Mitrić, Miodrag

Link to this page

Authority KeyName Variants
e11f78f1-0323-428a-b615-c4d3d2c5df93
  • Mitrić, Miodrag (2)
Projects

Author's Bibliography

The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions

Marković, Darka; Vasiljević, Jelena; Asanin, Jelena; Ilić-Tomić, Tatjana; Tomsić, Brigita; Jokić, Bojan; Mitrić, Miodrag; Simoncić, Barbara; Mišić, Dušan; Radetić, Maja

(Wiley, Hoboken, 2020)

TY  - JOUR
AU  - Marković, Darka
AU  - Vasiljević, Jelena
AU  - Asanin, Jelena
AU  - Ilić-Tomić, Tatjana
AU  - Tomsić, Brigita
AU  - Jokić, Bojan
AU  - Mitrić, Miodrag
AU  - Simoncić, Barbara
AU  - Mišić, Dušan
AU  - Radetić, Maja
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1311
AB  - A novel impregnation process for the fabrication of cotton nanocomposite with strong antimicrobial activity against antibiotics-resistant bacteria and yeast was developed. The impregnation process includes the sol-gel treatment of fabric with (3-aminopropyl)triethoxysilane in the first step, and synthesis of the CuO/Cu2O nanoparticles (NPs) on the fabric surface in the second step. The in situ synthesis of the CuO/Cu2O NPs was based on the adsorption of Cu2+-ions by the introduced amino groups of the sol-gel coating. The adsorbed Cu2+-ions are subsequently reduced in the alkaline solution of NaBH4. X-ray diffraction measurements confirmed the formation of CuO/Cu2O NPs. Scanning electron microscopy and atomic absorption spectrometry analyses indicate that the particle size, agglomeration, and amounts of synthesized NPs were highly affected by the initial concentration of CuSO(4)solution. The toxicity of nanocomposites to human keratinocytes (HaCaT) and antimicrobial activity against Gram-negativeEscherichia coliATCC 25922,E. coliATCC BAA 2469, andKlebsiella pneumoniaeATCC BAA 2146, and Gram-positive bacteriaStaphylococcus aureusATCC 25923,S. aureusATCC 43300 and yeastCandida albicansATCC 24433 strongly depended on the copper content. In addition to excellent antimicrobial activity, controlled release of Cu2+-ions from the fabrics into physiological saline solution was obtained.
PB  - Wiley, Hoboken
T2  - Journal of Applied Polymer Science
T1  - The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions
IS  - 40
VL  - 137
DO  - 10.1002/app.49194
ER  - 
@article{
author = "Marković, Darka and Vasiljević, Jelena and Asanin, Jelena and Ilić-Tomić, Tatjana and Tomsić, Brigita and Jokić, Bojan and Mitrić, Miodrag and Simoncić, Barbara and Mišić, Dušan and Radetić, Maja",
year = "2020",
abstract = "A novel impregnation process for the fabrication of cotton nanocomposite with strong antimicrobial activity against antibiotics-resistant bacteria and yeast was developed. The impregnation process includes the sol-gel treatment of fabric with (3-aminopropyl)triethoxysilane in the first step, and synthesis of the CuO/Cu2O nanoparticles (NPs) on the fabric surface in the second step. The in situ synthesis of the CuO/Cu2O NPs was based on the adsorption of Cu2+-ions by the introduced amino groups of the sol-gel coating. The adsorbed Cu2+-ions are subsequently reduced in the alkaline solution of NaBH4. X-ray diffraction measurements confirmed the formation of CuO/Cu2O NPs. Scanning electron microscopy and atomic absorption spectrometry analyses indicate that the particle size, agglomeration, and amounts of synthesized NPs were highly affected by the initial concentration of CuSO(4)solution. The toxicity of nanocomposites to human keratinocytes (HaCaT) and antimicrobial activity against Gram-negativeEscherichia coliATCC 25922,E. coliATCC BAA 2469, andKlebsiella pneumoniaeATCC BAA 2146, and Gram-positive bacteriaStaphylococcus aureusATCC 25923,S. aureusATCC 43300 and yeastCandida albicansATCC 24433 strongly depended on the copper content. In addition to excellent antimicrobial activity, controlled release of Cu2+-ions from the fabrics into physiological saline solution was obtained.",
publisher = "Wiley, Hoboken",
journal = "Journal of Applied Polymer Science",
title = "The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions",
number = "40",
volume = "137",
doi = "10.1002/app.49194"
}
Marković, D., Vasiljević, J., Asanin, J., Ilić-Tomić, T., Tomsić, B., Jokić, B., Mitrić, M., Simoncić, B., Mišić, D.,& Radetić, M.. (2020). The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. in Journal of Applied Polymer Science
Wiley, Hoboken., 137(40).
https://doi.org/10.1002/app.49194
Marković D, Vasiljević J, Asanin J, Ilić-Tomić T, Tomsić B, Jokić B, Mitrić M, Simoncić B, Mišić D, Radetić M. The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. in Journal of Applied Polymer Science. 2020;137(40).
doi:10.1002/app.49194 .
Marković, Darka, Vasiljević, Jelena, Asanin, Jelena, Ilić-Tomić, Tatjana, Tomsić, Brigita, Jokić, Bojan, Mitrić, Miodrag, Simoncić, Barbara, Mišić, Dušan, Radetić, Maja, "The influence of coating with aminopropyl triethoxysilane and CuO/Cu2O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions" in Journal of Applied Polymer Science, 137, no. 40 (2020),
https://doi.org/10.1002/app.49194 . .
3
19
4
18

Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase

Radovanović, Neda; Malagurski, Ivana; Lević, Steva; Gordić, Milan; Petrović, Jelena; Pavlović, Vladimir; Mitrić, Miodrag; Nesić, Aleksandra; Dimitrijević-Branković, Suzana

(Pergamon-Elsevier Science Ltd, Oxford, 2019)

TY  - JOUR
AU  - Radovanović, Neda
AU  - Malagurski, Ivana
AU  - Lević, Steva
AU  - Gordić, Milan
AU  - Petrović, Jelena
AU  - Pavlović, Vladimir
AU  - Mitrić, Miodrag
AU  - Nesić, Aleksandra
AU  - Dimitrijević-Branković, Suzana
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1200
AB  - New agar-based composite films with increasing Cu-carbonate and Cu-phosphate mineral phase content were prepared by in situ mineralization and solvent casting method. SEM and optical analysis revealed that Cu-carbonate phase had better compatibility with agar matrix than Cu-phosphate phase. Incorporation of both mineral phases improved mechanical and water vapor barrier properties of the obtained mineralized films, in concentration dependent manner. When 5 mM of carbonate precursor was incorporated into agar matrix, mechanical resistance was enchanced for 44% and water vapor barrier property for 40%. The release of Cu (II) was higher in acidic conditions for both mineralized composites and remained in the range of specific release limits for this metal. In addition, both mineralized composite films exhibited distinctive antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Overall, the Cu-carbonate and Cu-phosphate mineralized agar films showed potential to be used for food packaging materials, agriculture or medical purposes.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - European Polymer Journal
T1  - Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase
EP  - 358
SP  - 352
VL  - 119
DO  - 10.1016/j.eurpolymj.2019.08.004
ER  - 
@article{
author = "Radovanović, Neda and Malagurski, Ivana and Lević, Steva and Gordić, Milan and Petrović, Jelena and Pavlović, Vladimir and Mitrić, Miodrag and Nesić, Aleksandra and Dimitrijević-Branković, Suzana",
year = "2019",
abstract = "New agar-based composite films with increasing Cu-carbonate and Cu-phosphate mineral phase content were prepared by in situ mineralization and solvent casting method. SEM and optical analysis revealed that Cu-carbonate phase had better compatibility with agar matrix than Cu-phosphate phase. Incorporation of both mineral phases improved mechanical and water vapor barrier properties of the obtained mineralized films, in concentration dependent manner. When 5 mM of carbonate precursor was incorporated into agar matrix, mechanical resistance was enchanced for 44% and water vapor barrier property for 40%. The release of Cu (II) was higher in acidic conditions for both mineralized composites and remained in the range of specific release limits for this metal. In addition, both mineralized composite films exhibited distinctive antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Overall, the Cu-carbonate and Cu-phosphate mineralized agar films showed potential to be used for food packaging materials, agriculture or medical purposes.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "European Polymer Journal",
title = "Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase",
pages = "358-352",
volume = "119",
doi = "10.1016/j.eurpolymj.2019.08.004"
}
Radovanović, N., Malagurski, I., Lević, S., Gordić, M., Petrović, J., Pavlović, V., Mitrić, M., Nesić, A.,& Dimitrijević-Branković, S.. (2019). Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. in European Polymer Journal
Pergamon-Elsevier Science Ltd, Oxford., 119, 352-358.
https://doi.org/10.1016/j.eurpolymj.2019.08.004
Radovanović N, Malagurski I, Lević S, Gordić M, Petrović J, Pavlović V, Mitrić M, Nesić A, Dimitrijević-Branković S. Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. in European Polymer Journal. 2019;119:352-358.
doi:10.1016/j.eurpolymj.2019.08.004 .
Radovanović, Neda, Malagurski, Ivana, Lević, Steva, Gordić, Milan, Petrović, Jelena, Pavlović, Vladimir, Mitrić, Miodrag, Nesić, Aleksandra, Dimitrijević-Branković, Suzana, "Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase" in European Polymer Journal, 119 (2019):352-358,
https://doi.org/10.1016/j.eurpolymj.2019.08.004 . .
3
8
5
8