Nastasijević, Branislav

Link to this page

Authority KeyName Variants
45859cd2-6e67-4c17-91ae-077128fc2679
  • Nastasijević, Branislav (1)
Projects

Author's Bibliography

THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS

Golić, Nataša; Terzić Vidojević, Amarela; Tolinački, Maja; Dinić, Miroslav; Đokić, Jelena; Todorović Vukotić, Nevena; Lukić, Jovanka; Živković, Milica; Nastasijević, Branislav; Soković, Svetlana; Brdarić, Emilija; Radojević, Dušan

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Golić, Nataša
AU  - Terzić Vidojević, Amarela
AU  - Tolinački, Maja
AU  - Dinić, Miroslav
AU  - Đokić, Jelena
AU  - Todorović Vukotić, Nevena
AU  - Lukić, Jovanka
AU  - Živković, Milica
AU  - Nastasijević, Branislav
AU  - Soković, Svetlana
AU  - Brdarić, Emilija
AU  - Radojević, Dušan
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2372
AB  - There has been an epidemic of various non-communicable
degenerative and autoimmune diseases,
strongly associated with the modern
lifestyle. Among them, neurodegenerative and
psychiatric disorders represent a huge burden on
society. Recently, all these diseases have been associated
with the gut microbiota dysbiosis. Gut
microbiota-host interaction research has been
greatly improved due to development of molecular
high-throughput techniques based on
various ‘omics’ techniques coupled with bioinformatics
and data science developments. However,
the mechanisms of the host–microbiota crosstalk
are still poorly understood. The NextGenBiotics
project proposes an innovative integrative
multi-omics research strategy for deciphering
the mechanism behind the cross-talk among
microbiota and gut-brain-axis. The 118 novel
NGPs candidates belonging to Dorea sp., Blautia
sp., Bacteroides sp., Roseburia sp., Sellimonas
sp., Faecalicatena sp., Phascolarctobacterium faecium,
and Faecalimonas sp. were cultivated. The
25 NGPs with confirmed safe status and potential
probiotic potential were screened in C. elegans
model for their effects on behavioural and neuronal
activity. The most prominent candidates
with ability to upregulate expression of genes
involved in neurotransmiting are further tested
in EAE (an animal model for MS) and CUMS depression
model. The specific microbiota-derived
metabolites have been identified as potential
neuro- and psycho-biotics. The NextGenBiotics is
highly ambitious project, dedicated to pioneering
work in the field of multi-omics studies related
to the cultivation of novel anaerobic NGPs
and the studying of their effect on MGBA. This
concept enabled studying bidirectional communication
between gut microbiota and brain
on the functional level that will significantly
contribute to the growing body data related to
MGBA. The results obtained during NextGenBiotics
determined the genes/metabolites and the
associated mechanisms involved in health-promoting
effects of NGPs in MGBA beyond stateof-
the-art, broadening the scientific knowledge
and opening up the possible novel therapeutic
approaches in prevention and therapy of neurodegenerative
and psychiatric diseases.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS
EP  - 106
SP  - 106
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2372
ER  - 
@conference{
author = "Golić, Nataša and Terzić Vidojević, Amarela and Tolinački, Maja and Dinić, Miroslav and Đokić, Jelena and Todorović Vukotić, Nevena and Lukić, Jovanka and Živković, Milica and Nastasijević, Branislav and Soković, Svetlana and Brdarić, Emilija and Radojević, Dušan",
year = "2024",
abstract = "There has been an epidemic of various non-communicable
degenerative and autoimmune diseases,
strongly associated with the modern
lifestyle. Among them, neurodegenerative and
psychiatric disorders represent a huge burden on
society. Recently, all these diseases have been associated
with the gut microbiota dysbiosis. Gut
microbiota-host interaction research has been
greatly improved due to development of molecular
high-throughput techniques based on
various ‘omics’ techniques coupled with bioinformatics
and data science developments. However,
the mechanisms of the host–microbiota crosstalk
are still poorly understood. The NextGenBiotics
project proposes an innovative integrative
multi-omics research strategy for deciphering
the mechanism behind the cross-talk among
microbiota and gut-brain-axis. The 118 novel
NGPs candidates belonging to Dorea sp., Blautia
sp., Bacteroides sp., Roseburia sp., Sellimonas
sp., Faecalicatena sp., Phascolarctobacterium faecium,
and Faecalimonas sp. were cultivated. The
25 NGPs with confirmed safe status and potential
probiotic potential were screened in C. elegans
model for their effects on behavioural and neuronal
activity. The most prominent candidates
with ability to upregulate expression of genes
involved in neurotransmiting are further tested
in EAE (an animal model for MS) and CUMS depression
model. The specific microbiota-derived
metabolites have been identified as potential
neuro- and psycho-biotics. The NextGenBiotics is
highly ambitious project, dedicated to pioneering
work in the field of multi-omics studies related
to the cultivation of novel anaerobic NGPs
and the studying of their effect on MGBA. This
concept enabled studying bidirectional communication
between gut microbiota and brain
on the functional level that will significantly
contribute to the growing body data related to
MGBA. The results obtained during NextGenBiotics
determined the genes/metabolites and the
associated mechanisms involved in health-promoting
effects of NGPs in MGBA beyond stateof-
the-art, broadening the scientific knowledge
and opening up the possible novel therapeutic
approaches in prevention and therapy of neurodegenerative
and psychiatric diseases.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS",
pages = "106-106",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2372"
}
Golić, N., Terzić Vidojević, A., Tolinački, M., Dinić, M., Đokić, J., Todorović Vukotić, N., Lukić, J., Živković, M., Nastasijević, B., Soković, S., Brdarić, E.,& Radojević, D.. (2024). THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 106-106.
https://hdl.handle.net/21.15107/rcub_imagine_2372
Golić N, Terzić Vidojević A, Tolinački M, Dinić M, Đokić J, Todorović Vukotić N, Lukić J, Živković M, Nastasijević B, Soković S, Brdarić E, Radojević D. THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:106-106.
https://hdl.handle.net/21.15107/rcub_imagine_2372 .
Golić, Nataša, Terzić Vidojević, Amarela, Tolinački, Maja, Dinić, Miroslav, Đokić, Jelena, Todorović Vukotić, Nevena, Lukić, Jovanka, Živković, Milica, Nastasijević, Branislav, Soković, Svetlana, Brdarić, Emilija, Radojević, Dušan, "THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):106-106,
https://hdl.handle.net/21.15107/rcub_imagine_2372 .