Bavelloni, Alberto

Link to this page

Authority KeyName Variants
orcid::0000-0002-6467-1431
  • Bavelloni, Alberto (6)
Projects

Author's Bibliography

Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation

Milošević, Emilija; Novković, Mirjana; Cenni, Vittoria; Bavelloni, Alberto; Kojić, Snežana; Jasnić, Jovana

(Springer Nature, 2024)

TY  - JOUR
AU  - Milošević, Emilija
AU  - Novković, Mirjana
AU  - Cenni, Vittoria
AU  - Bavelloni, Alberto
AU  - Kojić, Snežana
AU  - Jasnić, Jovana
PY  - 2024
UR  - https://doi.org/10.1007/s00418-024-02272-2
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2325
AB  - Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.
PB  - Springer Nature
T2  - Histochemistry and Cell Biology
T2  - Histochemistry and Cell BiologyHistochem Cell Biol
T1  - Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation
DO  - 10.1007/s00418-024-02272-2
ER  - 
@article{
author = "Milošević, Emilija and Novković, Mirjana and Cenni, Vittoria and Bavelloni, Alberto and Kojić, Snežana and Jasnić, Jovana",
year = "2024",
abstract = "Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.",
publisher = "Springer Nature",
journal = "Histochemistry and Cell Biology, Histochemistry and Cell BiologyHistochem Cell Biol",
title = "Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation",
doi = "10.1007/s00418-024-02272-2"
}
Milošević, E., Novković, M., Cenni, V., Bavelloni, A., Kojić, S.,& Jasnić, J.. (2024). Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. in Histochemistry and Cell Biology
Springer Nature..
https://doi.org/10.1007/s00418-024-02272-2
Milošević E, Novković M, Cenni V, Bavelloni A, Kojić S, Jasnić J. Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. in Histochemistry and Cell Biology. 2024;.
doi:10.1007/s00418-024-02272-2 .
Milošević, Emilija, Novković, Mirjana, Cenni, Vittoria, Bavelloni, Alberto, Kojić, Snežana, Jasnić, Jovana, "Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation" in Histochemistry and Cell Biology (2024),
https://doi.org/10.1007/s00418-024-02272-2 . .

Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines

Milošević, Emilija; Stanisavljević, Nemanja; Bošković, Srđan; Stamenković, Nemanja; Novković, Mirjana; Bavelloni, Alberto; Cenni, Vittoria; Kojić, Snežana; Jasnić, Jovana

(Springer Nature, 2023)

TY  - JOUR
AU  - Milošević, Emilija
AU  - Stanisavljević, Nemanja
AU  - Bošković, Srđan
AU  - Stamenković, Nemanja
AU  - Novković, Mirjana
AU  - Bavelloni, Alberto
AU  - Cenni, Vittoria
AU  - Kojić, Snežana
AU  - Jasnić, Jovana
PY  - 2023
UR  - https://doi.org/10.1007/s00432-023-04930-9
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1928
AB  - Sarcomas are rare and heterogenic tumors with unclear etiology. They develop in bone and connective tissue, mainly in pediatric patients. To increase efficacy of current therapeutic options, natural products showing selective toxicity to tumor cells are extensively investigated. Here, we evaluated antitumor activity of bacterial pigment violacein in osteosarcoma (OS) and rhabdomyosarcoma (RMS) cell lines.
PB  - Springer Nature
T2  - Journal of Cancer Research and Clinical Oncology
T1  - Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines
DO  - 10.1007/s00432-023-04930-9
ER  - 
@article{
author = "Milošević, Emilija and Stanisavljević, Nemanja and Bošković, Srđan and Stamenković, Nemanja and Novković, Mirjana and Bavelloni, Alberto and Cenni, Vittoria and Kojić, Snežana and Jasnić, Jovana",
year = "2023",
abstract = "Sarcomas are rare and heterogenic tumors with unclear etiology. They develop in bone and connective tissue, mainly in pediatric patients. To increase efficacy of current therapeutic options, natural products showing selective toxicity to tumor cells are extensively investigated. Here, we evaluated antitumor activity of bacterial pigment violacein in osteosarcoma (OS) and rhabdomyosarcoma (RMS) cell lines.",
publisher = "Springer Nature",
journal = "Journal of Cancer Research and Clinical Oncology",
title = "Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines",
doi = "10.1007/s00432-023-04930-9"
}
Milošević, E., Stanisavljević, N., Bošković, S., Stamenković, N., Novković, M., Bavelloni, A., Cenni, V., Kojić, S.,& Jasnić, J.. (2023). Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology
Springer Nature..
https://doi.org/10.1007/s00432-023-04930-9
Milošević E, Stanisavljević N, Bošković S, Stamenković N, Novković M, Bavelloni A, Cenni V, Kojić S, Jasnić J. Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology. 2023;.
doi:10.1007/s00432-023-04930-9 .
Milošević, Emilija, Stanisavljević, Nemanja, Bošković, Srđan, Stamenković, Nemanja, Novković, Mirjana, Bavelloni, Alberto, Cenni, Vittoria, Kojić, Snežana, Jasnić, Jovana, "Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines" in Journal of Cancer Research and Clinical Oncology (2023),
https://doi.org/10.1007/s00432-023-04930-9 . .
2
1
1

Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines

Milošević, Emilija; Stanisavljević, Nemanja; Bošković, Srđan; Stamenković, Nemanja; Novković, Mirjana; Bavelloni, Alberto; Cenni, Vittoria; Kojić, Snežana; Jasnić, Jovana

(Springer Nature, 2023)

TY  - JOUR
AU  - Milošević, Emilija
AU  - Stanisavljević, Nemanja
AU  - Bošković, Srđan
AU  - Stamenković, Nemanja
AU  - Novković, Mirjana
AU  - Bavelloni, Alberto
AU  - Cenni, Vittoria
AU  - Kojić, Snežana
AU  - Jasnić, Jovana
PY  - 2023
UR  - https://doi.org/10.1007/s00432-023-04930-9
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1918
AB  - Sarcomas are rare and heterogenic tumors with unclear etiology. They develop in bone and connective tissue, mainly in pediatric patients. To increase efficacy of current therapeutic options, natural products showing selective toxicity to tumor cells are extensively investigated. Here, we evaluated antitumor activity of bacterial pigment violacein in osteosarcoma (OS) and rhabdomyosarcoma (RMS) cell lines.
PB  - Springer Nature
T2  - Journal of Cancer Research and Clinical Oncology
T1  - Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines
DO  - 10.1007/s00432-023-04930-9
ER  - 
@article{
author = "Milošević, Emilija and Stanisavljević, Nemanja and Bošković, Srđan and Stamenković, Nemanja and Novković, Mirjana and Bavelloni, Alberto and Cenni, Vittoria and Kojić, Snežana and Jasnić, Jovana",
year = "2023",
abstract = "Sarcomas are rare and heterogenic tumors with unclear etiology. They develop in bone and connective tissue, mainly in pediatric patients. To increase efficacy of current therapeutic options, natural products showing selective toxicity to tumor cells are extensively investigated. Here, we evaluated antitumor activity of bacterial pigment violacein in osteosarcoma (OS) and rhabdomyosarcoma (RMS) cell lines.",
publisher = "Springer Nature",
journal = "Journal of Cancer Research and Clinical Oncology",
title = "Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines",
doi = "10.1007/s00432-023-04930-9"
}
Milošević, E., Stanisavljević, N., Bošković, S., Stamenković, N., Novković, M., Bavelloni, A., Cenni, V., Kojić, S.,& Jasnić, J.. (2023). Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology
Springer Nature..
https://doi.org/10.1007/s00432-023-04930-9
Milošević E, Stanisavljević N, Bošković S, Stamenković N, Novković M, Bavelloni A, Cenni V, Kojić S, Jasnić J. Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology. 2023;.
doi:10.1007/s00432-023-04930-9 .
Milošević, Emilija, Stanisavljević, Nemanja, Bošković, Srđan, Stamenković, Nemanja, Novković, Mirjana, Bavelloni, Alberto, Cenni, Vittoria, Kojić, Snežana, Jasnić, Jovana, "Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines" in Journal of Cancer Research and Clinical Oncology (2023),
https://doi.org/10.1007/s00432-023-04930-9 . .
2
1
1

Supplementary data for the article: Milošević, E., Stanisavljević, N., Bošković, S., Stamenković, N., Novković, M., Bavelloni, A., Cenni, V., Kojić, S.,& Jasnić, J.. (2023). Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology. https://doi.org/10.1007/s00432-023-04930-9

Milošević, Emilija; Stanisavljević, Nemanja; Bošković, Srđan; Stamenković, Nemanja; Novković, Mirjana; Bavelloni, Alberto; Cenni, Vittoria; Kojić, Snežana; Jasnić, Jovana

(2023)

TY  - DATA
AU  - Milošević, Emilija
AU  - Stanisavljević, Nemanja
AU  - Bošković, Srđan
AU  - Stamenković, Nemanja
AU  - Novković, Mirjana
AU  - Bavelloni, Alberto
AU  - Cenni, Vittoria
AU  - Kojić, Snežana
AU  - Jasnić, Jovana
PY  - 2023
UR  - https://doi.org/10.1007/s00432-023-04930-9
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1929
T2  - Journal of Cancer Research and Clinical Oncology
T1  - Supplementary data for the article: Milošević, E., Stanisavljević, N., Bošković, S., Stamenković, N., Novković, M., Bavelloni, A., Cenni, V., Kojić, S.,& Jasnić, J.. (2023). Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology. https://doi.org/10.1007/s00432-023-04930-9
UR  - https://hdl.handle.net/21.15107/rcub_imagine_1929
ER  - 
@misc{
author = "Milošević, Emilija and Stanisavljević, Nemanja and Bošković, Srđan and Stamenković, Nemanja and Novković, Mirjana and Bavelloni, Alberto and Cenni, Vittoria and Kojić, Snežana and Jasnić, Jovana",
year = "2023",
journal = "Journal of Cancer Research and Clinical Oncology",
title = "Supplementary data for the article: Milošević, E., Stanisavljević, N., Bošković, S., Stamenković, N., Novković, M., Bavelloni, A., Cenni, V., Kojić, S.,& Jasnić, J.. (2023). Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology. https://doi.org/10.1007/s00432-023-04930-9",
url = "https://hdl.handle.net/21.15107/rcub_imagine_1929"
}
Milošević, E., Stanisavljević, N., Bošković, S., Stamenković, N., Novković, M., Bavelloni, A., Cenni, V., Kojić, S.,& Jasnić, J.. (2023). Supplementary data for the article: Milošević, E., Stanisavljević, N., Bošković, S., Stamenković, N., Novković, M., Bavelloni, A., Cenni, V., Kojić, S.,& Jasnić, J.. (2023). Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology. https://doi.org/10.1007/s00432-023-04930-9. in Journal of Cancer Research and Clinical Oncology.
https://hdl.handle.net/21.15107/rcub_imagine_1929
Milošević E, Stanisavljević N, Bošković S, Stamenković N, Novković M, Bavelloni A, Cenni V, Kojić S, Jasnić J. Supplementary data for the article: Milošević, E., Stanisavljević, N., Bošković, S., Stamenković, N., Novković, M., Bavelloni, A., Cenni, V., Kojić, S.,& Jasnić, J.. (2023). Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology. https://doi.org/10.1007/s00432-023-04930-9. in Journal of Cancer Research and Clinical Oncology. 2023;.
https://hdl.handle.net/21.15107/rcub_imagine_1929 .
Milošević, Emilija, Stanisavljević, Nemanja, Bošković, Srđan, Stamenković, Nemanja, Novković, Mirjana, Bavelloni, Alberto, Cenni, Vittoria, Kojić, Snežana, Jasnić, Jovana, "Supplementary data for the article: Milošević, E., Stanisavljević, N., Bošković, S., Stamenković, N., Novković, M., Bavelloni, A., Cenni, V., Kojić, S.,& Jasnić, J.. (2023). Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. in Journal of Cancer Research and Clinical Oncology. https://doi.org/10.1007/s00432-023-04930-9" in Journal of Cancer Research and Clinical Oncology (2023),
https://hdl.handle.net/21.15107/rcub_imagine_1929 .

Violacein enhances the cytotoxic effect of commonly used chemotherapeutics on rhabdomyosarcoma cells

Milošević, Emilija; Jasnić, Jovana; Stanisavljević, Nemanja; Cenni, Vittoria; Bavelloni, Alberto; Kojić, Snežana

(Belgrade : Serbian Association on for Cancer Research, 2023)

TY  - CONF
AU  - Milošević, Emilija
AU  - Jasnić, Jovana
AU  - Stanisavljević, Nemanja
AU  - Cenni, Vittoria
AU  - Bavelloni, Alberto
AU  - Kojić, Snežana
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2101
AB  - Investigati on of natural compounds showing specific toxicity to tumor cells aims to improve the efficacy
of available therapies. Our previous research demonstrated the cytotoxic acti vity of the bacterial pigment violacein
against rhabdomyosarcoma (RMS) cell lines. RMS is the most common soft tissue malignancy in children. In this
study, we evaluated the cytotoxicity of violacein on RMS cells in combinati on with conventi onal chemotherapeutics
doxorubicin, irinotecan, and vinflunine.
PB  - Belgrade :  Serbian Association on for Cancer Research
C3  - 6th Congress of the Serbian Association for Cancer Research (SDIR)
T1  - Violacein enhances the cytotoxic effect of commonly used chemotherapeutics on rhabdomyosarcoma cells
EP  - 94
IS  - 1
SP  - 94
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2101
ER  - 
@conference{
author = "Milošević, Emilija and Jasnić, Jovana and Stanisavljević, Nemanja and Cenni, Vittoria and Bavelloni, Alberto and Kojić, Snežana",
year = "2023",
abstract = "Investigati on of natural compounds showing specific toxicity to tumor cells aims to improve the efficacy
of available therapies. Our previous research demonstrated the cytotoxic acti vity of the bacterial pigment violacein
against rhabdomyosarcoma (RMS) cell lines. RMS is the most common soft tissue malignancy in children. In this
study, we evaluated the cytotoxicity of violacein on RMS cells in combinati on with conventi onal chemotherapeutics
doxorubicin, irinotecan, and vinflunine.",
publisher = "Belgrade :  Serbian Association on for Cancer Research",
journal = "6th Congress of the Serbian Association for Cancer Research (SDIR)",
title = "Violacein enhances the cytotoxic effect of commonly used chemotherapeutics on rhabdomyosarcoma cells",
pages = "94-94",
number = "1",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2101"
}
Milošević, E., Jasnić, J., Stanisavljević, N., Cenni, V., Bavelloni, A.,& Kojić, S.. (2023). Violacein enhances the cytotoxic effect of commonly used chemotherapeutics on rhabdomyosarcoma cells. in 6th Congress of the Serbian Association for Cancer Research (SDIR)
Belgrade :  Serbian Association on for Cancer Research.(1), 94-94.
https://hdl.handle.net/21.15107/rcub_imagine_2101
Milošević E, Jasnić J, Stanisavljević N, Cenni V, Bavelloni A, Kojić S. Violacein enhances the cytotoxic effect of commonly used chemotherapeutics on rhabdomyosarcoma cells. in 6th Congress of the Serbian Association for Cancer Research (SDIR). 2023;(1):94-94.
https://hdl.handle.net/21.15107/rcub_imagine_2101 .
Milošević, Emilija, Jasnić, Jovana, Stanisavljević, Nemanja, Cenni, Vittoria, Bavelloni, Alberto, Kojić, Snežana, "Violacein enhances the cytotoxic effect of commonly used chemotherapeutics on rhabdomyosarcoma cells" in 6th Congress of the Serbian Association for Cancer Research (SDIR), no. 1 (2023):94-94,
https://hdl.handle.net/21.15107/rcub_imagine_2101 .

Ectopic Expression of Ankrd2 Affects Proliferation, Motility and Clonogenic Potential of Human Osteosarcoma Cells

Piazzi, Manuela; Kojić, Snežana; Capanni, Cristina; Stamenković, Nemanja; Bavelloni, Alberto; Marin, Oriano; Lattanzi, Giovanna; Blalock, William; Cenni, Vittoria

(MDPI, Basel, 2021)

TY  - JOUR
AU  - Piazzi, Manuela
AU  - Kojić, Snežana
AU  - Capanni, Cristina
AU  - Stamenković, Nemanja
AU  - Bavelloni, Alberto
AU  - Marin, Oriano
AU  - Lattanzi, Giovanna
AU  - Blalock, William
AU  - Cenni, Vittoria
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1486
AB  - Simple Summary Osteosarcoma is a rare malignancy of bone, primarily affecting children and young adults. The main objective of this study was to identify novel therapeutic targets to fight the progression of this insidious disease. To this aim, the role of Ankrd2, a stress- and mechano- sensor protein known for being mostly expressed in muscle fibers, was analyzed in the modulation of osteosarcoma progression. By subjecting human osteosarcoma cell lines expressing or silencing Ankrd2 to several functional assays, our results demonstrated that Ankrd2 is involved in the pathogenesis of this cancer. Nonetheless, due to observations obtained by other studies in other model systems, our findings also suggest that Ankrd2 might behave as a "double-faced" cancer driver gene. Ankrd2 is a protein known for being mainly expressed in muscle fibers, where it participates in the mechanical stress response. Since both myocytes and osteoblasts are mesenchymal-derived cells, we were interested in examining the role of Ankrd2 in the progression of osteosarcoma which features a mechano-stress component. Although having been identified in many tumor-derived cell lines and -tissues, no study has yet described nor hypothesized any involvement for this protein in osteosarcoma tumorigenesis. In this paper, we report that Ankrd2 is expressed in cell lines obtained from human osteosarcoma and demonstrate a contribution by this protein in the pathogenesis of this insidious disease. Ankrd2 involvement in osteosarcoma development was evaluated in clones of Saos2, U2OS, HOS and MG63 cells stably expressing Ankrd2, through the investigation of hallmark processes of cancer cells. Interestingly, we found that exogenous expression of Ankrd2 influenced cellular growth, migration and clonogenicity in a cell line-dependent manner, whereas it was able to improve the formation of 3D spheroids in three out of four cellular models and enhanced matrix metalloproteinase (MMP) activity in all tested cell lines. Conversely, downregulation of Ankrd2 expression remarkably reduced proliferation and clonogenic potential of parental cells. As a whole, our data present Ankrd2 as a novel player in osteosarcoma development, opening up new therapeutic perspectives.
PB  - MDPI, Basel
T2  - Cancers
T1  - Ectopic Expression of Ankrd2 Affects Proliferation, Motility and Clonogenic Potential of Human Osteosarcoma Cells
IS  - 2
VL  - 13
DO  - 10.3390/cancers13020174
ER  - 
@article{
author = "Piazzi, Manuela and Kojić, Snežana and Capanni, Cristina and Stamenković, Nemanja and Bavelloni, Alberto and Marin, Oriano and Lattanzi, Giovanna and Blalock, William and Cenni, Vittoria",
year = "2021",
abstract = "Simple Summary Osteosarcoma is a rare malignancy of bone, primarily affecting children and young adults. The main objective of this study was to identify novel therapeutic targets to fight the progression of this insidious disease. To this aim, the role of Ankrd2, a stress- and mechano- sensor protein known for being mostly expressed in muscle fibers, was analyzed in the modulation of osteosarcoma progression. By subjecting human osteosarcoma cell lines expressing or silencing Ankrd2 to several functional assays, our results demonstrated that Ankrd2 is involved in the pathogenesis of this cancer. Nonetheless, due to observations obtained by other studies in other model systems, our findings also suggest that Ankrd2 might behave as a "double-faced" cancer driver gene. Ankrd2 is a protein known for being mainly expressed in muscle fibers, where it participates in the mechanical stress response. Since both myocytes and osteoblasts are mesenchymal-derived cells, we were interested in examining the role of Ankrd2 in the progression of osteosarcoma which features a mechano-stress component. Although having been identified in many tumor-derived cell lines and -tissues, no study has yet described nor hypothesized any involvement for this protein in osteosarcoma tumorigenesis. In this paper, we report that Ankrd2 is expressed in cell lines obtained from human osteosarcoma and demonstrate a contribution by this protein in the pathogenesis of this insidious disease. Ankrd2 involvement in osteosarcoma development was evaluated in clones of Saos2, U2OS, HOS and MG63 cells stably expressing Ankrd2, through the investigation of hallmark processes of cancer cells. Interestingly, we found that exogenous expression of Ankrd2 influenced cellular growth, migration and clonogenicity in a cell line-dependent manner, whereas it was able to improve the formation of 3D spheroids in three out of four cellular models and enhanced matrix metalloproteinase (MMP) activity in all tested cell lines. Conversely, downregulation of Ankrd2 expression remarkably reduced proliferation and clonogenic potential of parental cells. As a whole, our data present Ankrd2 as a novel player in osteosarcoma development, opening up new therapeutic perspectives.",
publisher = "MDPI, Basel",
journal = "Cancers",
title = "Ectopic Expression of Ankrd2 Affects Proliferation, Motility and Clonogenic Potential of Human Osteosarcoma Cells",
number = "2",
volume = "13",
doi = "10.3390/cancers13020174"
}
Piazzi, M., Kojić, S., Capanni, C., Stamenković, N., Bavelloni, A., Marin, O., Lattanzi, G., Blalock, W.,& Cenni, V.. (2021). Ectopic Expression of Ankrd2 Affects Proliferation, Motility and Clonogenic Potential of Human Osteosarcoma Cells. in Cancers
MDPI, Basel., 13(2).
https://doi.org/10.3390/cancers13020174
Piazzi M, Kojić S, Capanni C, Stamenković N, Bavelloni A, Marin O, Lattanzi G, Blalock W, Cenni V. Ectopic Expression of Ankrd2 Affects Proliferation, Motility and Clonogenic Potential of Human Osteosarcoma Cells. in Cancers. 2021;13(2).
doi:10.3390/cancers13020174 .
Piazzi, Manuela, Kojić, Snežana, Capanni, Cristina, Stamenković, Nemanja, Bavelloni, Alberto, Marin, Oriano, Lattanzi, Giovanna, Blalock, William, Cenni, Vittoria, "Ectopic Expression of Ankrd2 Affects Proliferation, Motility and Clonogenic Potential of Human Osteosarcoma Cells" in Cancers, 13, no. 2 (2021),
https://doi.org/10.3390/cancers13020174 . .
3
6
6