Rychlewska, Urszula

Link to this page

Authority KeyName Variants
orcid::0000-0002-6835-1734
  • Rychlewska, Urszula (4)
Projects

Author's Bibliography

Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib

Pavić, Aleksandar; Glišić, Biljana; Vojnović, Sandra; Warzajtis, Beata; Savić, Nada D.; Antić, Marija; Radenković, Slavko; Janjić, Goran V.; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Elsevier Science Inc, New York, 2017)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Warzajtis, Beata
AU  - Savić, Nada D.
AU  - Antić, Marija
AU  - Radenković, Slavko
AU  - Janjić, Goran V.
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1756
AB  - Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib
EP  - 168
SP  - 156
VL  - 174
DO  - 10.1016/j.jinorgbio.2017.06.009
ER  - 
@article{
author = "Pavić, Aleksandar and Glišić, Biljana and Vojnović, Sandra and Warzajtis, Beata and Savić, Nada D. and Antić, Marija and Radenković, Slavko and Janjić, Goran V. and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2017",
abstract = "Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib",
pages = "168-156",
volume = "174",
doi = "10.1016/j.jinorgbio.2017.06.009"
}
Pavić, A., Glišić, B., Vojnović, S., Warzajtis, B., Savić, N. D., Antić, M., Radenković, S., Janjić, G. V., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2017). Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 174, 156-168.
https://doi.org/10.1016/j.jinorgbio.2017.06.009
Pavić A, Glišić B, Vojnović S, Warzajtis B, Savić ND, Antić M, Radenković S, Janjić GV, Nikodinović-Runić J, Rychlewska U, Djuran MI. Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry. 2017;174:156-168.
doi:10.1016/j.jinorgbio.2017.06.009 .
Pavić, Aleksandar, Glišić, Biljana, Vojnović, Sandra, Warzajtis, Beata, Savić, Nada D., Antić, Marija, Radenković, Slavko, Janjić, Goran V., Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib" in Journal of Inorganic Biochemistry, 174 (2017):156-168,
https://doi.org/10.1016/j.jinorgbio.2017.06.009 . .
22
20
24

Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib

Pavić, Aleksandar; Glišić, Biljana; Vojnović, Sandra; Warzajtis, Beata; Savić, Nada D.; Antić, Marija; Radenković, Slavko; Janjić, Goran V.; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Elsevier Science Inc, New York, 2017)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Warzajtis, Beata
AU  - Savić, Nada D.
AU  - Antić, Marija
AU  - Radenković, Slavko
AU  - Janjić, Goran V.
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1011
AB  - Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib
EP  - 168
SP  - 156
VL  - 174
DO  - 10.1016/j.jinorgbio.2017.06.009
ER  - 
@article{
author = "Pavić, Aleksandar and Glišić, Biljana and Vojnović, Sandra and Warzajtis, Beata and Savić, Nada D. and Antić, Marija and Radenković, Slavko and Janjić, Goran V. and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2017",
abstract = "Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib",
pages = "168-156",
volume = "174",
doi = "10.1016/j.jinorgbio.2017.06.009"
}
Pavić, A., Glišić, B., Vojnović, S., Warzajtis, B., Savić, N. D., Antić, M., Radenković, S., Janjić, G. V., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2017). Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 174, 156-168.
https://doi.org/10.1016/j.jinorgbio.2017.06.009
Pavić A, Glišić B, Vojnović S, Warzajtis B, Savić ND, Antić M, Radenković S, Janjić GV, Nikodinović-Runić J, Rychlewska U, Djuran MI. Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry. 2017;174:156-168.
doi:10.1016/j.jinorgbio.2017.06.009 .
Pavić, Aleksandar, Glišić, Biljana, Vojnović, Sandra, Warzajtis, Beata, Savić, Nada D., Antić, Marija, Radenković, Slavko, Janjić, Goran V., Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib" in Journal of Inorganic Biochemistry, 174 (2017):156-168,
https://doi.org/10.1016/j.jinorgbio.2017.06.009 . .
22
20
24

Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion

Warzajtis, Beata; Glišić, Biljana; Savić, Nada D.; Pavić, Aleksandar; Vojnović, Sandra; Veselinović, Aleksandar; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Warzajtis, Beata
AU  - Glišić, Biljana
AU  - Savić, Nada D.
AU  - Pavić, Aleksandar
AU  - Vojnović, Sandra
AU  - Veselinović, Aleksandar
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1050
AB  - Gold(III) complexes with different L-histidine-containing dipeptides, [Au(Gly-L-His-N-A,N-P,N3)Cl]Cl center dot 3H(2)O (1a), [Au(Gly-L-His-N-A,N-P,N-3)Cl]NO3 center dot 1.25H(2)O (1b), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (2a), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl]NO3 center dot 2.5H(2)O (2b), [Au(L-Val-L-His-N-A,N-P,N-3)Cl]Cl center dot 2H(2)O (3), [Au(L-Leu-L-His-N-A,N-P,N-3)Cl]Cl (4a) and [Au(L-Leu-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(III) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(III) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(III) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion
EP  - 2608
IS  - 8
SP  - 2594
VL  - 46
DO  - 10.1039/c6dt04862e
ER  - 
@article{
author = "Warzajtis, Beata and Glišić, Biljana and Savić, Nada D. and Pavić, Aleksandar and Vojnović, Sandra and Veselinović, Aleksandar and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2017",
abstract = "Gold(III) complexes with different L-histidine-containing dipeptides, [Au(Gly-L-His-N-A,N-P,N3)Cl]Cl center dot 3H(2)O (1a), [Au(Gly-L-His-N-A,N-P,N-3)Cl]NO3 center dot 1.25H(2)O (1b), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (2a), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl]NO3 center dot 2.5H(2)O (2b), [Au(L-Val-L-His-N-A,N-P,N-3)Cl]Cl center dot 2H(2)O (3), [Au(L-Leu-L-His-N-A,N-P,N-3)Cl]Cl (4a) and [Au(L-Leu-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(III) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(III) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(III) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion",
pages = "2608-2594",
number = "8",
volume = "46",
doi = "10.1039/c6dt04862e"
}
Warzajtis, B., Glišić, B., Savić, N. D., Pavić, A., Vojnović, S., Veselinović, A., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2017). Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 46(8), 2594-2608.
https://doi.org/10.1039/c6dt04862e
Warzajtis B, Glišić B, Savić ND, Pavić A, Vojnović S, Veselinović A, Nikodinović-Runić J, Rychlewska U, Djuran MI. Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. in Dalton Transactions. 2017;46(8):2594-2608.
doi:10.1039/c6dt04862e .
Warzajtis, Beata, Glišić, Biljana, Savić, Nada D., Pavić, Aleksandar, Vojnović, Sandra, Veselinović, Aleksandar, Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion" in Dalton Transactions, 46, no. 8 (2017):2594-2608,
https://doi.org/10.1039/c6dt04862e . .
1
22
14
22

Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity

Glišić, Biljana; Savić, Nada D.; Warzajtis, Beata; Đokić, Lidija; Ilić-Tomić, Tatjana; Antić, Marija; Radenković, Slavko; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Royal Soc Chemistry, Cambridge, 2016)

TY  - JOUR
AU  - Glišić, Biljana
AU  - Savić, Nada D.
AU  - Warzajtis, Beata
AU  - Đokić, Lidija
AU  - Ilić-Tomić, Tatjana
AU  - Antić, Marija
AU  - Radenković, Slavko
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2016
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/913
AB  - Dinuclear gold(III) complexes {[AuCl3](2)(mu-4,4'-bipy)} (1) and {[AuCl3](2)(mu-bpe)} (2) with bridging aromatic nitrogen-containing heterocyclic ligands, 4,4'-bipyridine (4,4'-bipy) and 1,2-bis(4-pyridyl)ethane (bpe), were synthesized and characterized by NMR (H-1 and C-13), UV-vis and IR spectroscopic techniques. The crystal structure of 1 was determined by single-crystal X-ray diffraction analysis, while the DFT M06-2X method was applied in order to optimize the structures of 1 and 2. A detailed mechanistic study was performed using the same DFT approach in order to shed light on the disparate coordination modes of the presently investigated N-heterocyclic ligands and the monocyclic pyrazine, which contains two nitrogen atoms within one ring, toward the AuCl3 fragment. The investigation of the solution stability of 1 and 2 in DMSO revealed that both complexes were sufficiently stable in this solvent at room temperature. Complexes 1 and 2, along with K[AuCl4] and the N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of Gram-positive and Gram-negative bacteria and the fungus Candida albicans. In most cases, complexes 1 and 2 have higher antibacterial activity than K[AuCl4] (MICs for 1 and 2 were in the range 3.9-62.5 mu g mL(-1)), while both of the N-heterocycles did not affect the bacterial growth at concentrations up to 500 mu g mL(-1). On the other hand, the antifungal activity of these two complexes against C. albicans was moderate and lower than that of K[AuCl4]. In order to determine the therapeutic potential of 1 and 2, their antiproliferative effect on the normal human lung fibroblast cell line MRC5 and embryotoxicity on zebrafish (Danio rerio) have also been evaluated. To the best of our knowledge, complexes 1 and 2 are the first examples of dinuclear gold(III) complexes with aromatic six-membered heterocycles containing two nitrogen atoms as bridging ligands.
PB  - Royal Soc Chemistry, Cambridge
T2  - Medchemcomm
T1  - Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity
EP  - 1366
IS  - 7
SP  - 1356
VL  - 7
DO  - 10.1039/c6md00214e
ER  - 
@article{
author = "Glišić, Biljana and Savić, Nada D. and Warzajtis, Beata and Đokić, Lidija and Ilić-Tomić, Tatjana and Antić, Marija and Radenković, Slavko and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2016",
abstract = "Dinuclear gold(III) complexes {[AuCl3](2)(mu-4,4'-bipy)} (1) and {[AuCl3](2)(mu-bpe)} (2) with bridging aromatic nitrogen-containing heterocyclic ligands, 4,4'-bipyridine (4,4'-bipy) and 1,2-bis(4-pyridyl)ethane (bpe), were synthesized and characterized by NMR (H-1 and C-13), UV-vis and IR spectroscopic techniques. The crystal structure of 1 was determined by single-crystal X-ray diffraction analysis, while the DFT M06-2X method was applied in order to optimize the structures of 1 and 2. A detailed mechanistic study was performed using the same DFT approach in order to shed light on the disparate coordination modes of the presently investigated N-heterocyclic ligands and the monocyclic pyrazine, which contains two nitrogen atoms within one ring, toward the AuCl3 fragment. The investigation of the solution stability of 1 and 2 in DMSO revealed that both complexes were sufficiently stable in this solvent at room temperature. Complexes 1 and 2, along with K[AuCl4] and the N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of Gram-positive and Gram-negative bacteria and the fungus Candida albicans. In most cases, complexes 1 and 2 have higher antibacterial activity than K[AuCl4] (MICs for 1 and 2 were in the range 3.9-62.5 mu g mL(-1)), while both of the N-heterocycles did not affect the bacterial growth at concentrations up to 500 mu g mL(-1). On the other hand, the antifungal activity of these two complexes against C. albicans was moderate and lower than that of K[AuCl4]. In order to determine the therapeutic potential of 1 and 2, their antiproliferative effect on the normal human lung fibroblast cell line MRC5 and embryotoxicity on zebrafish (Danio rerio) have also been evaluated. To the best of our knowledge, complexes 1 and 2 are the first examples of dinuclear gold(III) complexes with aromatic six-membered heterocycles containing two nitrogen atoms as bridging ligands.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Medchemcomm",
title = "Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity",
pages = "1366-1356",
number = "7",
volume = "7",
doi = "10.1039/c6md00214e"
}
Glišić, B., Savić, N. D., Warzajtis, B., Đokić, L., Ilić-Tomić, T., Antić, M., Radenković, S., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2016). Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity. in Medchemcomm
Royal Soc Chemistry, Cambridge., 7(7), 1356-1366.
https://doi.org/10.1039/c6md00214e
Glišić B, Savić ND, Warzajtis B, Đokić L, Ilić-Tomić T, Antić M, Radenković S, Nikodinović-Runić J, Rychlewska U, Djuran MI. Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity. in Medchemcomm. 2016;7(7):1356-1366.
doi:10.1039/c6md00214e .
Glišić, Biljana, Savić, Nada D., Warzajtis, Beata, Đokić, Lidija, Ilić-Tomić, Tatjana, Antić, Marija, Radenković, Slavko, Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Synthesis, structural characterization and biological evaluation of dinuclear gold(III) complexes with aromatic nitrogen-containing ligands: antimicrobial activity in relation to the complex nuclearity" in Medchemcomm, 7, no. 7 (2016):1356-1366,
https://doi.org/10.1039/c6md00214e . .
3
16
13
18