 2 were in the range 3.9-62.5 mu g mL(-1)), while both of the N-heterocycles did not affect the bacterial growth at concentrations up to 500 mu g mL(-1). On the other hand, the antifungal activity of these two complexes against C. albicans was moderate and lower than that of K[AuCl4]. In order to determine the therapeutic potential of 1 and 2, their antiproliferative effect on the normal human lung fibroblast cell line MRC5 and embryotoxicity on zebrafish (Danio rerio) have also been evaluated. To the best of our knowledge, complexes 1 and 2 are the first examples of dinuclear gold(III) complexes with aromatic six-membered heterocycles containing two nitrogen atoms as bridging ligands.
PB  - Royal Soc Chemistry, Cambridge
T2  - Medchemcomm
T1  - Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity
EP  - 1366
IS  - 7
SP  - 1356
VL  - 7
DO  - 10.1039/c6md00214e
ER  - 
@article{
author = "Glišić, Biljana and Savić, Nada D. and Warzajtis, Beata and Đokić, Lidija and Ilić-Tomić, Tatjana and Antić, Marija and Radenković, Slavko and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2016",
abstract = "Dinuclear gold(III) complexes {[AuCl3](2)(mu-4,4'-bipy)} (1) and {[AuCl3](2)(mu-bpe)} (2) with bridging aromatic nitrogen-containing heterocyclic ligands, 4,4'-bipyridine (4,4'-bipy) and 1,2-bis(4-pyridyl)ethane (bpe), were synthesized and characterized by NMR (H-1 and C-13), UV-vis and IR spectroscopic techniques. The crystal structure of 1 was determined by single-crystal X-ray diffraction analysis, while the DFT M06-2X method was applied in order to optimize the structures of 1 and 2. A detailed mechanistic study was performed using the same DFT approach in order to shed light on the disparate coordination modes of the presently investigated N-heterocyclic ligands and the monocyclic pyrazine, which contains two nitrogen atoms within one ring, toward the AuCl3 fragment. The investigation of the solution stability of 1 and 2 in DMSO revealed that both complexes were sufficiently stable in this solvent at room temperature. Complexes 1 and 2, along with K[AuCl4] and the N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of Gram-positive and Gram-negative bacteria and the fungus Candida albicans. In most cases, complexes 1 and 2 have higher antibacterial activity than K[AuCl4] (MICs for 1 and 2 were in the range 3.9-62.5 mu g mL(-1)), while both of the N-heterocycles did not affect the bacterial growth at concentrations up to 500 mu g mL(-1). On the other hand, the antifungal activity of these two complexes against C. albicans was moderate and lower than that of K[AuCl4]. In order to determine the therapeutic potential of 1 and 2, their antiproliferative effect on the normal human lung fibroblast cell line MRC5 and embryotoxicity on zebrafish (Danio rerio) have also been evaluated. To the best of our knowledge, complexes 1 and 2 are the first examples of dinuclear gold(III) complexes with aromatic six-membered heterocycles containing two nitrogen atoms as bridging ligands.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Medchemcomm",
title = "Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity",
pages = "1366-1356",
number = "7",
volume = "7",
doi = "10.1039/c6md00214e"
}
Glišić, B., Savić, N. D., Warzajtis, B., Đokić, L., Ilić-Tomić, T., Antić, M., Radenković, S., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2016). Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity. in Medchemcomm
Royal Soc Chemistry, Cambridge., 7(7), 1356-1366.
https://doi.org/10.1039/c6md00214e
Glišić B, Savić ND, Warzajtis B, Đokić L, Ilić-Tomić T, Antić M, Radenković S, Nikodinović-Runić J, Rychlewska U, Djuran MI. Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity. in Medchemcomm. 2016;7(7):1356-1366.
doi:10.1039/c6md00214e .
Glišić, Biljana, Savić, Nada D., Warzajtis, Beata, Đokić, Lidija, Ilić-Tomić, Tatjana, Antić, Marija, Radenković, Slavko, Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity" in Medchemcomm, 7, no. 7 (2016):1356-1366,
https://doi.org/10.1039/c6md00214e . .
3
16
13
18

A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture

Savić, Nada D.; Milivojević, Dušan; Glišić, Biljana; Ilić-Tomić, Tatjana; Veselinović, Jovana; Pavić, Aleksandar; Vasiljević, Branka; Nikodinović-Runić, Jasmina; Djuran, Milos I.

(Royal Soc Chemistry, Cambridge, 2016)

TY  - JOUR
AU  - Savić, Nada D.
AU  - Milivojević, Dušan
AU  - Glišić, Biljana
AU  - Ilić-Tomić, Tatjana
AU  - Veselinović, Jovana
AU  - Pavić, Aleksandar
AU  - Vasiljević, Branka
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos I.
PY  - 2016
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/978
AB  - Five aromatic nitrogen-containing heterocycles, pyridazine (pydz, 1), pyrimidine (pm, 2), pyrazine (pz, 3), quinoxaline (qx, 4) and phenazine (phz, 5) have been used for the synthesis of gold(III) and silver(I) complexes. In contrast to the mononuclear Au1-5 complexes all having square-planar geometry, the corresponding Ag1-5 complexes have been found to be polynuclear and of different geometries. Complexes Au1-5 and Ag1-5, along with K[AuCl4], AgNO3 and N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. All tested complexes exhibited excellent to good antibacterial activity with minimal inhibitory (MIC) values in the range of 2.5 to 100 mu g mL(-1) against the investigated strains. The complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC = 2.5-30 mu g mL(-1)) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. Moreover, the Au1-4 and Ag1-5 complexes exhibited pronounced ability to competitively intercalate double stranded genomic DNA of P. aeruginosa, which was demonstrated by gel electrophoresis techniques and supported by molecular docking into the DNA major groove. Antiproliferative effect on the normal human lung fibroblast cell line MRC5 has also been evaluated in order to determine therapeutic potential of Au1-5 and Ag1-5 complexes. Since the investigated gold(III) complexes showed much lower negative effects on the viability of the MRC5 cell line than their silver(I) analogues and slightly lower antimicrobial activity against the investigated strains, the combination approach to improve their pharmacological profiles was applied. Synergistic antimicrobial effect and the selectivity index of 10 were achieved for the selected gold(III)/silver(I) complexes mixtures, as well as higher P. aeruginosa PAO1 biofilm disruption activity, and improved toxicity profile towards zebrafish embryos, in comparison to the single complexes. To the best of our knowledge, this is the first report on synergistic activity of gold(III)/silver(I) complexes mixtures and it could have an impact on development of new combination therapy methods for the treatment of multi-resistant bacterial infections.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture
EP  - 13206
IS  - 16
SP  - 13193
VL  - 6
DO  - 10.1039/c5ra26002g
ER  - 
@article{
author = "Savić, Nada D. and Milivojević, Dušan and Glišić, Biljana and Ilić-Tomić, Tatjana and Veselinović, Jovana and Pavić, Aleksandar and Vasiljević, Branka and Nikodinović-Runić, Jasmina and Djuran, Milos I.",
year = "2016",
abstract = "Five aromatic nitrogen-containing heterocycles, pyridazine (pydz, 1), pyrimidine (pm, 2), pyrazine (pz, 3), quinoxaline (qx, 4) and phenazine (phz, 5) have been used for the synthesis of gold(III) and silver(I) complexes. In contrast to the mononuclear Au1-5 complexes all having square-planar geometry, the corresponding Ag1-5 complexes have been found to be polynuclear and of different geometries. Complexes Au1-5 and Ag1-5, along with K[AuCl4], AgNO3 and N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. All tested complexes exhibited excellent to good antibacterial activity with minimal inhibitory (MIC) values in the range of 2.5 to 100 mu g mL(-1) against the investigated strains. The complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC = 2.5-30 mu g mL(-1)) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. Moreover, the Au1-4 and Ag1-5 complexes exhibited pronounced ability to competitively intercalate double stranded genomic DNA of P. aeruginosa, which was demonstrated by gel electrophoresis techniques and supported by molecular docking into the DNA major groove. Antiproliferative effect on the normal human lung fibroblast cell line MRC5 has also been evaluated in order to determine therapeutic potential of Au1-5 and Ag1-5 complexes. Since the investigated gold(III) complexes showed much lower negative effects on the viability of the MRC5 cell line than their silver(I) analogues and slightly lower antimicrobial activity against the investigated strains, the combination approach to improve their pharmacological profiles was applied. Synergistic antimicrobial effect and the selectivity index of 10 were achieved for the selected gold(III)/silver(I) complexes mixtures, as well as higher P. aeruginosa PAO1 biofilm disruption activity, and improved toxicity profile towards zebrafish embryos, in comparison to the single complexes. To the best of our knowledge, this is the first report on synergistic activity of gold(III)/silver(I) complexes mixtures and it could have an impact on development of new combination therapy methods for the treatment of multi-resistant bacterial infections.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture",
pages = "13206-13193",
number = "16",
volume = "6",
doi = "10.1039/c5ra26002g"
}
Savić, N. D., Milivojević, D., Glišić, B., Ilić-Tomić, T., Veselinović, J., Pavić, A., Vasiljević, B., Nikodinović-Runić, J.,& Djuran, M. I.. (2016). A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture. in RSC Advances
Royal Soc Chemistry, Cambridge., 6(16), 13193-13206.
https://doi.org/10.1039/c5ra26002g
Savić ND, Milivojević D, Glišić B, Ilić-Tomić T, Veselinović J, Pavić A, Vasiljević B, Nikodinović-Runić J, Djuran MI. A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture. in RSC Advances. 2016;6(16):13193-13206.
doi:10.1039/c5ra26002g .
Savić, Nada D., Milivojević, Dušan, Glišić, Biljana, Ilić-Tomić, Tatjana, Veselinović, Jovana, Pavić, Aleksandar, Vasiljević, Branka, Nikodinović-Runić, Jasmina, Djuran, Milos I., "A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture" in RSC Advances, 6, no. 16 (2016):13193-13206,
https://doi.org/10.1039/c5ra26002g . .
3
37
32
40

Silver(I) complexes with quinazoline and phthalazine: synthesis, structural characterization and evaluation of biological activities

Savić, Nada D.; Glišić, Biljana; Wadepohl, Hubert; Pavić, Aleksandar; Šenerović, Lidija; Nikodinović-Runić, Jasmina; Djuran, Milos I.

(Royal Soc Chemistry, Cambridge, 2016)

TY  - JOUR
AU  - Savić, Nada D.
AU  - Glišić, Biljana
AU  - Wadepohl, Hubert
AU  - Pavić, Aleksandar
AU  - Šenerović, Lidija
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos I.
PY  - 2016
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/983
AB  - New silver.I) complexes with quinazoline (qz) and phthalazine (phtz), [Ag(NO3)(qz)](n) (1) and {[Ag(CH3CN)](2)(mu-phtz)(2)}[BF4](2) (2), have been synthesized and structurally characterized by using different spectroscopic and single-crystal X-ray diffraction techniques. The obtained results revealed that the reaction of AgNO3 with qz at room temperature in a 2 : 1 molar ratio led to the formation of the polynuclear complex 1. However, the reaction of AgBF4 with phtz under the same experimental conditions resulted in the formation of the dinuclear complex 2. The solution behaviour and air/light stability of these silver.I) complexes have been investigated. The complexes 1 and 2, along with the silver.I) salts used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound, and nosocomial infections. The obtained results indicate that all tested silver(I) compounds have good antibacterial activity with MIC values in the range from 1.5 to 15.6 mu g mL(-1) against the investigated strains. On the other hand, their antifungal activity against Candida albicans was moderate. In order to determine the therapeutic potential of 1 and 2, their antiproliferative effect on the normal human lung fibroblast cell line MRC5, hemolytic effect on red blood cells and embryotoxicity on zebrafish (Danio rerio) have also been evaluated.
PB  - Royal Soc Chemistry, Cambridge
T2  - Medchemcomm
T1  - Silver(I) complexes with quinazoline and phthalazine: synthesis, structural characterization and evaluation of biological activities
EP  - 291
IS  - 2
SP  - 282
VL  - 7
DO  - 10.1039/c5md00494b
ER  - 
@article{
author = "Savić, Nada D. and Glišić, Biljana and Wadepohl, Hubert and Pavić, Aleksandar and Šenerović, Lidija and Nikodinović-Runić, Jasmina and Djuran, Milos I.",
year = "2016",
abstract = "New silver.I) complexes with quinazoline (qz) and phthalazine (phtz), [Ag(NO3)(qz)](n) (1) and {[Ag(CH3CN)](2)(mu-phtz)(2)}[BF4](2) (2), have been synthesized and structurally characterized by using different spectroscopic and single-crystal X-ray diffraction techniques. The obtained results revealed that the reaction of AgNO3 with qz at room temperature in a 2 : 1 molar ratio led to the formation of the polynuclear complex 1. However, the reaction of AgBF4 with phtz under the same experimental conditions resulted in the formation of the dinuclear complex 2. The solution behaviour and air/light stability of these silver.I) complexes have been investigated. The complexes 1 and 2, along with the silver.I) salts used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound, and nosocomial infections. The obtained results indicate that all tested silver(I) compounds have good antibacterial activity with MIC values in the range from 1.5 to 15.6 mu g mL(-1) against the investigated strains. On the other hand, their antifungal activity against Candida albicans was moderate. In order to determine the therapeutic potential of 1 and 2, their antiproliferative effect on the normal human lung fibroblast cell line MRC5, hemolytic effect on red blood cells and embryotoxicity on zebrafish (Danio rerio) have also been evaluated.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Medchemcomm",
title = "Silver(I) complexes with quinazoline and phthalazine: synthesis, structural characterization and evaluation of biological activities",
pages = "291-282",
number = "2",
volume = "7",
doi = "10.1039/c5md00494b"
}
Savić, N. D., Glišić, B., Wadepohl, H., Pavić, A., Šenerović, L., Nikodinović-Runić, J.,& Djuran, M. I.. (2016). Silver(I) complexes with quinazoline and phthalazine: synthesis, structural characterization and evaluation of biological activities. in Medchemcomm
Royal Soc Chemistry, Cambridge., 7(2), 282-291.
https://doi.org/10.1039/c5md00494b
Savić ND, Glišić B, Wadepohl H, Pavić A, Šenerović L, Nikodinović-Runić J, Djuran MI. Silver(I) complexes with quinazoline and phthalazine: synthesis, structural characterization and evaluation of biological activities. in Medchemcomm. 2016;7(2):282-291.
doi:10.1039/c5md00494b .
Savić, Nada D., Glišić, Biljana, Wadepohl, Hubert, Pavić, Aleksandar, Šenerović, Lidija, Nikodinović-Runić, Jasmina, Djuran, Milos I., "Silver(I) complexes with quinazoline and phthalazine: synthesis, structural characterization and evaluation of biological activities" in Medchemcomm, 7, no. 2 (2016):282-291,
https://doi.org/10.1039/c5md00494b . .
21
18
20