Malešević, Milka

Link to this page

Authority KeyName Variants
orcid::0000-0001-9769-0471
  • Malešević, Milka (37)
Projects

Author's Bibliography

YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION

Ćurčić, Jovana; Malešević, Milka; Dinić, Miroslav; Novović, Katarina; Vasiljević, Zorica; Stanisavljević, Nemanja; Jovčić, Branko

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Ćurčić, Jovana
AU  - Malešević, Milka
AU  - Dinić, Miroslav
AU  - Novović, Katarina
AU  - Vasiljević, Zorica
AU  - Stanisavljević, Nemanja
AU  - Jovčić, Branko
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2380
AB  - Pseudomonas aeruginosa is a Gram-negative
pathogen responsible for frequent hospital-acquired
infections of the bloodstream, the respiratory
tract, and the urinary tract. Quorum
quenching enzymes are recognized as an alternative
antivirulence approach targeting pathogenic
bacteria. The efficacy of YtnP lactonase in
reducing the virulence of P. aeruginosa MMA83
in vivo using Caenorhabditis elegans as a model
system was investigated. The recombinant YtnP
lactonase exhibits no cytotoxicity, demonstrated
by its lack of harmful effects on both the
immortalized human HaCaT cell line and two
strains of C. elegans (AU37 and N2 wild-type). In
a toxin-mediated killing liquid assay, the survival
rates of C. elegans AU37 mutant and N2 wildtype
strains infected with the clinical isolate P.
aeruginosa MMA83 significantly increased when
pre-treated with YtnP lactonase, compared to
untreated controls. Considering that virulence
factors expression is regulated by quorum sensing
(QS) signaling it is hypothesized that YtnP
lactonase prolongs the life span of C. elegans
by downregulating the QS and expression of
virulence factors of MMA83. The protective effects
of YtnP lactonase against MMA83-induced
pathogenicity in C. elegans, coupled with its absence
of cytotoxicity, position YtnP lactonase as
a promising prophylactic agent with antivirulence
properties.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION
EP  - 143
SP  - 143
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2380
ER  - 
@conference{
author = "Ćurčić, Jovana and Malešević, Milka and Dinić, Miroslav and Novović, Katarina and Vasiljević, Zorica and Stanisavljević, Nemanja and Jovčić, Branko",
year = "2024",
abstract = "Pseudomonas aeruginosa is a Gram-negative
pathogen responsible for frequent hospital-acquired
infections of the bloodstream, the respiratory
tract, and the urinary tract. Quorum
quenching enzymes are recognized as an alternative
antivirulence approach targeting pathogenic
bacteria. The efficacy of YtnP lactonase in
reducing the virulence of P. aeruginosa MMA83
in vivo using Caenorhabditis elegans as a model
system was investigated. The recombinant YtnP
lactonase exhibits no cytotoxicity, demonstrated
by its lack of harmful effects on both the
immortalized human HaCaT cell line and two
strains of C. elegans (AU37 and N2 wild-type). In
a toxin-mediated killing liquid assay, the survival
rates of C. elegans AU37 mutant and N2 wildtype
strains infected with the clinical isolate P.
aeruginosa MMA83 significantly increased when
pre-treated with YtnP lactonase, compared to
untreated controls. Considering that virulence
factors expression is regulated by quorum sensing
(QS) signaling it is hypothesized that YtnP
lactonase prolongs the life span of C. elegans
by downregulating the QS and expression of
virulence factors of MMA83. The protective effects
of YtnP lactonase against MMA83-induced
pathogenicity in C. elegans, coupled with its absence
of cytotoxicity, position YtnP lactonase as
a promising prophylactic agent with antivirulence
properties.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION",
pages = "143-143",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2380"
}
Ćurčić, J., Malešević, M., Dinić, M., Novović, K., Vasiljević, Z., Stanisavljević, N.,& Jovčić, B.. (2024). YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 143-143.
https://hdl.handle.net/21.15107/rcub_imagine_2380
Ćurčić J, Malešević M, Dinić M, Novović K, Vasiljević Z, Stanisavljević N, Jovčić B. YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:143-143.
https://hdl.handle.net/21.15107/rcub_imagine_2380 .
Ćurčić, Jovana, Malešević, Milka, Dinić, Miroslav, Novović, Katarina, Vasiljević, Zorica, Stanisavljević, Nemanja, Jovčić, Branko, "YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):143-143,
https://hdl.handle.net/21.15107/rcub_imagine_2380 .

THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS

Šapić, Katarina; Novović, Katarina; Radovanović, Milica; Gajić, Ina; Vasiljević, Zorica; Malešević, Milka; Jovčić, Branko

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Šapić, Katarina
AU  - Novović, Katarina
AU  - Radovanović, Milica
AU  - Gajić, Ina
AU  - Vasiljević, Zorica
AU  - Malešević, Milka
AU  - Jovčić, Branko
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2386
AB  - The increasing prevalence of multidrug-resistant
(MDR) Acinetobacter baumannii limits effective
therapeutic options, and tigecycline has been
considered one of the last resort therapies for
MDR A. baumannii infections. Nevertheless, A.
baumannii isolates resistant to tigecycline are
becoming increasingly reported, mostly due to
overexpression of efflux pumps. The three major
RND efflux systems conferring tigecycline resistance
in A. baumannii are AdeABC, AdeFGH, and
AdeIJK, and their expression is regulated by the
two-component system AdeRS, the LysR-type
regulator AdeL, and the TetR-type regulator AdeN,
respectively. Following the above, we aimed
to determine the role of efflux pumps in tigecycline
resistance of thirty-seven A. baumannii isolates
collected from Western Balkan healthcare
settings (Serbia, Bosnia and Herzegovina and
Montenegro) in 2016 and 2022. The majority of
isolates belonged to the most prevalent international
clonal lineage IC2 (n = 32), four isolates are
members of IC1, while only one isolate is identified
as IC3. All tested isolates demonstrated a
significant decrease in tigecycline MIC in presence
of efflux pump inhibitor CCCP (≥16-fold reduction)
indicating that mechanism responsible
for tigecycline resistance is antibiotic efflux. The
comparison of target efflux pump regulatory
proteins, translated from nucleotide sequences,
to reference strains ATCC19606 and ATCC17978
revealed that most of the isolates have G186V
and N268H alternations in AdeS (n = 32), while
most common changes in AdeR were V120I and
A136V (n = 29) as described in previous studies.
Substitution Q262R was detected exclusively in
AdeL proteins of IC1 isolates, while no mutations
were observed within AdeN regulators. Expression
of the adeB, adeG, and adeJ genes in six selected
isolates was upregulated in four (1,4- to
3-fold), six (1,6- to 2,6-fold), and three isolates
(1,7- to 4-fold), respectively. This study confirmed
that overexpression of efflux pump encoding
genes enables tigecycline resistance in clinical
A. baumannii isolates.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS
EP  - 187
SP  - 187
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2386
ER  - 
@conference{
author = "Šapić, Katarina and Novović, Katarina and Radovanović, Milica and Gajić, Ina and Vasiljević, Zorica and Malešević, Milka and Jovčić, Branko",
year = "2024",
abstract = "The increasing prevalence of multidrug-resistant
(MDR) Acinetobacter baumannii limits effective
therapeutic options, and tigecycline has been
considered one of the last resort therapies for
MDR A. baumannii infections. Nevertheless, A.
baumannii isolates resistant to tigecycline are
becoming increasingly reported, mostly due to
overexpression of efflux pumps. The three major
RND efflux systems conferring tigecycline resistance
in A. baumannii are AdeABC, AdeFGH, and
AdeIJK, and their expression is regulated by the
two-component system AdeRS, the LysR-type
regulator AdeL, and the TetR-type regulator AdeN,
respectively. Following the above, we aimed
to determine the role of efflux pumps in tigecycline
resistance of thirty-seven A. baumannii isolates
collected from Western Balkan healthcare
settings (Serbia, Bosnia and Herzegovina and
Montenegro) in 2016 and 2022. The majority of
isolates belonged to the most prevalent international
clonal lineage IC2 (n = 32), four isolates are
members of IC1, while only one isolate is identified
as IC3. All tested isolates demonstrated a
significant decrease in tigecycline MIC in presence
of efflux pump inhibitor CCCP (≥16-fold reduction)
indicating that mechanism responsible
for tigecycline resistance is antibiotic efflux. The
comparison of target efflux pump regulatory
proteins, translated from nucleotide sequences,
to reference strains ATCC19606 and ATCC17978
revealed that most of the isolates have G186V
and N268H alternations in AdeS (n = 32), while
most common changes in AdeR were V120I and
A136V (n = 29) as described in previous studies.
Substitution Q262R was detected exclusively in
AdeL proteins of IC1 isolates, while no mutations
were observed within AdeN regulators. Expression
of the adeB, adeG, and adeJ genes in six selected
isolates was upregulated in four (1,4- to
3-fold), six (1,6- to 2,6-fold), and three isolates
(1,7- to 4-fold), respectively. This study confirmed
that overexpression of efflux pump encoding
genes enables tigecycline resistance in clinical
A. baumannii isolates.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS",
pages = "187-187",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2386"
}
Šapić, K., Novović, K., Radovanović, M., Gajić, I., Vasiljević, Z., Malešević, M.,& Jovčić, B.. (2024). THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 187-187.
https://hdl.handle.net/21.15107/rcub_imagine_2386
Šapić K, Novović K, Radovanović M, Gajić I, Vasiljević Z, Malešević M, Jovčić B. THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:187-187.
https://hdl.handle.net/21.15107/rcub_imagine_2386 .
Šapić, Katarina, Novović, Katarina, Radovanović, Milica, Gajić, Ina, Vasiljević, Zorica, Malešević, Milka, Jovčić, Branko, "THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):187-187,
https://hdl.handle.net/21.15107/rcub_imagine_2386 .

A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo

Ćurčić, Jovana; Dinić, Miroslav; Novović, Katarina; Vasiljević, Zorica; Kojić, Milan; Jovčić, Branko; Malešević, Milka

(Elsevier, 2024)

TY  - JOUR
AU  - Ćurčić, Jovana
AU  - Dinić, Miroslav
AU  - Novović, Katarina
AU  - Vasiljević, Zorica
AU  - Kojić, Milan
AU  - Jovčić, Branko
AU  - Malešević, Milka
PY  - 2024
UR  - https://www.sciencedirect.com/science/article/pii/S0141813024012248
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2326
AB  - Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-β-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T2  - International Journal of Biological MacromoleculesInternational Journal of Biological Macromolecules
T1  - A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo
SP  - 130421
DO  - 10.1016/j.ijbiomac.2024.130421
ER  - 
@article{
author = "Ćurčić, Jovana and Dinić, Miroslav and Novović, Katarina and Vasiljević, Zorica and Kojić, Milan and Jovčić, Branko and Malešević, Milka",
year = "2024",
abstract = "Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-β-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules, International Journal of Biological MacromoleculesInternational Journal of Biological Macromolecules",
title = "A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo",
pages = "130421",
doi = "10.1016/j.ijbiomac.2024.130421"
}
Ćurčić, J., Dinić, M., Novović, K., Vasiljević, Z., Kojić, M., Jovčić, B.,& Malešević, M.. (2024). A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo. in International Journal of Biological Macromolecules
Elsevier., 130421.
https://doi.org/10.1016/j.ijbiomac.2024.130421
Ćurčić J, Dinić M, Novović K, Vasiljević Z, Kojić M, Jovčić B, Malešević M. A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo. in International Journal of Biological Macromolecules. 2024;:130421.
doi:10.1016/j.ijbiomac.2024.130421 .
Ćurčić, Jovana, Dinić, Miroslav, Novović, Katarina, Vasiljević, Zorica, Kojić, Milan, Jovčić, Branko, Malešević, Milka, "A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo" in International Journal of Biological Macromolecules (2024):130421,
https://doi.org/10.1016/j.ijbiomac.2024.130421 . .

A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms

Ćurčić, Jovana; Malešević, Milka; Jovčić, Branko

(2024)

TY  - CONF
AU  - Ćurčić, Jovana
AU  - Malešević, Milka
AU  - Jovčić, Branko
PY  - 2024
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/1308
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2359
AB  - Biofilm-associated infections are the main cause of biomaterial implant failure today. The increasing prevalence of antibiotic-resistant pathogens often results in the only solution of implant movement, with serious consequences for patients. Recently, various antimicrobial agents have been recognized as a promising strategy to prevent biofilm formation on implant surfaces. Quorum sensing (QS) plays a central role in the control of bacterial virulence and biofilm formation. The use of quorum quenching (QQ) enzymes to target QS is therefore a promising innovative approach for the development of enzyme-based antivirulence therapeutics, which represent a potential solution to combat infections caused by multidrug-resistant pathogens. This study aimed to characterize the novel YtnP lactonase from the clinical isolate Stenotrophomonas maltophilia 6960 and to investigate its potential to combat the virulence of multidrug-resistant (MDR) Pseudomonas aeruginosa MMA83.
C3  - Hemijska industrija (Chemical Industry)
T1  - A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms
EP  - 61
IS  - 1S
SP  - 61
VL  - 78
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2359
ER  - 
@conference{
author = "Ćurčić, Jovana and Malešević, Milka and Jovčić, Branko",
year = "2024",
abstract = "Biofilm-associated infections are the main cause of biomaterial implant failure today. The increasing prevalence of antibiotic-resistant pathogens often results in the only solution of implant movement, with serious consequences for patients. Recently, various antimicrobial agents have been recognized as a promising strategy to prevent biofilm formation on implant surfaces. Quorum sensing (QS) plays a central role in the control of bacterial virulence and biofilm formation. The use of quorum quenching (QQ) enzymes to target QS is therefore a promising innovative approach for the development of enzyme-based antivirulence therapeutics, which represent a potential solution to combat infections caused by multidrug-resistant pathogens. This study aimed to characterize the novel YtnP lactonase from the clinical isolate Stenotrophomonas maltophilia 6960 and to investigate its potential to combat the virulence of multidrug-resistant (MDR) Pseudomonas aeruginosa MMA83.",
journal = "Hemijska industrija (Chemical Industry)",
title = "A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms",
pages = "61-61",
number = "1S",
volume = "78",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2359"
}
Ćurčić, J., Malešević, M.,& Jovčić, B.. (2024). A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms. in Hemijska industrija (Chemical Industry), 78(1S), 61-61.
https://hdl.handle.net/21.15107/rcub_imagine_2359
Ćurčić J, Malešević M, Jovčić B. A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms. in Hemijska industrija (Chemical Industry). 2024;78(1S):61-61.
https://hdl.handle.net/21.15107/rcub_imagine_2359 .
Ćurčić, Jovana, Malešević, Milka, Jovčić, Branko, "A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms" in Hemijska industrija (Chemical Industry), 78, no. 1S (2024):61-61,
https://hdl.handle.net/21.15107/rcub_imagine_2359 .

CHEMICAL COMPOSITION AND QUORUM SENSING INHIBITION ACTIVITY OF HORSERADISH (ARMORACIA RUSTICANA) ROOT EXTRACTS

Stanisavljević, Nemanja; Malešević, Milka; Ćurčić, Jovana; Matijašević, Danka; Kostić, Aleksandar; Milinčić, Danijel; Gašić, Uroš; Pešić, Mirjana

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Stanisavljević, Nemanja
AU  - Malešević, Milka
AU  - Ćurčić, Jovana
AU  - Matijašević, Danka
AU  - Kostić, Aleksandar
AU  - Milinčić, Danijel
AU  - Gašić, Uroš
AU  - Pešić, Mirjana
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2382
AB  - During the past decades several quorum sensing
inhibitors (QSI) of plant origin have been isolated
and chemically characterized. QSI agents
of plant origin represent potential alternative
or complementary approach to antibiotic treatment
of multidrug-resistant bacteria and infections
caused by bacterial biofilms. The aim of
the current study was to screen QSI activities
of horseradish root extracts obtained using
different organic solvents and different root
processing methods (drying at 40°C, 60°C or extraction
of fresh material). Common opportunistic
pathogen Pseudomonas aeruginosa MMA83
was used for QSI screen. RT-qPCR was used to
analyze the effect of the extract on the relative
mRNA levels of the genes QS (lasR, lasI, rhlR, rhlI,
mvfR, pqsH) and the genes involved in P. aeruginosa
MMA83 virulence (lasB, phzM, rhlC, algK,
pvdS). Chemical composition of extracts was
determined by UHPLC Q-ToF MS analysis. The
most active extract obtained using fresh roots
and hexane/ethyl acetate (1:1) solvent mixture
was able to significantly reduce content all examined
mRNA. Qualitative chemical analysis
reviled presence of 15 phenolic acids and their
derivatives, 9 flavonoids and 10 glucosinolates
in majority of examined extracts. It is significant
to emphasize that the most active QSI extract
did not contain a single one, out of ten dominant
glucosinolates, which have undergone to
hydrolysis yielding isothiocyanates and other
sulphur-containing compounds responsible for
QSI effects. Our results strongly indicate that
even mild thermal treatment (40°C) of horseradish
roots prior to extraction could lead to severe
reduction or loss of QSI activity.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - CHEMICAL COMPOSITION AND QUORUM SENSING INHIBITION ACTIVITY OF HORSERADISH (ARMORACIA RUSTICANA) ROOT EXTRACTS
EP  - 147
SP  - 147
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2382
ER  - 
@conference{
author = "Stanisavljević, Nemanja and Malešević, Milka and Ćurčić, Jovana and Matijašević, Danka and Kostić, Aleksandar and Milinčić, Danijel and Gašić, Uroš and Pešić, Mirjana",
year = "2024",
abstract = "During the past decades several quorum sensing
inhibitors (QSI) of plant origin have been isolated
and chemically characterized. QSI agents
of plant origin represent potential alternative
or complementary approach to antibiotic treatment
of multidrug-resistant bacteria and infections
caused by bacterial biofilms. The aim of
the current study was to screen QSI activities
of horseradish root extracts obtained using
different organic solvents and different root
processing methods (drying at 40°C, 60°C or extraction
of fresh material). Common opportunistic
pathogen Pseudomonas aeruginosa MMA83
was used for QSI screen. RT-qPCR was used to
analyze the effect of the extract on the relative
mRNA levels of the genes QS (lasR, lasI, rhlR, rhlI,
mvfR, pqsH) and the genes involved in P. aeruginosa
MMA83 virulence (lasB, phzM, rhlC, algK,
pvdS). Chemical composition of extracts was
determined by UHPLC Q-ToF MS analysis. The
most active extract obtained using fresh roots
and hexane/ethyl acetate (1:1) solvent mixture
was able to significantly reduce content all examined
mRNA. Qualitative chemical analysis
reviled presence of 15 phenolic acids and their
derivatives, 9 flavonoids and 10 glucosinolates
in majority of examined extracts. It is significant
to emphasize that the most active QSI extract
did not contain a single one, out of ten dominant
glucosinolates, which have undergone to
hydrolysis yielding isothiocyanates and other
sulphur-containing compounds responsible for
QSI effects. Our results strongly indicate that
even mild thermal treatment (40°C) of horseradish
roots prior to extraction could lead to severe
reduction or loss of QSI activity.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "CHEMICAL COMPOSITION AND QUORUM SENSING INHIBITION ACTIVITY OF HORSERADISH (ARMORACIA RUSTICANA) ROOT EXTRACTS",
pages = "147-147",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2382"
}
Stanisavljević, N., Malešević, M., Ćurčić, J., Matijašević, D., Kostić, A., Milinčić, D., Gašić, U.,& Pešić, M.. (2024). CHEMICAL COMPOSITION AND QUORUM SENSING INHIBITION ACTIVITY OF HORSERADISH (ARMORACIA RUSTICANA) ROOT EXTRACTS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 147-147.
https://hdl.handle.net/21.15107/rcub_imagine_2382
Stanisavljević N, Malešević M, Ćurčić J, Matijašević D, Kostić A, Milinčić D, Gašić U, Pešić M. CHEMICAL COMPOSITION AND QUORUM SENSING INHIBITION ACTIVITY OF HORSERADISH (ARMORACIA RUSTICANA) ROOT EXTRACTS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:147-147.
https://hdl.handle.net/21.15107/rcub_imagine_2382 .
Stanisavljević, Nemanja, Malešević, Milka, Ćurčić, Jovana, Matijašević, Danka, Kostić, Aleksandar, Milinčić, Danijel, Gašić, Uroš, Pešić, Mirjana, "CHEMICAL COMPOSITION AND QUORUM SENSING INHIBITION ACTIVITY OF HORSERADISH (ARMORACIA RUSTICANA) ROOT EXTRACTS" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):147-147,
https://hdl.handle.net/21.15107/rcub_imagine_2382 .

MEDICINAL MUSHROOM EXTRACTS ATTENUATE PSEUDOMONAS AERUGINOSA QUORUM SENSING AND VIRULENCE

Malešević, Milka; Ćurčić, Jovana; Gardijan, Lazar; Obradović, Mina; Stanisavljević, Nemanja; Pantić, Milena; Matijašević, Danka

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Malešević, Milka
AU  - Ćurčić, Jovana
AU  - Gardijan, Lazar
AU  - Obradović, Mina
AU  - Stanisavljević, Nemanja
AU  - Pantić, Milena
AU  - Matijašević, Danka
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2381
AB  - Pseudomonas aeruginosa has been recognized as
a priority pathogen by World Health Organization,
due to the emergence of multidrug-resistant
(MDR) strains. Thus, new treatment options
such as antivirulence strategy is urgently needed.
This strategy is based on the disruption of quorum
sensing (QS) activity of this pathogen. The
focus of this research was to explore the anti-QS
activity of four selected medicinal mushrooms
(Lentinula edodes, Cantharellus cibarius, Trametes
versicolor and Pleurotus ostreatus) extracts on
MDR clinical isolate P. aeruginosa MMA83. Another
aim was to check their cytotoxicity on Caenorhabditis
elegans AU37 (glp-4(bn2) I; sec-1(km4).
Among three types of mushroom extracts - hot
water polysaccharide extracts (WPE), hot alkali
polysaccharide extracts (APE) and methanol
extracts (Met), APE extracts downregulated all
tested QS and virulence factors genes of P. aeruginosa
MMA83. The most prominent effect was
observed for C. cibarius APE extract, lowering
expression from 2-fold (for lasI gene) to 20-fold
for lasB gene. Extracts didn’t show cytotoxic effect
on C. elegans. The efficacy of APE extracts
in lowering the expression of QS and virulence
factors genes of P. aeruginosa MMA83 indicate
that these extracts can reduce pathogenicity of
P. aeruginosa. Also, they possess one of the desirable
biotechnology features – the absence of
cytotoxicity. Anti-QS and antivirulence effect of
APE extracts on P. aeruginosa envisages these extracts
as the promising therapeutic candidates
for the development of next-generation antivirulence
agents.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - MEDICINAL MUSHROOM EXTRACTS ATTENUATE PSEUDOMONAS AERUGINOSA QUORUM SENSING AND VIRULENCE
EP  - 145
SP  - 145
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2381
ER  - 
@conference{
author = "Malešević, Milka and Ćurčić, Jovana and Gardijan, Lazar and Obradović, Mina and Stanisavljević, Nemanja and Pantić, Milena and Matijašević, Danka",
year = "2024",
abstract = "Pseudomonas aeruginosa has been recognized as
a priority pathogen by World Health Organization,
due to the emergence of multidrug-resistant
(MDR) strains. Thus, new treatment options
such as antivirulence strategy is urgently needed.
This strategy is based on the disruption of quorum
sensing (QS) activity of this pathogen. The
focus of this research was to explore the anti-QS
activity of four selected medicinal mushrooms
(Lentinula edodes, Cantharellus cibarius, Trametes
versicolor and Pleurotus ostreatus) extracts on
MDR clinical isolate P. aeruginosa MMA83. Another
aim was to check their cytotoxicity on Caenorhabditis
elegans AU37 (glp-4(bn2) I; sec-1(km4).
Among three types of mushroom extracts - hot
water polysaccharide extracts (WPE), hot alkali
polysaccharide extracts (APE) and methanol
extracts (Met), APE extracts downregulated all
tested QS and virulence factors genes of P. aeruginosa
MMA83. The most prominent effect was
observed for C. cibarius APE extract, lowering
expression from 2-fold (for lasI gene) to 20-fold
for lasB gene. Extracts didn’t show cytotoxic effect
on C. elegans. The efficacy of APE extracts
in lowering the expression of QS and virulence
factors genes of P. aeruginosa MMA83 indicate
that these extracts can reduce pathogenicity of
P. aeruginosa. Also, they possess one of the desirable
biotechnology features – the absence of
cytotoxicity. Anti-QS and antivirulence effect of
APE extracts on P. aeruginosa envisages these extracts
as the promising therapeutic candidates
for the development of next-generation antivirulence
agents.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "MEDICINAL MUSHROOM EXTRACTS ATTENUATE PSEUDOMONAS AERUGINOSA QUORUM SENSING AND VIRULENCE",
pages = "145-145",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2381"
}
Malešević, M., Ćurčić, J., Gardijan, L., Obradović, M., Stanisavljević, N., Pantić, M.,& Matijašević, D.. (2024). MEDICINAL MUSHROOM EXTRACTS ATTENUATE PSEUDOMONAS AERUGINOSA QUORUM SENSING AND VIRULENCE. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 145-145.
https://hdl.handle.net/21.15107/rcub_imagine_2381
Malešević M, Ćurčić J, Gardijan L, Obradović M, Stanisavljević N, Pantić M, Matijašević D. MEDICINAL MUSHROOM EXTRACTS ATTENUATE PSEUDOMONAS AERUGINOSA QUORUM SENSING AND VIRULENCE. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:145-145.
https://hdl.handle.net/21.15107/rcub_imagine_2381 .
Malešević, Milka, Ćurčić, Jovana, Gardijan, Lazar, Obradović, Mina, Stanisavljević, Nemanja, Pantić, Milena, Matijašević, Danka, "MEDICINAL MUSHROOM EXTRACTS ATTENUATE PSEUDOMONAS AERUGINOSA QUORUM SENSING AND VIRULENCE" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):145-145,
https://hdl.handle.net/21.15107/rcub_imagine_2381 .

Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants

Malešević, Milka; Gardijan, Lazar; Miljković, Marija; O'Connor, Paula M; Mirković, Nemanja; Jovčić, Branko; Cotter, Paul D; Jovanovic, Goran; Kojić, Milan

(2023)

TY  - JOUR
AU  - Malešević, Milka
AU  - Gardijan, Lazar
AU  - Miljković, Marija
AU  - O'Connor, Paula M
AU  - Mirković, Nemanja
AU  - Jovčić, Branko
AU  - Cotter, Paul D
AU  - Jovanovic, Goran
AU  - Kojić, Milan
PY  - 2023
UR  - https://doi.org/10.1093/lambio/ovad004
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1828
AB  - Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25–43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1–24, the truncation at position 31 is predicted to change the structure within aa 15–31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.
T2  - Letters in Applied Microbiology
T2  - Letters in Applied MicrobiologyLetters in Applied Microbiology
T1  - Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants
IS  - 2
SP  - ovad004
VL  - 76
DO  - 10.1093/lambio/ovad004
ER  - 
@article{
author = "Malešević, Milka and Gardijan, Lazar and Miljković, Marija and O'Connor, Paula M and Mirković, Nemanja and Jovčić, Branko and Cotter, Paul D and Jovanovic, Goran and Kojić, Milan",
year = "2023",
abstract = "Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25–43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1–24, the truncation at position 31 is predicted to change the structure within aa 15–31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.",
journal = "Letters in Applied Microbiology, Letters in Applied MicrobiologyLetters in Applied Microbiology",
title = "Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants",
number = "2",
pages = "ovad004",
volume = "76",
doi = "10.1093/lambio/ovad004"
}
Malešević, M., Gardijan, L., Miljković, M., O'Connor, P. M., Mirković, N., Jovčić, B., Cotter, P. D., Jovanovic, G.,& Kojić, M.. (2023). Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. in Letters in Applied Microbiology, 76(2), ovad004.
https://doi.org/10.1093/lambio/ovad004
Malešević M, Gardijan L, Miljković M, O'Connor PM, Mirković N, Jovčić B, Cotter PD, Jovanovic G, Kojić M. Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. in Letters in Applied Microbiology. 2023;76(2):ovad004.
doi:10.1093/lambio/ovad004 .
Malešević, Milka, Gardijan, Lazar, Miljković, Marija, O'Connor, Paula M, Mirković, Nemanja, Jovčić, Branko, Cotter, Paul D, Jovanovic, Goran, Kojić, Milan, "Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants" in Letters in Applied Microbiology, 76, no. 2 (2023):ovad004,
https://doi.org/10.1093/lambio/ovad004 . .
1
4
2

Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome

Malešević, Milka; Stanisavljević, Nemanja; Rašić, Slađan; Vukotić, Goran; Gardijan, Lazar; Obradović, Mina; Kojić, Milan

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Malešević, Milka
AU  - Stanisavljević, Nemanja
AU  - Rašić, Slađan
AU  - Vukotić, Goran
AU  - Gardijan, Lazar
AU  - Obradović, Mina
AU  - Kojić, Milan
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2150
AB  - Introduction: Brevibacillus laterosporus is a promising microbiological agent that can be used to prevent and control destructive diseases affecting honey bee colonies. In the presentstudy, the short-term
effect of the B. laterosporus BGSP11 bee diet on microbiota and mycobiota was investigated.
Methods: The honey bee diet was supplemented with spores of B. laterosporus BGSP11 at a concentration of 1×108 CFU/mL in sucrose solution. Metabarcoding analysis of the bee microbial community profile was performed based on 16S RNA (bacteriobiota) and Internally Transcribes Spacer (ITS) region
(mycobiota) obtained using MiSeq Illumina sequencing. The QIIME2 v2021.4 pipeline was used to analyze the obtained amplicon data library.
Results: The results show that the BGSP11 bee diet slightly altered the bee microbiota and did not lead
to potentially harmful changes in the bacterial microbiota. Moreover, it can potentially induce positive
changes, mainly reflected in the reduction of opportunistic bacteria. On the other hand, the treatment
had a greater effect on mycobiota. However, the changesin the bee mycobiome caused by the treatment
cannot be considered a priori as beneficial or harmful,since the interaction between the bee and its mycobiome is not sufficiently studied. The observed positive changes in the bee mycobiome are mainly
reflected in the reduction of phytopathogenic fungi that may affect the organoleptic and techno-functional properties of honey.
Conclusion: This pilot study suggests that the introduction of BGSP11 in beekeeping practice as a biological agent could be considered due to no harmful effects observed on the microbiota of bees.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome
EP  - 112
SP  - 112
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2150
ER  - 
@conference{
author = "Malešević, Milka and Stanisavljević, Nemanja and Rašić, Slađan and Vukotić, Goran and Gardijan, Lazar and Obradović, Mina and Kojić, Milan",
year = "2023",
abstract = "Introduction: Brevibacillus laterosporus is a promising microbiological agent that can be used to prevent and control destructive diseases affecting honey bee colonies. In the presentstudy, the short-term
effect of the B. laterosporus BGSP11 bee diet on microbiota and mycobiota was investigated.
Methods: The honey bee diet was supplemented with spores of B. laterosporus BGSP11 at a concentration of 1×108 CFU/mL in sucrose solution. Metabarcoding analysis of the bee microbial community profile was performed based on 16S RNA (bacteriobiota) and Internally Transcribes Spacer (ITS) region
(mycobiota) obtained using MiSeq Illumina sequencing. The QIIME2 v2021.4 pipeline was used to analyze the obtained amplicon data library.
Results: The results show that the BGSP11 bee diet slightly altered the bee microbiota and did not lead
to potentially harmful changes in the bacterial microbiota. Moreover, it can potentially induce positive
changes, mainly reflected in the reduction of opportunistic bacteria. On the other hand, the treatment
had a greater effect on mycobiota. However, the changesin the bee mycobiome caused by the treatment
cannot be considered a priori as beneficial or harmful,since the interaction between the bee and its mycobiome is not sufficiently studied. The observed positive changes in the bee mycobiome are mainly
reflected in the reduction of phytopathogenic fungi that may affect the organoleptic and techno-functional properties of honey.
Conclusion: This pilot study suggests that the introduction of BGSP11 in beekeeping practice as a biological agent could be considered due to no harmful effects observed on the microbiota of bees.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome",
pages = "112-112",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2150"
}
Malešević, M., Stanisavljević, N., Rašić, S., Vukotić, G., Gardijan, L., Obradović, M.,& Kojić, M.. (2023). Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 112-112.
https://hdl.handle.net/21.15107/rcub_imagine_2150
Malešević M, Stanisavljević N, Rašić S, Vukotić G, Gardijan L, Obradović M, Kojić M. Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:112-112.
https://hdl.handle.net/21.15107/rcub_imagine_2150 .
Malešević, Milka, Stanisavljević, Nemanja, Rašić, Slađan, Vukotić, Goran, Gardijan, Lazar, Obradović, Mina, Kojić, Milan, "Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):112-112,
https://hdl.handle.net/21.15107/rcub_imagine_2150 .

A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression

Ćurčić, Jovana; Jakovljević, Stefan; Novović, Katarina; Vasiljević, Zorica; Kojić, Milan; Jovčić, Branko; Malešević, Milka

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Ćurčić, Jovana
AU  - Jakovljević, Stefan
AU  - Novović, Katarina
AU  - Vasiljević, Zorica
AU  - Kojić, Milan
AU  - Jovčić, Branko
AU  - Malešević, Milka
PY  - 2023
UR  - http://intor.torlakinstitut.com/handle/123456789/803
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2124
AB  - Introduction: Quorum quenching (QQ) isthe enzymatic degradation of cell-to-cellsignaling molecules.In this study, the potential of the novel YtnP lactonase, the quorum quenching enzyme derived from S.maltophilia, to reduce P. aeruginosa quorum sensing and virulence factor gene expression was investigated.Methods: MMA83 culture (adjusted to 1.5x105 CFU/ml) was treated with recombinant YtnP lactonase(final concentration 50 μg/ml) at 37°C for 12 hours under aeration. RNA isolation of the treated and untreated MMA83 culture was performed using the RNeasy Mini Kit (Qiagen, Germany) according to theprotocol. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR), was used to analyzethe effect ofYtnP lactonase on the relative mRNA levels of the LasI/LasR, RhiI/RhiR, and PQS signaling network genes of P. aeruginosa MMA83 and virulence factor genes. The rpsL was used as an endogenouscontrol to normalize obtained data following the 2-ΔΔCt method.Results: The QS genes belonging to three QS networks – LasI/LasR, RhiI/RhiR, and PQS of P. aeruginosaMMA83 treated with YtnP lactonase were significantly downregulated. The RT -qPCR results show thattreatment with YtnP-lactonase decreased the relative mRNA levels of genes involved in the productionof elastase (lasB approximately 2-fold), alginate (algK approximately 2.2-fold), pyocyanin (phzM approximately 3.5-fold), pyoverdin (pvdS approximately 2-fold), and rhamnolipid (rhlC approximately 4-fold).These results suggest that YtnP lactonase exerts an antivirulence effect at the transcription level.Conclusion: YtnP lactonase, a quorum quenching (QQ) enzyme, has the potential to be used as an innovative enzyme-based antivirulence therapeutic to combat infections caused by P. aeruginosa.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression
EP  - 121
SP  - 121
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2124
ER  - 
@conference{
author = "Ćurčić, Jovana and Jakovljević, Stefan and Novović, Katarina and Vasiljević, Zorica and Kojić, Milan and Jovčić, Branko and Malešević, Milka",
year = "2023",
abstract = "Introduction: Quorum quenching (QQ) isthe enzymatic degradation of cell-to-cellsignaling molecules.In this study, the potential of the novel YtnP lactonase, the quorum quenching enzyme derived from S.maltophilia, to reduce P. aeruginosa quorum sensing and virulence factor gene expression was investigated.Methods: MMA83 culture (adjusted to 1.5x105 CFU/ml) was treated with recombinant YtnP lactonase(final concentration 50 μg/ml) at 37°C for 12 hours under aeration. RNA isolation of the treated and untreated MMA83 culture was performed using the RNeasy Mini Kit (Qiagen, Germany) according to theprotocol. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR), was used to analyzethe effect ofYtnP lactonase on the relative mRNA levels of the LasI/LasR, RhiI/RhiR, and PQS signaling network genes of P. aeruginosa MMA83 and virulence factor genes. The rpsL was used as an endogenouscontrol to normalize obtained data following the 2-ΔΔCt method.Results: The QS genes belonging to three QS networks – LasI/LasR, RhiI/RhiR, and PQS of P. aeruginosaMMA83 treated with YtnP lactonase were significantly downregulated. The RT -qPCR results show thattreatment with YtnP-lactonase decreased the relative mRNA levels of genes involved in the productionof elastase (lasB approximately 2-fold), alginate (algK approximately 2.2-fold), pyocyanin (phzM approximately 3.5-fold), pyoverdin (pvdS approximately 2-fold), and rhamnolipid (rhlC approximately 4-fold).These results suggest that YtnP lactonase exerts an antivirulence effect at the transcription level.Conclusion: YtnP lactonase, a quorum quenching (QQ) enzyme, has the potential to be used as an innovative enzyme-based antivirulence therapeutic to combat infections caused by P. aeruginosa.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression",
pages = "121-121",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2124"
}
Ćurčić, J., Jakovljević, S., Novović, K., Vasiljević, Z., Kojić, M., Jovčić, B.,& Malešević, M.. (2023). A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 121-121.
https://hdl.handle.net/21.15107/rcub_imagine_2124
Ćurčić J, Jakovljević S, Novović K, Vasiljević Z, Kojić M, Jovčić B, Malešević M. A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:121-121.
https://hdl.handle.net/21.15107/rcub_imagine_2124 .
Ćurčić, Jovana, Jakovljević, Stefan, Novović, Katarina, Vasiljević, Zorica, Kojić, Milan, Jovčić, Branko, Malešević, Milka, "A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):121-121,
https://hdl.handle.net/21.15107/rcub_imagine_2124 .

Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia

Curčić, Jovana; Matijasević, Danka; Stanisavljević, Nemanja; Tasić, Srđan; Kojić, Milan; Malešević, Milka

(Belgrade : Institute of molecular genetics and genetic engineering, 2023)

TY  - CONF
AU  - Curčić, Jovana
AU  - Matijasević, Danka
AU  - Stanisavljević, Nemanja
AU  - Tasić, Srđan
AU  - Kojić, Milan
AU  - Malešević, Milka
PY  - 2023
UR  - https://belbi.bg.ac.rs/
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2057
AB  - Thermal springs represent a habitat with extreme conditions that harbor a unique
microbial community adapted to thrive in this environment. In addition to the geothermal
springs in Iceland, the thermal springs of Vranjska Banja are considered the hottest in
Europe with a water temperature of 63-95°C. Due to global warming and climate change,
there is a growing need for knowledge about the biodiversity of extreme natural habitats.
Besides the exceptional importance of studying extremophilic microorganisms, the
difficulty in their cultivation limits the expanding necessity of research in this field. This
study provides information about the microbial community structure and physicochemical
characteristics of the thermal spring of Vranjska Banja. To determine and monitor the
microbiota diversity of the Vranjska Banja hot spring, for the first time, comprehensive
culture-independent metagenomic analysis in parallel with a culture-dependent
approach was applied. The culture-independent composition of bacterial communities of
the thermal water was investigated using MiSeq-Illumina technology and analyzed by
the computing environment QIIME2 v2021. The applied cultivation approach resulted
in the isolation of 17 strains belonging to genera Bacillus, Anoxybacillus, Hydrogenophilus,
and Geobacillus, based on 16S rRNA sequencing and whole genome sequencing of five
representative strains has been performed. The complete DNA was sequenced using
Illumina HiSeq from the MicrobesNG service. Genomic characterization and OrthoANI
analysis have shown that two of them are candidates for novel species. Products of
extremophilic microorganisms adapted to harsh conditions have great potential to be
used for biotechnological research and industrial application. Results of BAGEL4 and
AntiSMASH showed that the sequenced strains from Vranjska Banja hot spring have
the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase,
chitinase, and glucanase) and various antimicrobial molecules.
PB  - Belgrade : Institute of molecular genetics and genetic engineering
C3  - 4th Belgrade Bioinformatics Conference
T1  - Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia
EP  - 112
SP  - 112
VL  - 4
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2057
ER  - 
@conference{
author = "Curčić, Jovana and Matijasević, Danka and Stanisavljević, Nemanja and Tasić, Srđan and Kojić, Milan and Malešević, Milka",
year = "2023",
abstract = "Thermal springs represent a habitat with extreme conditions that harbor a unique
microbial community adapted to thrive in this environment. In addition to the geothermal
springs in Iceland, the thermal springs of Vranjska Banja are considered the hottest in
Europe with a water temperature of 63-95°C. Due to global warming and climate change,
there is a growing need for knowledge about the biodiversity of extreme natural habitats.
Besides the exceptional importance of studying extremophilic microorganisms, the
difficulty in their cultivation limits the expanding necessity of research in this field. This
study provides information about the microbial community structure and physicochemical
characteristics of the thermal spring of Vranjska Banja. To determine and monitor the
microbiota diversity of the Vranjska Banja hot spring, for the first time, comprehensive
culture-independent metagenomic analysis in parallel with a culture-dependent
approach was applied. The culture-independent composition of bacterial communities of
the thermal water was investigated using MiSeq-Illumina technology and analyzed by
the computing environment QIIME2 v2021. The applied cultivation approach resulted
in the isolation of 17 strains belonging to genera Bacillus, Anoxybacillus, Hydrogenophilus,
and Geobacillus, based on 16S rRNA sequencing and whole genome sequencing of five
representative strains has been performed. The complete DNA was sequenced using
Illumina HiSeq from the MicrobesNG service. Genomic characterization and OrthoANI
analysis have shown that two of them are candidates for novel species. Products of
extremophilic microorganisms adapted to harsh conditions have great potential to be
used for biotechnological research and industrial application. Results of BAGEL4 and
AntiSMASH showed that the sequenced strains from Vranjska Banja hot spring have
the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase,
chitinase, and glucanase) and various antimicrobial molecules.",
publisher = "Belgrade : Institute of molecular genetics and genetic engineering",
journal = "4th Belgrade Bioinformatics Conference",
title = "Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia",
pages = "112-112",
volume = "4",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2057"
}
Curčić, J., Matijasević, D., Stanisavljević, N., Tasić, S., Kojić, M.,& Malešević, M.. (2023). Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia. in 4th Belgrade Bioinformatics Conference
Belgrade : Institute of molecular genetics and genetic engineering., 4, 112-112.
https://hdl.handle.net/21.15107/rcub_imagine_2057
Curčić J, Matijasević D, Stanisavljević N, Tasić S, Kojić M, Malešević M. Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia. in 4th Belgrade Bioinformatics Conference. 2023;4:112-112.
https://hdl.handle.net/21.15107/rcub_imagine_2057 .
Curčić, Jovana, Matijasević, Danka, Stanisavljević, Nemanja, Tasić, Srđan, Kojić, Milan, Malešević, Milka, "Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia" in 4th Belgrade Bioinformatics Conference, 4 (2023):112-112,
https://hdl.handle.net/21.15107/rcub_imagine_2057 .

Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia

Malešević, Milka; Stanisavljević, Nemanja; Matijašević, Danka; Ćurčić, Jovana; Tasić, Vukašin; Tasić, Srđan; Kojić, Milan

(2023)

TY  - JOUR
AU  - Malešević, Milka
AU  - Stanisavljević, Nemanja
AU  - Matijašević, Danka
AU  - Ćurčić, Jovana
AU  - Tasić, Vukašin
AU  - Tasić, Srđan
AU  - Kojić, Milan
PY  - 2023
UR  - https://doi.org/10.1007/s00248-023-02242-6
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1893
AB  - The hot spring Vranjska Banja is the hottest spring on the Balkan Peninsula with a water temperature of 63–95 °C and a pH value of 7.1, in situ. According to the physicochemical analysis, Vranjska Banja hot spring belongs to the bicarbonated and sulfated hyperthermal waters. The structures of microbial community of this geothermal spring are still largely unexplored. In order to determine and monitor the diversity of microbiota of the Vranjska Banja hot spring, a comprehensive culture-independent metagenomic analysis was conducted in parallel with a culture-dependent approach for the first time. Microbial profiling using amplicon sequencing analysis revealed the presence of phylogenetically novel taxa, ranging from species to phyla. Cultivation-based methods resulted in the isolation of 17 strains belonging to the genera Anoxybacillus, Bacillus, Geobacillus, and Hydrogenophillus. Whole-genome sequencing of five representative strains was then performed. The genomic characterization and OrthoANI analysis revealed that the Vranjska Banja hot spring harbors phylogenetically novel species of the genus Anoxybacillus, proving its uniqueness. Moreover, these isolates contain stress response genes that enable them to survive in the harsh conditions of the hot springs. The results of the in silico analysis show that most of the sequenced strains have the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase, chitinase, and glucanase) and various antimicrobial molecules that can be of great importance for industrial, agricultural, and biotechnological applications. Finally, this study provides a basis for further research and understanding of the metabolic potential of these microorganisms.
T2  - Microbial Ecology
T2  - Microbial EcologyMicrob Ecol
T1  - Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia
DO  - 10.1007/s00248-023-02242-6
ER  - 
@article{
author = "Malešević, Milka and Stanisavljević, Nemanja and Matijašević, Danka and Ćurčić, Jovana and Tasić, Vukašin and Tasić, Srđan and Kojić, Milan",
year = "2023",
abstract = "The hot spring Vranjska Banja is the hottest spring on the Balkan Peninsula with a water temperature of 63–95 °C and a pH value of 7.1, in situ. According to the physicochemical analysis, Vranjska Banja hot spring belongs to the bicarbonated and sulfated hyperthermal waters. The structures of microbial community of this geothermal spring are still largely unexplored. In order to determine and monitor the diversity of microbiota of the Vranjska Banja hot spring, a comprehensive culture-independent metagenomic analysis was conducted in parallel with a culture-dependent approach for the first time. Microbial profiling using amplicon sequencing analysis revealed the presence of phylogenetically novel taxa, ranging from species to phyla. Cultivation-based methods resulted in the isolation of 17 strains belonging to the genera Anoxybacillus, Bacillus, Geobacillus, and Hydrogenophillus. Whole-genome sequencing of five representative strains was then performed. The genomic characterization and OrthoANI analysis revealed that the Vranjska Banja hot spring harbors phylogenetically novel species of the genus Anoxybacillus, proving its uniqueness. Moreover, these isolates contain stress response genes that enable them to survive in the harsh conditions of the hot springs. The results of the in silico analysis show that most of the sequenced strains have the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase, chitinase, and glucanase) and various antimicrobial molecules that can be of great importance for industrial, agricultural, and biotechnological applications. Finally, this study provides a basis for further research and understanding of the metabolic potential of these microorganisms.",
journal = "Microbial Ecology, Microbial EcologyMicrob Ecol",
title = "Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia",
doi = "10.1007/s00248-023-02242-6"
}
Malešević, M., Stanisavljević, N., Matijašević, D., Ćurčić, J., Tasić, V., Tasić, S.,& Kojić, M.. (2023). Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia. in Microbial Ecology.
https://doi.org/10.1007/s00248-023-02242-6
Malešević M, Stanisavljević N, Matijašević D, Ćurčić J, Tasić V, Tasić S, Kojić M. Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia. in Microbial Ecology. 2023;.
doi:10.1007/s00248-023-02242-6 .
Malešević, Milka, Stanisavljević, Nemanja, Matijašević, Danka, Ćurčić, Jovana, Tasić, Vukašin, Tasić, Srđan, Kojić, Milan, "Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia" in Microbial Ecology (2023),
https://doi.org/10.1007/s00248-023-02242-6 . .
2
2
2

Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae

Obradović, Mina; Malešević, Milka; Di Luca, Mariagrazia; Kekić, Dušan; Gajić, Ina; McAuliffe, Olivia; Neve, Horst; Stanisavljević, Nemanja; Vukotić, Goran; Kojić, Milan

(2023)

TY  - JOUR
AU  - Obradović, Mina
AU  - Malešević, Milka
AU  - Di Luca, Mariagrazia
AU  - Kekić, Dušan
AU  - Gajić, Ina
AU  - McAuliffe, Olivia
AU  - Neve, Horst
AU  - Stanisavljević, Nemanja
AU  - Vukotić, Goran
AU  - Kojić, Milan
PY  - 2023
UR  - https://www.mdpi.com/1999-4915/15/3/628
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2065
AB  - Klebsiella pneumoniae is a global health threat and bacteriophages are a potential solution in combating pandrug-resistant K. pneumoniae infections. Two lytic phages, LASTA and SJM3, active against several pandrug-resistant, nosocomial strains of K. pneumoniae were isolated and characterized. Their host range is narrow and latent period is particularly long; however, their lysogenic nature was refuted using both bioinformatic and experimental approaches. Genome sequence analysis clustered them with only two other phages into the new genus Lastavirus. Genomes of LASTA and SJM3 differ in only 13 base pairs, mainly located in tail fiber genes. Individual phages, as well as their cocktail, demonstrated significant bacterial reduction capacity in a time-dependent manner, yielding up to 4 log reduction against planktonic, and up to 2.59 log on biofilm-embedded, cells. Bacteria emerging from the contact with the phages developed resistance and achieved numbers comparable to the growth control after 24 h. The resistance to the phage seems to be of a transient nature and varies significantly between the two phages, as resistance to LASTA remained constant while resensitization to SJM3 was more prominent. Albeit with very few differences, SJM3 performed better than LASTA overall; however, more investigation is needed in order to consider them for therapeutic application.
T2  - Viruses
T1  - Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae
IS  - 3
SP  - 628
VL  - 15
DO  - 10.3390/v15030628
ER  - 
@article{
author = "Obradović, Mina and Malešević, Milka and Di Luca, Mariagrazia and Kekić, Dušan and Gajić, Ina and McAuliffe, Olivia and Neve, Horst and Stanisavljević, Nemanja and Vukotić, Goran and Kojić, Milan",
year = "2023",
abstract = "Klebsiella pneumoniae is a global health threat and bacteriophages are a potential solution in combating pandrug-resistant K. pneumoniae infections. Two lytic phages, LASTA and SJM3, active against several pandrug-resistant, nosocomial strains of K. pneumoniae were isolated and characterized. Their host range is narrow and latent period is particularly long; however, their lysogenic nature was refuted using both bioinformatic and experimental approaches. Genome sequence analysis clustered them with only two other phages into the new genus Lastavirus. Genomes of LASTA and SJM3 differ in only 13 base pairs, mainly located in tail fiber genes. Individual phages, as well as their cocktail, demonstrated significant bacterial reduction capacity in a time-dependent manner, yielding up to 4 log reduction against planktonic, and up to 2.59 log on biofilm-embedded, cells. Bacteria emerging from the contact with the phages developed resistance and achieved numbers comparable to the growth control after 24 h. The resistance to the phage seems to be of a transient nature and varies significantly between the two phages, as resistance to LASTA remained constant while resensitization to SJM3 was more prominent. Albeit with very few differences, SJM3 performed better than LASTA overall; however, more investigation is needed in order to consider them for therapeutic application.",
journal = "Viruses",
title = "Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae",
number = "3",
pages = "628",
volume = "15",
doi = "10.3390/v15030628"
}
Obradović, M., Malešević, M., Di Luca, M., Kekić, D., Gajić, I., McAuliffe, O., Neve, H., Stanisavljević, N., Vukotić, G.,& Kojić, M.. (2023). Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. in Viruses, 15(3), 628.
https://doi.org/10.3390/v15030628
Obradović M, Malešević M, Di Luca M, Kekić D, Gajić I, McAuliffe O, Neve H, Stanisavljević N, Vukotić G, Kojić M. Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. in Viruses. 2023;15(3):628.
doi:10.3390/v15030628 .
Obradović, Mina, Malešević, Milka, Di Luca, Mariagrazia, Kekić, Dušan, Gajić, Ina, McAuliffe, Olivia, Neve, Horst, Stanisavljević, Nemanja, Vukotić, Goran, Kojić, Milan, "Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae" in Viruses, 15, no. 3 (2023):628,
https://doi.org/10.3390/v15030628 . .
3
6
2

Supplementary data for the article: Obradović, M., Malešević, M., Di Luca, M., Kekić, D., Gajić, I., McAuliffe, O., Neve, H., Stanisavljević, N., Vukotić, G.,& Kojić, M.. (2023). Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. in Viruses, 15(3), 628. https://doi.org/10.3390/v15030628

Obradović, Mina; Malešević, Milka; Di Luca, Mariagrazia; Kekić, Dušan; Gajić, Ina; McAuliffe, Olivia; Neve, Horst; Stanisavljević, Nemanja; Vukotić, Goran; Kojić, Milan

(2023)

TY  - DATA
AU  - Obradović, Mina
AU  - Malešević, Milka
AU  - Di Luca, Mariagrazia
AU  - Kekić, Dušan
AU  - Gajić, Ina
AU  - McAuliffe, Olivia
AU  - Neve, Horst
AU  - Stanisavljević, Nemanja
AU  - Vukotić, Goran
AU  - Kojić, Milan
PY  - 2023
UR  - https://www.mdpi.com/1999-4915/15/3/628
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2065
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2072
T2  - Viruses
T1  - Supplementary data for the article: Obradović, M., Malešević, M., Di Luca, M., Kekić, D., Gajić, I., McAuliffe, O., Neve, H., Stanisavljević, N., Vukotić, G.,& Kojić, M.. (2023). Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. in Viruses, 15(3), 628. https://doi.org/10.3390/v15030628
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2072
ER  - 
@misc{
author = "Obradović, Mina and Malešević, Milka and Di Luca, Mariagrazia and Kekić, Dušan and Gajić, Ina and McAuliffe, Olivia and Neve, Horst and Stanisavljević, Nemanja and Vukotić, Goran and Kojić, Milan",
year = "2023",
journal = "Viruses",
title = "Supplementary data for the article: Obradović, M., Malešević, M., Di Luca, M., Kekić, D., Gajić, I., McAuliffe, O., Neve, H., Stanisavljević, N., Vukotić, G.,& Kojić, M.. (2023). Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. in Viruses, 15(3), 628. https://doi.org/10.3390/v15030628",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2072"
}
Obradović, M., Malešević, M., Di Luca, M., Kekić, D., Gajić, I., McAuliffe, O., Neve, H., Stanisavljević, N., Vukotić, G.,& Kojić, M.. (2023). Supplementary data for the article: Obradović, M., Malešević, M., Di Luca, M., Kekić, D., Gajić, I., McAuliffe, O., Neve, H., Stanisavljević, N., Vukotić, G.,& Kojić, M.. (2023). Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. in Viruses, 15(3), 628. https://doi.org/10.3390/v15030628. in Viruses.
https://hdl.handle.net/21.15107/rcub_imagine_2072
Obradović M, Malešević M, Di Luca M, Kekić D, Gajić I, McAuliffe O, Neve H, Stanisavljević N, Vukotić G, Kojić M. Supplementary data for the article: Obradović, M., Malešević, M., Di Luca, M., Kekić, D., Gajić, I., McAuliffe, O., Neve, H., Stanisavljević, N., Vukotić, G.,& Kojić, M.. (2023). Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. in Viruses, 15(3), 628. https://doi.org/10.3390/v15030628. in Viruses. 2023;.
https://hdl.handle.net/21.15107/rcub_imagine_2072 .
Obradović, Mina, Malešević, Milka, Di Luca, Mariagrazia, Kekić, Dušan, Gajić, Ina, McAuliffe, Olivia, Neve, Horst, Stanisavljević, Nemanja, Vukotić, Goran, Kojić, Milan, "Supplementary data for the article: Obradović, M., Malešević, M., Di Luca, M., Kekić, D., Gajić, I., McAuliffe, O., Neve, H., Stanisavljević, N., Vukotić, G.,& Kojić, M.. (2023). Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. in Viruses, 15(3), 628. https://doi.org/10.3390/v15030628" in Viruses (2023),
https://hdl.handle.net/21.15107/rcub_imagine_2072 .

Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia

Malešević, Milka; Stanisavljević, Nemanja; Matijašević, Danka; Ćurčić, Jovana; Tasić, Vukašin; Tasić, Srđan; Kojić, Milan

(2023)

TY  - JOUR
AU  - Malešević, Milka
AU  - Stanisavljević, Nemanja
AU  - Matijašević, Danka
AU  - Ćurčić, Jovana
AU  - Tasić, Vukašin
AU  - Tasić, Srđan
AU  - Kojić, Milan
PY  - 2023
UR  - https://doi.org/10.1007/s00248-023-02242-6
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1931
AB  - The hot spring Vranjska Banja is the hottest spring on the Balkan Peninsula with a water temperature of 63–95 °C and a pH value of 7.1, in situ. According to the physicochemical analysis, Vranjska Banja hot spring belongs to the bicarbonated and sulfated hyperthermal waters. The structures of microbial community of this geothermal spring are still largely unexplored. In order to determine and monitor the diversity of microbiota of the Vranjska Banja hot spring, a comprehensive culture-independent metagenomic analysis was conducted in parallel with a culture-dependent approach for the first time. Microbial profiling using amplicon sequencing analysis revealed the presence of phylogenetically novel taxa, ranging from species to phyla. Cultivation-based methods resulted in the isolation of 17 strains belonging to the genera Anoxybacillus, Bacillus, Geobacillus, and Hydrogenophillus. Whole-genome sequencing of five representative strains was then performed. The genomic characterization and OrthoANI analysis revealed that the Vranjska Banja hot spring harbors phylogenetically novel species of the genus Anoxybacillus, proving its uniqueness. Moreover, these isolates contain stress response genes that enable them to survive in the harsh conditions of the hot springs. The results of the in silico analysis show that most of the sequenced strains have the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase, chitinase, and glucanase) and various antimicrobial molecules that can be of great importance for industrial, agricultural, and biotechnological applications. Finally, this study provides a basis for further research and understanding of the metabolic potential of these microorganisms.
T2  - Microbial Ecology
T2  - Microbial EcologyMicrob Ecol
T1  - Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia
DO  - 10.1007/s00248-023-02242-6
ER  - 
@article{
author = "Malešević, Milka and Stanisavljević, Nemanja and Matijašević, Danka and Ćurčić, Jovana and Tasić, Vukašin and Tasić, Srđan and Kojić, Milan",
year = "2023",
abstract = "The hot spring Vranjska Banja is the hottest spring on the Balkan Peninsula with a water temperature of 63–95 °C and a pH value of 7.1, in situ. According to the physicochemical analysis, Vranjska Banja hot spring belongs to the bicarbonated and sulfated hyperthermal waters. The structures of microbial community of this geothermal spring are still largely unexplored. In order to determine and monitor the diversity of microbiota of the Vranjska Banja hot spring, a comprehensive culture-independent metagenomic analysis was conducted in parallel with a culture-dependent approach for the first time. Microbial profiling using amplicon sequencing analysis revealed the presence of phylogenetically novel taxa, ranging from species to phyla. Cultivation-based methods resulted in the isolation of 17 strains belonging to the genera Anoxybacillus, Bacillus, Geobacillus, and Hydrogenophillus. Whole-genome sequencing of five representative strains was then performed. The genomic characterization and OrthoANI analysis revealed that the Vranjska Banja hot spring harbors phylogenetically novel species of the genus Anoxybacillus, proving its uniqueness. Moreover, these isolates contain stress response genes that enable them to survive in the harsh conditions of the hot springs. The results of the in silico analysis show that most of the sequenced strains have the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase, chitinase, and glucanase) and various antimicrobial molecules that can be of great importance for industrial, agricultural, and biotechnological applications. Finally, this study provides a basis for further research and understanding of the metabolic potential of these microorganisms.",
journal = "Microbial Ecology, Microbial EcologyMicrob Ecol",
title = "Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia",
doi = "10.1007/s00248-023-02242-6"
}
Malešević, M., Stanisavljević, N., Matijašević, D., Ćurčić, J., Tasić, V., Tasić, S.,& Kojić, M.. (2023). Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia. in Microbial Ecology.
https://doi.org/10.1007/s00248-023-02242-6
Malešević M, Stanisavljević N, Matijašević D, Ćurčić J, Tasić V, Tasić S, Kojić M. Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia. in Microbial Ecology. 2023;.
doi:10.1007/s00248-023-02242-6 .
Malešević, Milka, Stanisavljević, Nemanja, Matijašević, Danka, Ćurčić, Jovana, Tasić, Vukašin, Tasić, Srđan, Kojić, Milan, "Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia" in Microbial Ecology (2023),
https://doi.org/10.1007/s00248-023-02242-6 . .
2
2
2

Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU

Gardijan, Lazar; Kojić, Milan; Jovanović, Goran; Malešević, Milka

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Gardijan, Lazar
AU  - Kojić, Milan
AU  - Jovanović, Goran
AU  - Malešević, Milka
PY  - 2023
UR  - http://intor.torlakinstitut.com/handle/123456789/804
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2125
AB  - Introduction: Lactolisterin BU (LBU) is a potent bacteriocin derived from Lactococcuslactis subsp. lactisbv. diacetylactis BGBU1-4. It exhibits antimicrobial properties against Gram-positive food spoilage andfoodborne pathogens. This research aimed to explore the impact of amino acid substitution in LBU onits antimicrobial activity by utilizing in silico prediction of LBU’ssecondary structure and amino acid substitutions.Methods: The secondary structure of LBU was predicted using Phyre2 software. Five variants of LBUwere selected and chemically synthesized, along with unaltered LBU and BHT-B,serving as controls. Peptides were twofold diluted in distilled water, resulting in final concentrations ranging from 1000 µg/mlto 0.5 µg/ml. An agarspot test, employing 5 µl of the dilution, was conducted on three indicatorstrains:Lactococcus lactis BGMN1-596, Listeria monocytogenes ATCC19111, and Staphylococcus aureusATCC25923. The presence of inhibition zones was analyzed after overnight incubation at 37°C (S. aureus)and 30°C (L. lactis and L. monocytogenes).Results: Phyre2 analysis unveiled the presence of two α-helices in LBU’s structure. The majority of LBUvariants displayed altered antimicrobial activity, with some changes being genusspecific, potentially attributable to variances in cell wall composition. Some variants completely lost their activity, underscoring the significance of native amino acids or their physicochemical properties in the correspondingpositions within LBU’s structure. Furthermore, it was confirmed that chemically synthesized LBU effectively retains its antimicrobial activity.Conclusion: Changesin amino acid composition give insight on structure-function relationship of LBU.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU
EP  - 123
SP  - 123
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2125
ER  - 
@conference{
author = "Gardijan, Lazar and Kojić, Milan and Jovanović, Goran and Malešević, Milka",
year = "2023",
abstract = "Introduction: Lactolisterin BU (LBU) is a potent bacteriocin derived from Lactococcuslactis subsp. lactisbv. diacetylactis BGBU1-4. It exhibits antimicrobial properties against Gram-positive food spoilage andfoodborne pathogens. This research aimed to explore the impact of amino acid substitution in LBU onits antimicrobial activity by utilizing in silico prediction of LBU’ssecondary structure and amino acid substitutions.Methods: The secondary structure of LBU was predicted using Phyre2 software. Five variants of LBUwere selected and chemically synthesized, along with unaltered LBU and BHT-B,serving as controls. Peptides were twofold diluted in distilled water, resulting in final concentrations ranging from 1000 µg/mlto 0.5 µg/ml. An agarspot test, employing 5 µl of the dilution, was conducted on three indicatorstrains:Lactococcus lactis BGMN1-596, Listeria monocytogenes ATCC19111, and Staphylococcus aureusATCC25923. The presence of inhibition zones was analyzed after overnight incubation at 37°C (S. aureus)and 30°C (L. lactis and L. monocytogenes).Results: Phyre2 analysis unveiled the presence of two α-helices in LBU’s structure. The majority of LBUvariants displayed altered antimicrobial activity, with some changes being genusspecific, potentially attributable to variances in cell wall composition. Some variants completely lost their activity, underscoring the significance of native amino acids or their physicochemical properties in the correspondingpositions within LBU’s structure. Furthermore, it was confirmed that chemically synthesized LBU effectively retains its antimicrobial activity.Conclusion: Changesin amino acid composition give insight on structure-function relationship of LBU.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU",
pages = "123-123",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2125"
}
Gardijan, L., Kojić, M., Jovanović, G.,& Malešević, M.. (2023). Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 123-123.
https://hdl.handle.net/21.15107/rcub_imagine_2125
Gardijan L, Kojić M, Jovanović G, Malešević M. Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:123-123.
https://hdl.handle.net/21.15107/rcub_imagine_2125 .
Gardijan, Lazar, Kojić, Milan, Jovanović, Goran, Malešević, Milka, "Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):123-123,
https://hdl.handle.net/21.15107/rcub_imagine_2125 .

Short-term effects of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome: a pilot study

Stanisavljević, Nemanja; Malešević, Milka; Rašić, Slađan; Vukotić, Goran; Gardijan, Lazar; Obradović, Mina; Kojić, Milan

(2023)

TY  - JOUR
AU  - Stanisavljević, Nemanja
AU  - Malešević, Milka
AU  - Rašić, Slađan
AU  - Vukotić, Goran
AU  - Gardijan, Lazar
AU  - Obradović, Mina
AU  - Kojić, Milan
PY  - 2023
UR  - https://doi.org/10.1080/00218839.2023.2244710
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2063
AB  - In the current study, honey bees’ diet was supplemented with spores of Brevibacillus laterosporus BGSP11 at concentration of 108 CFU/ml in sucrose solution and its short-term effects on their micro- and mycobiota have been analyzed using Illumina MiSeq sequencing. Obtained results indicate that this treatment does not lead to potentially harmful changes in the bacterial microbiome of worker bees, slightly affecting the composition of core microbiota. Moreover, several potentially beneficial changes have been observed. The treatment has led to a significant increase in the abundance of Snodgrassella alvi, and species from Lactobacillus and Bifidobacterium genera which play important roles in protection against several honey bee pathogens. Simultaneously, B. laterosporus enriched diet have led to almost complete eradication of Enterobacteriaceae family, the taxon that contains several putative pathogen species. On the other hand, the treatment affected mycobiota more profoundly, which was expected considering the greater instability compared to microbiota. Although the observed changes in honey bee mycobiome cannot be considered a priori beneficial or harmful, since the interaction between the bee and its mycobiome has not been sufficiently studied, certain beneficial consequences of the treatment have been observed. They are primarily reflected in the reduction of phytopathogenic fungi that can affect the organoleptic and techno-functional characteristics of honey. In addition, before introducing B. laterosporus in beekeeping practice as a biological agent for pathogen control it is necessary to perform more thorough studies of the impact on the honey bee microbiome, immune system, physiology and economic characteristics of honey bee colonies.
T2  - Journal of Apicultural Research
T1  - Short-term effects of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome: a pilot study
DO  - 10.1080/00218839.2023.2244710
ER  - 
@article{
author = "Stanisavljević, Nemanja and Malešević, Milka and Rašić, Slađan and Vukotić, Goran and Gardijan, Lazar and Obradović, Mina and Kojić, Milan",
year = "2023",
abstract = "In the current study, honey bees’ diet was supplemented with spores of Brevibacillus laterosporus BGSP11 at concentration of 108 CFU/ml in sucrose solution and its short-term effects on their micro- and mycobiota have been analyzed using Illumina MiSeq sequencing. Obtained results indicate that this treatment does not lead to potentially harmful changes in the bacterial microbiome of worker bees, slightly affecting the composition of core microbiota. Moreover, several potentially beneficial changes have been observed. The treatment has led to a significant increase in the abundance of Snodgrassella alvi, and species from Lactobacillus and Bifidobacterium genera which play important roles in protection against several honey bee pathogens. Simultaneously, B. laterosporus enriched diet have led to almost complete eradication of Enterobacteriaceae family, the taxon that contains several putative pathogen species. On the other hand, the treatment affected mycobiota more profoundly, which was expected considering the greater instability compared to microbiota. Although the observed changes in honey bee mycobiome cannot be considered a priori beneficial or harmful, since the interaction between the bee and its mycobiome has not been sufficiently studied, certain beneficial consequences of the treatment have been observed. They are primarily reflected in the reduction of phytopathogenic fungi that can affect the organoleptic and techno-functional characteristics of honey. In addition, before introducing B. laterosporus in beekeeping practice as a biological agent for pathogen control it is necessary to perform more thorough studies of the impact on the honey bee microbiome, immune system, physiology and economic characteristics of honey bee colonies.",
journal = "Journal of Apicultural Research",
title = "Short-term effects of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome: a pilot study",
doi = "10.1080/00218839.2023.2244710"
}
Stanisavljević, N., Malešević, M., Rašić, S., Vukotić, G., Gardijan, L., Obradović, M.,& Kojić, M.. (2023). Short-term effects of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome: a pilot study. in Journal of Apicultural Research.
https://doi.org/10.1080/00218839.2023.2244710
Stanisavljević N, Malešević M, Rašić S, Vukotić G, Gardijan L, Obradović M, Kojić M. Short-term effects of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome: a pilot study. in Journal of Apicultural Research. 2023;.
doi:10.1080/00218839.2023.2244710 .
Stanisavljević, Nemanja, Malešević, Milka, Rašić, Slađan, Vukotić, Goran, Gardijan, Lazar, Obradović, Mina, Kojić, Milan, "Short-term effects of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome: a pilot study" in Journal of Apicultural Research (2023),
https://doi.org/10.1080/00218839.2023.2244710 . .

RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum

Novović, Katarina; Malešević, Milka; Dinić, Miroslav; Gardijan, Lazar; Kojić, Milan; Jovčić, Branko

(MDPI, Basel, 2022)

TY  - JOUR
AU  - Novović, Katarina
AU  - Malešević, Milka
AU  - Dinić, Miroslav
AU  - Gardijan, Lazar
AU  - Kojić, Milan
AU  - Jovčić, Branko
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1525
AB  - Signal transduction systems are the key players of bacterial adaptation and survival. The orthodox two-component signal transduction systems perceive diverse environmental stimuli and their regulatory response leads to cellular changes. Although rarely described, the unorthodox three-component systems are also implemented in the regulation of major bacterial behavior such as the virulence of clinically relevant pathogen P. aeruginosa. Previously, we described a novel three-component system in P. capeferrum WCS358 (RclSAR) where the sensor kinase RclS stimulates the intI1 transcription in stationary growth phase. In this study, using rclS knock-out mutant, we identified RclSAR regulon in P. capeferrum WCS358. The RNA sequencing revealed that activity of RclSAR signal transduction system is growth phase dependent with more pronounced regulatory potential in early stages of growth. Transcriptional analysis emphasized the role of RclSAR in global regulation and indicated the involvement of this system in regulation of diverse cellular activities such as RNA binding and metabolic and biocontrol processes. Importantly, phenotypic comparison of WCS358 wild type and Delta rclS mutant showed that RclS sensor kinase contributes to modulation of antibiotic resistance, production of AHLs and siderophore as well as host cell adherence and cytotoxicity. Finally, we proposed the improved model of interplay between RclSAR, RpoS and LasIR regulatory systems in P. capeferrum WCS358.
PB  - MDPI, Basel
T2  - International Journal of Molecular Sciences
T1  - RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum
IS  - 15
VL  - 23
DO  - 10.3390/ijms23158232
ER  - 
@article{
author = "Novović, Katarina and Malešević, Milka and Dinić, Miroslav and Gardijan, Lazar and Kojić, Milan and Jovčić, Branko",
year = "2022",
abstract = "Signal transduction systems are the key players of bacterial adaptation and survival. The orthodox two-component signal transduction systems perceive diverse environmental stimuli and their regulatory response leads to cellular changes. Although rarely described, the unorthodox three-component systems are also implemented in the regulation of major bacterial behavior such as the virulence of clinically relevant pathogen P. aeruginosa. Previously, we described a novel three-component system in P. capeferrum WCS358 (RclSAR) where the sensor kinase RclS stimulates the intI1 transcription in stationary growth phase. In this study, using rclS knock-out mutant, we identified RclSAR regulon in P. capeferrum WCS358. The RNA sequencing revealed that activity of RclSAR signal transduction system is growth phase dependent with more pronounced regulatory potential in early stages of growth. Transcriptional analysis emphasized the role of RclSAR in global regulation and indicated the involvement of this system in regulation of diverse cellular activities such as RNA binding and metabolic and biocontrol processes. Importantly, phenotypic comparison of WCS358 wild type and Delta rclS mutant showed that RclS sensor kinase contributes to modulation of antibiotic resistance, production of AHLs and siderophore as well as host cell adherence and cytotoxicity. Finally, we proposed the improved model of interplay between RclSAR, RpoS and LasIR regulatory systems in P. capeferrum WCS358.",
publisher = "MDPI, Basel",
journal = "International Journal of Molecular Sciences",
title = "RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum",
number = "15",
volume = "23",
doi = "10.3390/ijms23158232"
}
Novović, K., Malešević, M., Dinić, M., Gardijan, L., Kojić, M.,& Jovčić, B.. (2022). RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum. in International Journal of Molecular Sciences
MDPI, Basel., 23(15).
https://doi.org/10.3390/ijms23158232
Novović K, Malešević M, Dinić M, Gardijan L, Kojić M, Jovčić B. RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum. in International Journal of Molecular Sciences. 2022;23(15).
doi:10.3390/ijms23158232 .
Novović, Katarina, Malešević, Milka, Dinić, Miroslav, Gardijan, Lazar, Kojić, Milan, Jovčić, Branko, "RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum" in International Journal of Molecular Sciences, 23, no. 15 (2022),
https://doi.org/10.3390/ijms23158232 . .
2
2
2

Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence

Ivanov, Marija; Novović, Katarina; Malešević, Milka; Dinić, Miroslav; Stojković, Dejan; Jovčić, Branko; Soković, Marina

(MDPI, Basel, 2022)

TY  - JOUR
AU  - Ivanov, Marija
AU  - Novović, Katarina
AU  - Malešević, Milka
AU  - Dinić, Miroslav
AU  - Stojković, Dejan
AU  - Jovčić, Branko
AU  - Soković, Marina
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1566
AB  - The rising incidence of antibiotic resistant microorganisms urges novel antimicrobials development with polyphenols as appealing potential therapeutics. We aimed to reveal the most promising polyphenols among hesperetin, hesperidin, naringenin, naringin, taxifolin, rutin, isoquercitrin, morin, chlorogenic acid, ferulic acid, p-coumaric acid, and gallic acid based on antimicrobial capacity, antibiofilm potential, and lack of cytotoxicity towards HaCaT, and to further test its antivirulence mechanisms. Although the majority of studied polyphenols were able to inhibit bacterial growth and biofilm formation, the most promising activities were observed for rutin. Further investigation proved rutin's ability to prevent/eradicate Pseudomonas aeruginosa and MRSA urinary catheter biofilms. Besides reduction of biofilm biomass, rutin antibiofilm mechanisms included reduction of cell viability, exopolysaccharide, and extracellular DNA levels. Moderate reduction of bacterial adhesion to human keratinocytes upon treatment was observed. Rutin antivirulence mechanisms included an impact on P. aeruginosa protease, pyocyanin, rhamnolipid, and elastase production and the downregulation of the lasI, lasR, rhlI, rhlR, pqsA and mvfR genes. Rutin also interfered with membrane permeability. Polyphenols could repress antibiotic resistant bacteria. Rutin has shown wide antimicrobial and antibiofilm capacity employing a range of mechanisms that might be used for the development of novel antimicrobials.
PB  - MDPI, Basel
T2  - Pharmaceuticals
T1  - Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence
IS  - 3
VL  - 15
DO  - 10.3390/ph15030385
ER  - 
@article{
author = "Ivanov, Marija and Novović, Katarina and Malešević, Milka and Dinić, Miroslav and Stojković, Dejan and Jovčić, Branko and Soković, Marina",
year = "2022",
abstract = "The rising incidence of antibiotic resistant microorganisms urges novel antimicrobials development with polyphenols as appealing potential therapeutics. We aimed to reveal the most promising polyphenols among hesperetin, hesperidin, naringenin, naringin, taxifolin, rutin, isoquercitrin, morin, chlorogenic acid, ferulic acid, p-coumaric acid, and gallic acid based on antimicrobial capacity, antibiofilm potential, and lack of cytotoxicity towards HaCaT, and to further test its antivirulence mechanisms. Although the majority of studied polyphenols were able to inhibit bacterial growth and biofilm formation, the most promising activities were observed for rutin. Further investigation proved rutin's ability to prevent/eradicate Pseudomonas aeruginosa and MRSA urinary catheter biofilms. Besides reduction of biofilm biomass, rutin antibiofilm mechanisms included reduction of cell viability, exopolysaccharide, and extracellular DNA levels. Moderate reduction of bacterial adhesion to human keratinocytes upon treatment was observed. Rutin antivirulence mechanisms included an impact on P. aeruginosa protease, pyocyanin, rhamnolipid, and elastase production and the downregulation of the lasI, lasR, rhlI, rhlR, pqsA and mvfR genes. Rutin also interfered with membrane permeability. Polyphenols could repress antibiotic resistant bacteria. Rutin has shown wide antimicrobial and antibiofilm capacity employing a range of mechanisms that might be used for the development of novel antimicrobials.",
publisher = "MDPI, Basel",
journal = "Pharmaceuticals",
title = "Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence",
number = "3",
volume = "15",
doi = "10.3390/ph15030385"
}
Ivanov, M., Novović, K., Malešević, M., Dinić, M., Stojković, D., Jovčić, B.,& Soković, M.. (2022). Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence. in Pharmaceuticals
MDPI, Basel., 15(3).
https://doi.org/10.3390/ph15030385
Ivanov M, Novović K, Malešević M, Dinić M, Stojković D, Jovčić B, Soković M. Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence. in Pharmaceuticals. 2022;15(3).
doi:10.3390/ph15030385 .
Ivanov, Marija, Novović, Katarina, Malešević, Milka, Dinić, Miroslav, Stojković, Dejan, Jovčić, Branko, Soković, Marina, "Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence" in Pharmaceuticals, 15, no. 3 (2022),
https://doi.org/10.3390/ph15030385 . .
2
30
23

Novel RclSAR three-component system regulates expression of the intI1 gene in the stationary growth phase

Novović, Katarina; Malešević, Milka; Gardijan, Lazar; Kojić, Milan; Jovčić, Branko

(Elsevier, Amsterdam, 2022)

TY  - JOUR
AU  - Novović, Katarina
AU  - Malešević, Milka
AU  - Gardijan, Lazar
AU  - Kojić, Milan
AU  - Jovčić, Branko
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1572
AB  - The rapid and appropriate response of Pseudomonas spp. to environmental fluctuations has been enabled by numerous signal transduction regulatory systems. Regulatory systems in Pseudomonas aeruginosa are organized in a complex network which provides quick and fine-tuned cellular response through regulation of virulence and antibiotic resistance determinants production. Mobile integrons represent genetic elements included in the rapid dissemination of multiple antibiotic resistance determinants. The key factor of integron dynamics is enzyme integrase. So far, global regulators LexA, RpoS and PsrA have been recognized as regulators of the intI1 transcription. In this study, we discovered novel activator of the intI1 transcription, sensor kinase RclS, in Pseudomonas putida WCS358. This regulation is limited to stationary growth phase and appears to be indirect, at least through regulation of the rpoS expression. Sensor kinase RclS is a part of novel three-component system Rcl (Roc-like) together with two response regulators, RclR and RclA. RclS acted as a negative regulator of the rclA transcription, while the role in the rclR transcription regulation could not be defined. The RclSAR regulatory system seems to be a part of complex intI1 regulatory network which includes major stress response (SOS and RpoS) regulons.
PB  - Elsevier, Amsterdam
T2  - Research in Microbiology
T1  - Novel RclSAR three-component system regulates expression of the intI1 gene in the stationary growth phase
IS  - 1-2
VL  - 173
DO  - 10.1016/j.resmic.2021.103885
ER  - 
@article{
author = "Novović, Katarina and Malešević, Milka and Gardijan, Lazar and Kojić, Milan and Jovčić, Branko",
year = "2022",
abstract = "The rapid and appropriate response of Pseudomonas spp. to environmental fluctuations has been enabled by numerous signal transduction regulatory systems. Regulatory systems in Pseudomonas aeruginosa are organized in a complex network which provides quick and fine-tuned cellular response through regulation of virulence and antibiotic resistance determinants production. Mobile integrons represent genetic elements included in the rapid dissemination of multiple antibiotic resistance determinants. The key factor of integron dynamics is enzyme integrase. So far, global regulators LexA, RpoS and PsrA have been recognized as regulators of the intI1 transcription. In this study, we discovered novel activator of the intI1 transcription, sensor kinase RclS, in Pseudomonas putida WCS358. This regulation is limited to stationary growth phase and appears to be indirect, at least through regulation of the rpoS expression. Sensor kinase RclS is a part of novel three-component system Rcl (Roc-like) together with two response regulators, RclR and RclA. RclS acted as a negative regulator of the rclA transcription, while the role in the rclR transcription regulation could not be defined. The RclSAR regulatory system seems to be a part of complex intI1 regulatory network which includes major stress response (SOS and RpoS) regulons.",
publisher = "Elsevier, Amsterdam",
journal = "Research in Microbiology",
title = "Novel RclSAR three-component system regulates expression of the intI1 gene in the stationary growth phase",
number = "1-2",
volume = "173",
doi = "10.1016/j.resmic.2021.103885"
}
Novović, K., Malešević, M., Gardijan, L., Kojić, M.,& Jovčić, B.. (2022). Novel RclSAR three-component system regulates expression of the intI1 gene in the stationary growth phase. in Research in Microbiology
Elsevier, Amsterdam., 173(1-2).
https://doi.org/10.1016/j.resmic.2021.103885
Novović K, Malešević M, Gardijan L, Kojić M, Jovčić B. Novel RclSAR three-component system regulates expression of the intI1 gene in the stationary growth phase. in Research in Microbiology. 2022;173(1-2).
doi:10.1016/j.resmic.2021.103885 .
Novović, Katarina, Malešević, Milka, Gardijan, Lazar, Kojić, Milan, Jovčić, Branko, "Novel RclSAR three-component system regulates expression of the intI1 gene in the stationary growth phase" in Research in Microbiology, 173, no. 1-2 (2022),
https://doi.org/10.1016/j.resmic.2021.103885 . .
2
1
1

Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene

Filipić, Brankica; Malešević, Milka; Vasiljević, Zorica; Novović, Katarina; Kojić, Milan; Jovčić, Branko

(Springer Science and Business Media B.V., 2022)

TY  - JOUR
AU  - Filipić, Brankica
AU  - Malešević, Milka
AU  - Vasiljević, Zorica
AU  - Novović, Katarina
AU  - Kojić, Milan
AU  - Jovčić, Branko
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1778
AB  - Trimethoprim-sulfamethoxazole (SXT) is the preferable treatment option of the infections caused by Achromobacter spp. Our study aimed to analyze the SXT resistance of 98 Achromobacter spp. isolates from pediatric patients, among which 33 isolates were SXT-resistant. The presence of intI1 was screened by PCR and genome sequence analyses. The intI1 gene was detected in 10 of SXT-resistant isolates that had shorter intI1 PCR fragments named intI1S. Structural changes in intI1S were confirmed by genome sequencing and analyses which revealed 86 amino acids deletion in IntI1S protein compared to canonical IntI1 protein. All IntI1S isolates were of non-CF origin. Pan-genome analysis of intI1S bearing A. xylosoxidans isolates comprised 9052 genes, with the core genome consisting of 5455 protein-coding genes. Results in this study indicate that IntI1S isolates were derived from clinical settings and that cystic fibrosis (CF) patients were potential reservoirs for healthcare-associated infections that occurred in non-CF patients.
PB  - Springer Science and Business Media B.V.
T2  - Folia Microbiologica
T1  - Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene
DO  - 10.1007/s12223-022-01026-8
ER  - 
@article{
author = "Filipić, Brankica and Malešević, Milka and Vasiljević, Zorica and Novović, Katarina and Kojić, Milan and Jovčić, Branko",
year = "2022",
abstract = "Trimethoprim-sulfamethoxazole (SXT) is the preferable treatment option of the infections caused by Achromobacter spp. Our study aimed to analyze the SXT resistance of 98 Achromobacter spp. isolates from pediatric patients, among which 33 isolates were SXT-resistant. The presence of intI1 was screened by PCR and genome sequence analyses. The intI1 gene was detected in 10 of SXT-resistant isolates that had shorter intI1 PCR fragments named intI1S. Structural changes in intI1S were confirmed by genome sequencing and analyses which revealed 86 amino acids deletion in IntI1S protein compared to canonical IntI1 protein. All IntI1S isolates were of non-CF origin. Pan-genome analysis of intI1S bearing A. xylosoxidans isolates comprised 9052 genes, with the core genome consisting of 5455 protein-coding genes. Results in this study indicate that IntI1S isolates were derived from clinical settings and that cystic fibrosis (CF) patients were potential reservoirs for healthcare-associated infections that occurred in non-CF patients.",
publisher = "Springer Science and Business Media B.V.",
journal = "Folia Microbiologica",
title = "Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene",
doi = "10.1007/s12223-022-01026-8"
}
Filipić, B., Malešević, M., Vasiljević, Z., Novović, K., Kojić, M.,& Jovčić, B.. (2022). Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene. in Folia Microbiologica
Springer Science and Business Media B.V...
https://doi.org/10.1007/s12223-022-01026-8
Filipić B, Malešević M, Vasiljević Z, Novović K, Kojić M, Jovčić B. Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene. in Folia Microbiologica. 2022;.
doi:10.1007/s12223-022-01026-8 .
Filipić, Brankica, Malešević, Milka, Vasiljević, Zorica, Novović, Katarina, Kojić, Milan, Jovčić, Branko, "Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene" in Folia Microbiologica (2022),
https://doi.org/10.1007/s12223-022-01026-8 . .
2
2
1

Genomic Analysis of Multidrug-Resistant Salmonella enterica Serovar Kentucky Isolates from Humans, Turkey, and Food in the Republic of Serbia

Jovčić, Branko; Malešević, Milka; Kojić, Milan; Galić, Nataša; Todorović, Dalibor; Vidanović, Dejan; Velhner, Maja

(Mary Ann Liebert, Inc, New Rochelle, 2022)

TY  - JOUR
AU  - Jovčić, Branko
AU  - Malešević, Milka
AU  - Kojić, Milan
AU  - Galić, Nataša
AU  - Todorović, Dalibor
AU  - Vidanović, Dejan
AU  - Velhner, Maja
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1578
AB  - Owing to the emerging resistance to antimicrobials in Salmonella Kentucky isolates around the globe, the genomic comparison of all the registered multidrug-resistant Salmonella Kentucky isolates in Serbia (five from humans, one from turkey flock, and one from meat) was done. Most of the isolates were isolated from patients returning from Egypt or Tunisia or originated from imported turkey flock and turkey meat. The comparative analysis of resistance and virulence genes was done. All isolates belonged to sequence type-ST198 and were resistant to ciprofloxacin (Cip). The resistance to Cip was mediated by target mutations of the gyrA and parC genes, which encode topoisomerase I and II, respectively. Multidrug-resistant phenotype to aminoglycosides, beta-lactam antibiotics, sulfonamides, and tetracyclines was detected in five isolates. However, none of the isolates was pan-resistant to antimicrobials. The number of single nucleotide polymorphisms between isolates varied from 8 to 43 and phylogenomics revealed the genetic proximity of the human isolate 10475/11 and the turkey meat isolate 5264/14, indicating a possible meat-to-human transfer. All isolates belonged to the main Salmonella Kentucky MDR lineage, carrying the Salmonella genomic island 1 (SGI1-K) subtype. The SGI1-K of Serbian isolates showed mosaicism attributed to rapid intraclonal evolution. Many virulence factors were detected in all the isolates, including SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-9, and C63PI. Although Salmonella Kentucky has rarely been isolated from humans, food, and animals in Serbia, further surveillance is needed to diminish the risk of the spreading of resistant clones and their meat-to-human transmission.
PB  - Mary Ann Liebert, Inc, New Rochelle
T2  - Foodborne Pathogens and Disease
T1  - Genomic Analysis of Multidrug-Resistant Salmonella enterica Serovar Kentucky Isolates from Humans, Turkey, and Food in the Republic of Serbia
EP  - 636
IS  - 9
SP  - 630
VL  - 19
DO  - 10.1089/fpd.2022.0029
ER  - 
@article{
author = "Jovčić, Branko and Malešević, Milka and Kojić, Milan and Galić, Nataša and Todorović, Dalibor and Vidanović, Dejan and Velhner, Maja",
year = "2022",
abstract = "Owing to the emerging resistance to antimicrobials in Salmonella Kentucky isolates around the globe, the genomic comparison of all the registered multidrug-resistant Salmonella Kentucky isolates in Serbia (five from humans, one from turkey flock, and one from meat) was done. Most of the isolates were isolated from patients returning from Egypt or Tunisia or originated from imported turkey flock and turkey meat. The comparative analysis of resistance and virulence genes was done. All isolates belonged to sequence type-ST198 and were resistant to ciprofloxacin (Cip). The resistance to Cip was mediated by target mutations of the gyrA and parC genes, which encode topoisomerase I and II, respectively. Multidrug-resistant phenotype to aminoglycosides, beta-lactam antibiotics, sulfonamides, and tetracyclines was detected in five isolates. However, none of the isolates was pan-resistant to antimicrobials. The number of single nucleotide polymorphisms between isolates varied from 8 to 43 and phylogenomics revealed the genetic proximity of the human isolate 10475/11 and the turkey meat isolate 5264/14, indicating a possible meat-to-human transfer. All isolates belonged to the main Salmonella Kentucky MDR lineage, carrying the Salmonella genomic island 1 (SGI1-K) subtype. The SGI1-K of Serbian isolates showed mosaicism attributed to rapid intraclonal evolution. Many virulence factors were detected in all the isolates, including SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-9, and C63PI. Although Salmonella Kentucky has rarely been isolated from humans, food, and animals in Serbia, further surveillance is needed to diminish the risk of the spreading of resistant clones and their meat-to-human transmission.",
publisher = "Mary Ann Liebert, Inc, New Rochelle",
journal = "Foodborne Pathogens and Disease",
title = "Genomic Analysis of Multidrug-Resistant Salmonella enterica Serovar Kentucky Isolates from Humans, Turkey, and Food in the Republic of Serbia",
pages = "636-630",
number = "9",
volume = "19",
doi = "10.1089/fpd.2022.0029"
}
Jovčić, B., Malešević, M., Kojić, M., Galić, N., Todorović, D., Vidanović, D.,& Velhner, M.. (2022). Genomic Analysis of Multidrug-Resistant Salmonella enterica Serovar Kentucky Isolates from Humans, Turkey, and Food in the Republic of Serbia. in Foodborne Pathogens and Disease
Mary Ann Liebert, Inc, New Rochelle., 19(9), 630-636.
https://doi.org/10.1089/fpd.2022.0029
Jovčić B, Malešević M, Kojić M, Galić N, Todorović D, Vidanović D, Velhner M. Genomic Analysis of Multidrug-Resistant Salmonella enterica Serovar Kentucky Isolates from Humans, Turkey, and Food in the Republic of Serbia. in Foodborne Pathogens and Disease. 2022;19(9):630-636.
doi:10.1089/fpd.2022.0029 .
Jovčić, Branko, Malešević, Milka, Kojić, Milan, Galić, Nataša, Todorović, Dalibor, Vidanović, Dejan, Velhner, Maja, "Genomic Analysis of Multidrug-Resistant Salmonella enterica Serovar Kentucky Isolates from Humans, Turkey, and Food in the Republic of Serbia" in Foodborne Pathogens and Disease, 19, no. 9 (2022):630-636,
https://doi.org/10.1089/fpd.2022.0029 . .

Brevibacillus laterosporus supplementation diet modulates honey bee microbiome

Malešević, Milka; Rašić, Slađan; Santra, Violeta; Kojić, Milan; Stanisavljević, Nemanja

(Novi Sad : Faculty of Sciences, Department of Biology and Ecology, 2021)

TY  - CONF
AU  - Malešević, Milka
AU  - Rašić, Slađan
AU  - Santra, Violeta
AU  - Kojić, Milan
AU  - Stanisavljević, Nemanja
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1871
AB  - Among them, bacterial and fungal pathogens Paenibacillus larvae, Melissococcus pluton, Ascosphera apis and
Nosema ceranae play a major impact on honey bees colonies. Thus, developing alternative prophylactic and
curative strategies are urgently needed. The use of probiotic bacteria in honey bee supplemental feeding is
therefore promising to treat or prevent diseases. Brevibacillus laterosporus, Gram-positive endospore forming
bacilli, is recognised as one of the promising antibacterial and antifungal agents producer.
The aim of this study was to examine the short-therm effects of B. laterosporus supplemented diet on worker
honey bee microbiome.
Dry spores of B. laterosporus strain BGSP11 have been administrated through a sugar syrup diet to ten
colonies and a representative specimen of worker honey bees was taken before the start of the treatment
and immediately after the syrup was consumed. The microbial diversity was assessed before and after the
treatment using Illumina MiSeq sequencing platforms (ID Genomics service, Seattle, WA, USA). 16s rRNA
sequencing for bacterial community profiling and fungal Internally Transcribes Spacer for mycological taxa
profiling were used. The next-generation microbiome bioinformatics platform QIIME2 v 2021.4 was used for
filtering and denoising obtained sequences, calculation of diversity metrics and taxonomy assignment. The
feature classifier was trained using the Greengenes v 13_8 for bacterial taxa and fungal UNITE database v 8.3.
The results obtained in this study indicated statisticaly significant alfa diversity between control and experimental
group honey bee microbiota composition. The diversity abundance was higher in control comparing
to the group treated with B. laterosporus strain BGSP11 spores. There was no significant diference in Bray-
Curtis distance among two groups of analysed samples. Regarding to mycological abundance, composition
was completely different between two groups; control group had Claviceps as predominant genus, while in
treated group of honey bee microbiome Metschnikowia genus was prevalent, indicating that the presence of
fungal pathogens in treated group is highly diminished.
PB  - Novi Sad : Faculty of Sciences, Department of Biology and Ecology
C3  - Biologia Serbica
T1  - Brevibacillus laterosporus supplementation diet modulates honey bee microbiome
IS  - 1 (Special Edition)
SP  - 113
VL  - 43
UR  - https://hdl.handle.net/21.15107/rcub_imagine_1871
ER  - 
@conference{
author = "Malešević, Milka and Rašić, Slađan and Santra, Violeta and Kojić, Milan and Stanisavljević, Nemanja",
year = "2021",
abstract = "Among them, bacterial and fungal pathogens Paenibacillus larvae, Melissococcus pluton, Ascosphera apis and
Nosema ceranae play a major impact on honey bees colonies. Thus, developing alternative prophylactic and
curative strategies are urgently needed. The use of probiotic bacteria in honey bee supplemental feeding is
therefore promising to treat or prevent diseases. Brevibacillus laterosporus, Gram-positive endospore forming
bacilli, is recognised as one of the promising antibacterial and antifungal agents producer.
The aim of this study was to examine the short-therm effects of B. laterosporus supplemented diet on worker
honey bee microbiome.
Dry spores of B. laterosporus strain BGSP11 have been administrated through a sugar syrup diet to ten
colonies and a representative specimen of worker honey bees was taken before the start of the treatment
and immediately after the syrup was consumed. The microbial diversity was assessed before and after the
treatment using Illumina MiSeq sequencing platforms (ID Genomics service, Seattle, WA, USA). 16s rRNA
sequencing for bacterial community profiling and fungal Internally Transcribes Spacer for mycological taxa
profiling were used. The next-generation microbiome bioinformatics platform QIIME2 v 2021.4 was used for
filtering and denoising obtained sequences, calculation of diversity metrics and taxonomy assignment. The
feature classifier was trained using the Greengenes v 13_8 for bacterial taxa and fungal UNITE database v 8.3.
The results obtained in this study indicated statisticaly significant alfa diversity between control and experimental
group honey bee microbiota composition. The diversity abundance was higher in control comparing
to the group treated with B. laterosporus strain BGSP11 spores. There was no significant diference in Bray-
Curtis distance among two groups of analysed samples. Regarding to mycological abundance, composition
was completely different between two groups; control group had Claviceps as predominant genus, while in
treated group of honey bee microbiome Metschnikowia genus was prevalent, indicating that the presence of
fungal pathogens in treated group is highly diminished.",
publisher = "Novi Sad : Faculty of Sciences, Department of Biology and Ecology",
journal = "Biologia Serbica",
title = "Brevibacillus laterosporus supplementation diet modulates honey bee microbiome",
number = "1 (Special Edition)",
pages = "113",
volume = "43",
url = "https://hdl.handle.net/21.15107/rcub_imagine_1871"
}
Malešević, M., Rašić, S., Santra, V., Kojić, M.,& Stanisavljević, N.. (2021). Brevibacillus laterosporus supplementation diet modulates honey bee microbiome. in Biologia Serbica
Novi Sad : Faculty of Sciences, Department of Biology and Ecology., 43(1 (Special Edition)), 113.
https://hdl.handle.net/21.15107/rcub_imagine_1871
Malešević M, Rašić S, Santra V, Kojić M, Stanisavljević N. Brevibacillus laterosporus supplementation diet modulates honey bee microbiome. in Biologia Serbica. 2021;43(1 (Special Edition)):113.
https://hdl.handle.net/21.15107/rcub_imagine_1871 .
Malešević, Milka, Rašić, Slađan, Santra, Violeta, Kojić, Milan, Stanisavljević, Nemanja, "Brevibacillus laterosporus supplementation diet modulates honey bee microbiome" in Biologia Serbica, 43, no. 1 (Special Edition) (2021):113,
https://hdl.handle.net/21.15107/rcub_imagine_1871 .

Bbiogeni utišavači virulencije vrste Pseudomonas aeruginosa

Malešević, Milka; Jovčić, Branko

(Beograd : Institut za molekularnu genetiku i genetičko inženjerstvo, 2021)

TY  - CHAP
AU  - Malešević, Milka
AU  - Jovčić, Branko
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1723
AB  - Pseudomonas aeruginosa jedan je od najznačajnijih uzročnika unutarbolničkih infekcija čiji je terapijski tretman
konvencionalnim antibioticima sve češće neefikasan usled rezistencije na antibiotike. Inovativni vidovi
kontrole infekcija, poput utišavanja međućelijske komunikacije bakterija, a time i onemogućavanja virulencije
i inhibicije patogenog fenotipa su stoga od izuzetnog značaja. U ovom radu biće predstavljena istraživanja
koja su bazirana na prirodnom svojstvu bakterija koje dele ekološke niše da sarađuju, ali i kompetiraju,
na osnovu čega su analizirane Delftia tsuruhatensis i Burkholderia cepacia koje tokom infekcija kolokalizuju
sa P. aeruginosa. Pokazano je da D. tsuruhatensis 11304 produkuje C18-HSL koji inhibira virulenciju P. aeruginosa
i rekonstituiše osetljivost na antibiotike, a takođe je po prvi put u literaturi opisano prisustvo dihidroksi-
C18-HSL u biološkim uzorcima. Opisane su i laktonaze vrste B. cepacia BCC4135 koje degraduju
autoinducere komunikacije P. aeruginosa i inhibiraju ekspresiju faktora virulencije. Utvrđena je njihova supstratna
specifičnost i ukazano na različitu biološku funkciju u zavisnosti od lokalizacije.
AB  - Pseudomonas aeruginosa is a leading cause of nosocomial infections, whose therapeutic treatment with
conventional antibiotics is increasingly ineffective due to antibiotic resistance. Inovative approaches of infection
control, such as silencing the bacterial quorum sensing system and thus virulence and pathogenic
phenotype inhibition are of great importance. In this study, there will be presented research based on natural
feature of bacteria that share the same ecological niche to coordinate, but also to compete, based on
which Delftia tsuruhatensis and Burkholderia cepacia that colocalize with P. aeruginosa during infections were
analysed. D. tsuruhatensis 11304 has been shown to produce C18-HSL which inhibits P. aeruginosa virulence
and reconstitutes antibiotic susceptibility, and the presence of dihydroxy-C18-HSL in biological samples has
also been described for the first time in the literature. B. cepacia BCC4135 lactonases that degrade autoinducers
of P. aeruginosa quorum sensing system and inhibit virulence factor expression have also been reported.
Their substrate specificity was determined and different biological function depending on their
localization was indicated.
PB  - Beograd : Institut za molekularnu genetiku i genetičko inženjerstvo
T2  - Trendovi u molekularnoj Biologiji
T1  - Bbiogeni utišavači virulencije vrste Pseudomonas aeruginosa
T1  - Biogenic silencers of Pseudomonas aeruginosa virulence
EP  - 178
IS  - 1
SP  - 166
UR  - https://hdl.handle.net/21.15107/rcub_imagine_1723
ER  - 
@inbook{
author = "Malešević, Milka and Jovčić, Branko",
year = "2021",
abstract = "Pseudomonas aeruginosa jedan je od najznačajnijih uzročnika unutarbolničkih infekcija čiji je terapijski tretman
konvencionalnim antibioticima sve češće neefikasan usled rezistencije na antibiotike. Inovativni vidovi
kontrole infekcija, poput utišavanja međućelijske komunikacije bakterija, a time i onemogućavanja virulencije
i inhibicije patogenog fenotipa su stoga od izuzetnog značaja. U ovom radu biće predstavljena istraživanja
koja su bazirana na prirodnom svojstvu bakterija koje dele ekološke niše da sarađuju, ali i kompetiraju,
na osnovu čega su analizirane Delftia tsuruhatensis i Burkholderia cepacia koje tokom infekcija kolokalizuju
sa P. aeruginosa. Pokazano je da D. tsuruhatensis 11304 produkuje C18-HSL koji inhibira virulenciju P. aeruginosa
i rekonstituiše osetljivost na antibiotike, a takođe je po prvi put u literaturi opisano prisustvo dihidroksi-
C18-HSL u biološkim uzorcima. Opisane su i laktonaze vrste B. cepacia BCC4135 koje degraduju
autoinducere komunikacije P. aeruginosa i inhibiraju ekspresiju faktora virulencije. Utvrđena je njihova supstratna
specifičnost i ukazano na različitu biološku funkciju u zavisnosti od lokalizacije., Pseudomonas aeruginosa is a leading cause of nosocomial infections, whose therapeutic treatment with
conventional antibiotics is increasingly ineffective due to antibiotic resistance. Inovative approaches of infection
control, such as silencing the bacterial quorum sensing system and thus virulence and pathogenic
phenotype inhibition are of great importance. In this study, there will be presented research based on natural
feature of bacteria that share the same ecological niche to coordinate, but also to compete, based on
which Delftia tsuruhatensis and Burkholderia cepacia that colocalize with P. aeruginosa during infections were
analysed. D. tsuruhatensis 11304 has been shown to produce C18-HSL which inhibits P. aeruginosa virulence
and reconstitutes antibiotic susceptibility, and the presence of dihydroxy-C18-HSL in biological samples has
also been described for the first time in the literature. B. cepacia BCC4135 lactonases that degrade autoinducers
of P. aeruginosa quorum sensing system and inhibit virulence factor expression have also been reported.
Their substrate specificity was determined and different biological function depending on their
localization was indicated.",
publisher = "Beograd : Institut za molekularnu genetiku i genetičko inženjerstvo",
journal = "Trendovi u molekularnoj Biologiji",
booktitle = "Bbiogeni utišavači virulencije vrste Pseudomonas aeruginosa, Biogenic silencers of Pseudomonas aeruginosa virulence",
pages = "178-166",
number = "1",
url = "https://hdl.handle.net/21.15107/rcub_imagine_1723"
}
Malešević, M.,& Jovčić, B.. (2021). Bbiogeni utišavači virulencije vrste Pseudomonas aeruginosa. in Trendovi u molekularnoj Biologiji
Beograd : Institut za molekularnu genetiku i genetičko inženjerstvo.(1), 166-178.
https://hdl.handle.net/21.15107/rcub_imagine_1723
Malešević M, Jovčić B. Bbiogeni utišavači virulencije vrste Pseudomonas aeruginosa. in Trendovi u molekularnoj Biologiji. 2021;(1):166-178.
https://hdl.handle.net/21.15107/rcub_imagine_1723 .
Malešević, Milka, Jovčić, Branko, "Bbiogeni utišavači virulencije vrste Pseudomonas aeruginosa" in Trendovi u molekularnoj Biologiji, no. 1 (2021):166-178,
https://hdl.handle.net/21.15107/rcub_imagine_1723 .

The large plasmidome of Lactococcus lactis subsp. lactis by. diacetylactis S50 confers its biotechnological properties

Malešević, Milka; Stanisavljević, Nemanja; Miljković, Marija; Jovčić, Branko; Filipić, Brankica; Studholme, David J.; Kojić, Milan

(Elsevier, Amsterdam, 2021)

TY  - JOUR
AU  - Malešević, Milka
AU  - Stanisavljević, Nemanja
AU  - Miljković, Marija
AU  - Jovčić, Branko
AU  - Filipić, Brankica
AU  - Studholme, David J.
AU  - Kojić, Milan
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1507
AB  - Plasmids are autonomous episomally replicating genetic elements, which carry backbone genes important for the replication and maintenance within their host, and accessory genes that might confer an advantage to their host under specific selective pressure in its ecological niche. The genome of dairy isolate L. lactis subsp. lactis by. diacetylactis S50 was sequenced using the PacBio SMRT Cell Seq-RSII platform and revealed to possess one of the largest plasmidomes among L. lactis strains studied so far, harboring six plasmids: pS6 (5553 bp), pS7a (7308 bp), pS7b (7266 bp), pS19 (19,027 bp), pS74 (74,256 bp) and pS127 (127,002 bp) in total representing 8.9% of genome size (240,412 bp). Based on predicted plasmid replication proteins and origins it appears that all six plasmids replicate via the theta-type mechanism. The two the largest plasmids (pS74 and pS127), carry a number of genes known to be important for growth and survival in the dairy environment. These genes encode technological functions such as bacteriocin production, protein degradation, magnesium and cobalt/nickel transporters, selenium binding, exopolysaccharides (EPS) production, bacteriophage and stress resistance. Beside genes for replication, the small plasmids (pS6, pS7a, pS7a, and pS19) also carry genes important for mobilization and host survival such as type I restriction-modification (R-M) system, metal transporters, enzymes and transcriptional regulators. All plasmids in S50 strain are mobilizable, containing an oriT sequences, while pS127 is self-conjugative and allows for mobilization of the other plasmids. Small plasmids are prone to structural and segregational instability, while pS127 appeared to be segregationally stable thanks to the possession of two partition systems. The main characteristic of plasmid p574 is EPS production, while plasmid p5127 is characterized by proteinase and multiple bacteriocins, tra locus, phage abortive systems and metal transporters. In addition to LcnA and LcnB, plasmid p5127 encodes several bacteriocin-pheromone molecules and a new bacteriocin named LcnS50, with narrow spectrum of action limited to lactococci, that has been successfully cloned and heterologously expressed.
PB  - Elsevier, Amsterdam
T2  - International Journal of Food Microbiology
T1  - The large plasmidome of Lactococcus lactis subsp. lactis by. diacetylactis S50 confers its biotechnological properties
VL  - 337
DO  - 10.1016/j.ijfoodmicro.2020.108935
ER  - 
@article{
author = "Malešević, Milka and Stanisavljević, Nemanja and Miljković, Marija and Jovčić, Branko and Filipić, Brankica and Studholme, David J. and Kojić, Milan",
year = "2021",
abstract = "Plasmids are autonomous episomally replicating genetic elements, which carry backbone genes important for the replication and maintenance within their host, and accessory genes that might confer an advantage to their host under specific selective pressure in its ecological niche. The genome of dairy isolate L. lactis subsp. lactis by. diacetylactis S50 was sequenced using the PacBio SMRT Cell Seq-RSII platform and revealed to possess one of the largest plasmidomes among L. lactis strains studied so far, harboring six plasmids: pS6 (5553 bp), pS7a (7308 bp), pS7b (7266 bp), pS19 (19,027 bp), pS74 (74,256 bp) and pS127 (127,002 bp) in total representing 8.9% of genome size (240,412 bp). Based on predicted plasmid replication proteins and origins it appears that all six plasmids replicate via the theta-type mechanism. The two the largest plasmids (pS74 and pS127), carry a number of genes known to be important for growth and survival in the dairy environment. These genes encode technological functions such as bacteriocin production, protein degradation, magnesium and cobalt/nickel transporters, selenium binding, exopolysaccharides (EPS) production, bacteriophage and stress resistance. Beside genes for replication, the small plasmids (pS6, pS7a, pS7a, and pS19) also carry genes important for mobilization and host survival such as type I restriction-modification (R-M) system, metal transporters, enzymes and transcriptional regulators. All plasmids in S50 strain are mobilizable, containing an oriT sequences, while pS127 is self-conjugative and allows for mobilization of the other plasmids. Small plasmids are prone to structural and segregational instability, while pS127 appeared to be segregationally stable thanks to the possession of two partition systems. The main characteristic of plasmid p574 is EPS production, while plasmid p5127 is characterized by proteinase and multiple bacteriocins, tra locus, phage abortive systems and metal transporters. In addition to LcnA and LcnB, plasmid p5127 encodes several bacteriocin-pheromone molecules and a new bacteriocin named LcnS50, with narrow spectrum of action limited to lactococci, that has been successfully cloned and heterologously expressed.",
publisher = "Elsevier, Amsterdam",
journal = "International Journal of Food Microbiology",
title = "The large plasmidome of Lactococcus lactis subsp. lactis by. diacetylactis S50 confers its biotechnological properties",
volume = "337",
doi = "10.1016/j.ijfoodmicro.2020.108935"
}
Malešević, M., Stanisavljević, N., Miljković, M., Jovčić, B., Filipić, B., Studholme, D. J.,& Kojić, M.. (2021). The large plasmidome of Lactococcus lactis subsp. lactis by. diacetylactis S50 confers its biotechnological properties. in International Journal of Food Microbiology
Elsevier, Amsterdam., 337.
https://doi.org/10.1016/j.ijfoodmicro.2020.108935
Malešević M, Stanisavljević N, Miljković M, Jovčić B, Filipić B, Studholme DJ, Kojić M. The large plasmidome of Lactococcus lactis subsp. lactis by. diacetylactis S50 confers its biotechnological properties. in International Journal of Food Microbiology. 2021;337.
doi:10.1016/j.ijfoodmicro.2020.108935 .
Malešević, Milka, Stanisavljević, Nemanja, Miljković, Marija, Jovčić, Branko, Filipić, Brankica, Studholme, David J., Kojić, Milan, "The large plasmidome of Lactococcus lactis subsp. lactis by. diacetylactis S50 confers its biotechnological properties" in International Journal of Food Microbiology, 337 (2021),
https://doi.org/10.1016/j.ijfoodmicro.2020.108935 . .
12
5
11

Identifikacija i karakterizacija biogenih utišivača međućelijske komunikacije vrste Pseudomonas aeruginosa

Malešević, Milka

(Univerzitet u Beogradu, Biološki fakultet, 2020)

TY  - THES
AU  - Malešević, Milka
PY  - 2020
UR  - http://eteze.bg.ac.rs/application/showtheses?thesesId=8012
UR  - https://fedorabg.bg.ac.rs/fedora/get/o:23411/bdef:Content/download
UR  - http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=28784393
UR  - https://nardus.mpn.gov.rs/handle/123456789/18170
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/62
AB  - Nemogućnost kontrole pojave i širenja rezistencije na antibiotike usmerila je istraživanja u poslednje dve dekade ka iznalaženju novih terapeutskih opcija, sa ciljem tretmana infekcija izazvanih patogenim bakterijama rezistentnim na veći broj kliniĉki znaĉajnih antibiotika. Uzevši u obzir ĉinjenicu da je antibiotska rezistencija kompleksan, multifaktorijalni fenomen, rešenje ovog problema ukljuĉuje niz pristupa usmerenih na kontrolu faktora koji olakšavaju nastanak i širenje rezistencije. Jedan od tih pristupa sastoji se u razvoju novih terapeutika koji bi delovali mehanizmima razliĉitim od trenutno dostupnih antibiotika. U tom pogledu, antivirulentna terapija zamišljena je kao obećavajuća alternativa sa ciljem kontrole virulencije specifiĉne za odreĊene patogene, bez vršenja snažnog selektivnog pritiska na bakterijske ćelije. Imajući u vidu da je Pseudomonas aeruginosa jedan od vodećih uzroĉnika unutarbolniĉkih infekcija širom sveta, leĉenje infekcija izazvanih ovim patogenom predstavlja veliki terapeutski izazov. P. aeruginosa svoj patogeni potencijal ostvaruje zahvaljujući mnogobrojnim uroĊenim, steĉenim i adaptivnim mehanizmima rezistencije. Pored toga, posedovanje sistema meĊućelijske komunikacije (eng. quorum sensing, QS) ovom patogenu omogućava fleksibilnost u regulaciji ekspresije gena ukljuĉenih u virulenciju, formiranje biofilma, produkciju sekundarnih metabolita i faktora koji imaju ulogu u zaštiti od imunskog sistema domaćina. Stoga bi primena antivirulentne terapije zasnovane na utišavanju meĊućelijske komunikacije bakterija mogla poslužiti kao obećavajuće oruĊe u kontroli infekcija izazvanih predstavnicima P. aeruginosa za koje ne postoji adekvatna terapija trenutno dostupnim antibioticima. U skladu sa time, predmet prouĉavanja ove teze bila je potraga za novim utišivaĉima meĊućelijske komunikacije bakterija (eng. quorum quenching, QQ) produkovanih od strane kliniĉkih izolata koji tokom infekcija dele istu ekološku nišu sa P. aeruginosa. Analizirana je kolekcija Gramnegativnih kliniĉkih izolata Laboratorije za molekularnu mikrobiologiju, Instituta za molekularnu genetiku i genetiĉko inženjerstvo, Univerziteta u Beogradu sa ciljem pronalaženja sojeva koji produkuju QQ molekule. Nakon odabira sojeva nosioca QQ fenotipa, usledila je njihova identifikacija kao i funkcionalna karakterizacija na model sistemu kliniĉkog izolata P. aeruginosa MMA83. Upotrebom Chromobacterium violaceum CV026 biosenzora, selektovano je 19 sojeva (od ukupno 633 analiziranih izolata) koji su ispoljavali QQ fenotip, od kojih su dva izolata Delftia sp. 11304 i Burkholderia sp. BCC4135, na osnovu najznaĉajnije QQ aktivnosti izdvojena za detaljniju karakterizaciju. UtvrĊeno je da Delftia sp. 11304 soj pripada Delftia tsuruhatensis vrsti, dok Burkholderia sp. BCC4135 pripada Burkholderia cepacia vrsti sa novim sekvencnim tipom ST1485. In silico analizom genomskih sekvenci ustanovljeno je da oba odabrana soja poseduju izuzetan potencijal virulencije i rezistencije na antimikrobna jedinjenja. Priroda QQ molekula koje produkuju ovi sojevi bila je razliĉita; konstatovano je da soj 11304 produkuje male molekule neproteinske prirode (QS inhibitore, QSI), dok BCC4135 produkuje QQ enzime. Pored toga, kod BCC4135 izolata utvrĊeno je prisustvo i QS fenomena. Ukupni etil-acetatni ekstrakt supernatanta soja D. tsuruhatensis 11304 (QSI ekstrakt) ostvario je znaĉajan antivirulentni potencijal na model sistemu kliniĉkog izolata P. aeruginosa MMA83...
AB  - finding novel therapeutic options to combat multidrug-resistant pathogenic bacteria during the last two decades. Given the fact that antimicrobial resistance is a complex, multifactorial phenomenon, the solution to this problem comprises a range of approaches focused on monitoring the factors that facilitate the emergence and spread of resistance. One of proposed strategies consists of developing novel therapeutics that operate under different principles to the currently available antibiotics. In this respect, antivirulence therapy has been conceived as a promising alternative to control virulence in a pathogen-specific manner, without exerting strong selective pressure on the bacterial cells. Having in mind that Pseudomonas aeruginosa has been considered as a leading cause of nosocomial infections worldwide, the treatment of infections caused by this pathogen represents a major therapeutic challenge. The pathogenic potential of P. aeruginosa has been accomplished due to a numerous innate, acquired, and adaptive resistance mechanisms. In addition, the presence of cell-to-cell communication system (quorum sensing, QS) allows this pathogen the flexibility in the regulation of virulence gene expression responsible for biofilm development, production of secondary metabolites, and immuneevasive factors. Therefore, the use of antivirulence therapy based on the silencing of bacterial communication could serve as a promising tool in the control of infections caused by P. aeruginosa for which there is no adequate therapy with currently available antibiotics. Accordingly, the subject of this thesis was discovery and characterization of novel quenchers of bacterial cell-to-cell communication produced by clinical isolates that share the same ecological niche with P. aeruginosa during infections. A collection of Gram-negative clinical isolates from the Laboratory for Molecular Microbiology Institute of Molecular Genetics and Genetic Engineering University of Belgrade was analyzed in order to select the strains that produce quorum quenching (QQ) molecules. After the selection of strains carrying QQ phenotype, the identification of QQ molecules as well as their functional characterization on the model system of P. aeruginosa MMA83 clinical isolate was performed. Using Chromobacterium violaceum CV026 biosensor, 19 strains (out of a total of 633 analyzed isolates) with QQ phenotype were discovered, among which two clinical isolates Delftia sp. 11304 and Burkholderia sp. BCC4135 have been selected as strongest producers of QQ molecules for detailed characterization. According to the genomic sequence analysis, Delftia sp. 11304 was identified as a Delftia tsuruhatensis species while Burkholderia sp. BCC4135 was unveiled as Burkholderia cepacia with novel sequence type ST1485. In silico analysis of genomic sequences indicated that both selected strains possess significant antimicrobial resistance and virulence potential. The nature of the QQ molecules produced by these strains was determined as different; strain 11304 was found to produce small molecules of non-proteinaceous nature (QS inhibitors, QSI), while BCC4135 produced QQ enzymes. Besides, the presence of the QS phenomenon was determined in BCC4135 isolate. The total ethyl acetate extract of the D. tsuruhatensis 11304 culture supernatant (QSI extract) showed significant antivirulence potential on the model system of clinical isolate P. aeruginosa MMA83...
PB  - Univerzitet u Beogradu, Biološki fakultet
T1  - Identifikacija i karakterizacija biogenih utišivača međućelijske komunikacije vrste Pseudomonas aeruginosa
T1  - Identification and characterization of biogenic silencers of Pseudomonas aeruginosa quorum sensing
UR  - https://hdl.handle.net/21.15107/rcub_nardus_18170
ER  - 
@phdthesis{
author = "Malešević, Milka",
year = "2020",
abstract = "Nemogućnost kontrole pojave i širenja rezistencije na antibiotike usmerila je istraživanja u poslednje dve dekade ka iznalaženju novih terapeutskih opcija, sa ciljem tretmana infekcija izazvanih patogenim bakterijama rezistentnim na veći broj kliniĉki znaĉajnih antibiotika. Uzevši u obzir ĉinjenicu da je antibiotska rezistencija kompleksan, multifaktorijalni fenomen, rešenje ovog problema ukljuĉuje niz pristupa usmerenih na kontrolu faktora koji olakšavaju nastanak i širenje rezistencije. Jedan od tih pristupa sastoji se u razvoju novih terapeutika koji bi delovali mehanizmima razliĉitim od trenutno dostupnih antibiotika. U tom pogledu, antivirulentna terapija zamišljena je kao obećavajuća alternativa sa ciljem kontrole virulencije specifiĉne za odreĊene patogene, bez vršenja snažnog selektivnog pritiska na bakterijske ćelije. Imajući u vidu da je Pseudomonas aeruginosa jedan od vodećih uzroĉnika unutarbolniĉkih infekcija širom sveta, leĉenje infekcija izazvanih ovim patogenom predstavlja veliki terapeutski izazov. P. aeruginosa svoj patogeni potencijal ostvaruje zahvaljujući mnogobrojnim uroĊenim, steĉenim i adaptivnim mehanizmima rezistencije. Pored toga, posedovanje sistema meĊućelijske komunikacije (eng. quorum sensing, QS) ovom patogenu omogućava fleksibilnost u regulaciji ekspresije gena ukljuĉenih u virulenciju, formiranje biofilma, produkciju sekundarnih metabolita i faktora koji imaju ulogu u zaštiti od imunskog sistema domaćina. Stoga bi primena antivirulentne terapije zasnovane na utišavanju meĊućelijske komunikacije bakterija mogla poslužiti kao obećavajuće oruĊe u kontroli infekcija izazvanih predstavnicima P. aeruginosa za koje ne postoji adekvatna terapija trenutno dostupnim antibioticima. U skladu sa time, predmet prouĉavanja ove teze bila je potraga za novim utišivaĉima meĊućelijske komunikacije bakterija (eng. quorum quenching, QQ) produkovanih od strane kliniĉkih izolata koji tokom infekcija dele istu ekološku nišu sa P. aeruginosa. Analizirana je kolekcija Gramnegativnih kliniĉkih izolata Laboratorije za molekularnu mikrobiologiju, Instituta za molekularnu genetiku i genetiĉko inženjerstvo, Univerziteta u Beogradu sa ciljem pronalaženja sojeva koji produkuju QQ molekule. Nakon odabira sojeva nosioca QQ fenotipa, usledila je njihova identifikacija kao i funkcionalna karakterizacija na model sistemu kliniĉkog izolata P. aeruginosa MMA83. Upotrebom Chromobacterium violaceum CV026 biosenzora, selektovano je 19 sojeva (od ukupno 633 analiziranih izolata) koji su ispoljavali QQ fenotip, od kojih su dva izolata Delftia sp. 11304 i Burkholderia sp. BCC4135, na osnovu najznaĉajnije QQ aktivnosti izdvojena za detaljniju karakterizaciju. UtvrĊeno je da Delftia sp. 11304 soj pripada Delftia tsuruhatensis vrsti, dok Burkholderia sp. BCC4135 pripada Burkholderia cepacia vrsti sa novim sekvencnim tipom ST1485. In silico analizom genomskih sekvenci ustanovljeno je da oba odabrana soja poseduju izuzetan potencijal virulencije i rezistencije na antimikrobna jedinjenja. Priroda QQ molekula koje produkuju ovi sojevi bila je razliĉita; konstatovano je da soj 11304 produkuje male molekule neproteinske prirode (QS inhibitore, QSI), dok BCC4135 produkuje QQ enzime. Pored toga, kod BCC4135 izolata utvrĊeno je prisustvo i QS fenomena. Ukupni etil-acetatni ekstrakt supernatanta soja D. tsuruhatensis 11304 (QSI ekstrakt) ostvario je znaĉajan antivirulentni potencijal na model sistemu kliniĉkog izolata P. aeruginosa MMA83..., finding novel therapeutic options to combat multidrug-resistant pathogenic bacteria during the last two decades. Given the fact that antimicrobial resistance is a complex, multifactorial phenomenon, the solution to this problem comprises a range of approaches focused on monitoring the factors that facilitate the emergence and spread of resistance. One of proposed strategies consists of developing novel therapeutics that operate under different principles to the currently available antibiotics. In this respect, antivirulence therapy has been conceived as a promising alternative to control virulence in a pathogen-specific manner, without exerting strong selective pressure on the bacterial cells. Having in mind that Pseudomonas aeruginosa has been considered as a leading cause of nosocomial infections worldwide, the treatment of infections caused by this pathogen represents a major therapeutic challenge. The pathogenic potential of P. aeruginosa has been accomplished due to a numerous innate, acquired, and adaptive resistance mechanisms. In addition, the presence of cell-to-cell communication system (quorum sensing, QS) allows this pathogen the flexibility in the regulation of virulence gene expression responsible for biofilm development, production of secondary metabolites, and immuneevasive factors. Therefore, the use of antivirulence therapy based on the silencing of bacterial communication could serve as a promising tool in the control of infections caused by P. aeruginosa for which there is no adequate therapy with currently available antibiotics. Accordingly, the subject of this thesis was discovery and characterization of novel quenchers of bacterial cell-to-cell communication produced by clinical isolates that share the same ecological niche with P. aeruginosa during infections. A collection of Gram-negative clinical isolates from the Laboratory for Molecular Microbiology Institute of Molecular Genetics and Genetic Engineering University of Belgrade was analyzed in order to select the strains that produce quorum quenching (QQ) molecules. After the selection of strains carrying QQ phenotype, the identification of QQ molecules as well as their functional characterization on the model system of P. aeruginosa MMA83 clinical isolate was performed. Using Chromobacterium violaceum CV026 biosensor, 19 strains (out of a total of 633 analyzed isolates) with QQ phenotype were discovered, among which two clinical isolates Delftia sp. 11304 and Burkholderia sp. BCC4135 have been selected as strongest producers of QQ molecules for detailed characterization. According to the genomic sequence analysis, Delftia sp. 11304 was identified as a Delftia tsuruhatensis species while Burkholderia sp. BCC4135 was unveiled as Burkholderia cepacia with novel sequence type ST1485. In silico analysis of genomic sequences indicated that both selected strains possess significant antimicrobial resistance and virulence potential. The nature of the QQ molecules produced by these strains was determined as different; strain 11304 was found to produce small molecules of non-proteinaceous nature (QS inhibitors, QSI), while BCC4135 produced QQ enzymes. Besides, the presence of the QS phenomenon was determined in BCC4135 isolate. The total ethyl acetate extract of the D. tsuruhatensis 11304 culture supernatant (QSI extract) showed significant antivirulence potential on the model system of clinical isolate P. aeruginosa MMA83...",
publisher = "Univerzitet u Beogradu, Biološki fakultet",
title = "Identifikacija i karakterizacija biogenih utišivača međućelijske komunikacije vrste Pseudomonas aeruginosa, Identification and characterization of biogenic silencers of Pseudomonas aeruginosa quorum sensing",
url = "https://hdl.handle.net/21.15107/rcub_nardus_18170"
}
Malešević, M.. (2020). Identifikacija i karakterizacija biogenih utišivača međućelijske komunikacije vrste Pseudomonas aeruginosa. 
Univerzitet u Beogradu, Biološki fakultet..
https://hdl.handle.net/21.15107/rcub_nardus_18170
Malešević M. Identifikacija i karakterizacija biogenih utišivača međućelijske komunikacije vrste Pseudomonas aeruginosa. 2020;.
https://hdl.handle.net/21.15107/rcub_nardus_18170 .
Malešević, Milka, "Identifikacija i karakterizacija biogenih utišivača međućelijske komunikacije vrste Pseudomonas aeruginosa" (2020),
https://hdl.handle.net/21.15107/rcub_nardus_18170 .