Banićević, Ivana

Link to this page

Authority KeyName Variants
302d14e5-f9c6-410f-a846-906999b454cd
  • Banićević, Ivana (2)
Projects

Author's Bibliography

Adaptable alginate-based microfibers for 3D in vitro cultures of cancer cells: an anticancer drug testing model

Petrović, Jelena; Pańczyszyn, Elżbieta; Corazzari, Marco; Banićević, Ivana; Milivojević, Milena; Bojić, Luka; Stevanović, Milena; Dragoj, Miodrag; Pešić, Milica; Janković, Radmila; Obradović, Bojana; Stojkovska, Jasmina

(2024)

TY  - CONF
AU  - Petrović, Jelena
AU  - Pańczyszyn, Elżbieta
AU  - Corazzari, Marco
AU  - Banićević, Ivana
AU  - Milivojević, Milena
AU  - Bojić, Luka
AU  - Stevanović, Milena
AU  - Dragoj, Miodrag
AU  - Pešić, Milica
AU  - Janković, Radmila
AU  - Obradović, Bojana
AU  - Stojkovska, Jasmina
PY  - 2024
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/1264
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2364
AB  - The slow advance in anticancer drug development can be attributed to the limitations of conventional models, predominantly monolayer cell (2D) cultures and animal models, which inadequately recapitulate the complex nature of human malignant tumors. Three-dimensional (3D) in vitro models are invaluable tools in drug screening; however, creating a universal model for all cancer types poses challenges due to the diverse nature of cancers. The aim of this work was to develop a single, versatile model using alginate microfibers to accommodate cultivation of various cancer cells.
C3  - Hemijska industrija (Chemical Industry)
T1  - Adaptable alginate-based microfibers for 3D in vitro cultures of cancer cells: an anticancer drug testing model
EP  - 21
IS  - 1S
SP  - 21
VL  - 78
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2364
ER  - 
@conference{
author = "Petrović, Jelena and Pańczyszyn, Elżbieta and Corazzari, Marco and Banićević, Ivana and Milivojević, Milena and Bojić, Luka and Stevanović, Milena and Dragoj, Miodrag and Pešić, Milica and Janković, Radmila and Obradović, Bojana and Stojkovska, Jasmina",
year = "2024",
abstract = "The slow advance in anticancer drug development can be attributed to the limitations of conventional models, predominantly monolayer cell (2D) cultures and animal models, which inadequately recapitulate the complex nature of human malignant tumors. Three-dimensional (3D) in vitro models are invaluable tools in drug screening; however, creating a universal model for all cancer types poses challenges due to the diverse nature of cancers. The aim of this work was to develop a single, versatile model using alginate microfibers to accommodate cultivation of various cancer cells.",
journal = "Hemijska industrija (Chemical Industry)",
title = "Adaptable alginate-based microfibers for 3D in vitro cultures of cancer cells: an anticancer drug testing model",
pages = "21-21",
number = "1S",
volume = "78",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2364"
}
Petrović, J., Pańczyszyn, E., Corazzari, M., Banićević, I., Milivojević, M., Bojić, L., Stevanović, M., Dragoj, M., Pešić, M., Janković, R., Obradović, B.,& Stojkovska, J.. (2024). Adaptable alginate-based microfibers for 3D in vitro cultures of cancer cells: an anticancer drug testing model. in Hemijska industrija (Chemical Industry), 78(1S), 21-21.
https://hdl.handle.net/21.15107/rcub_imagine_2364
Petrović J, Pańczyszyn E, Corazzari M, Banićević I, Milivojević M, Bojić L, Stevanović M, Dragoj M, Pešić M, Janković R, Obradović B, Stojkovska J. Adaptable alginate-based microfibers for 3D in vitro cultures of cancer cells: an anticancer drug testing model. in Hemijska industrija (Chemical Industry). 2024;78(1S):21-21.
https://hdl.handle.net/21.15107/rcub_imagine_2364 .
Petrović, Jelena, Pańczyszyn, Elżbieta, Corazzari, Marco, Banićević, Ivana, Milivojević, Milena, Bojić, Luka, Stevanović, Milena, Dragoj, Miodrag, Pešić, Milica, Janković, Radmila, Obradović, Bojana, Stojkovska, Jasmina, "Adaptable alginate-based microfibers for 3D in vitro cultures of cancer cells: an anticancer drug testing model" in Hemijska industrija (Chemical Industry), 78, no. 1S (2024):21-21,
https://hdl.handle.net/21.15107/rcub_imagine_2364 .

A 3D in vitro cell culture model based on perfused bone-like scaffolds for healthy and pathological bone research

Banićević, Ivana; Milošević, Mia; Petrović, Jelena; Menshikh, Ksenia; Milivojević, Milena; Stevanović, Milena; Janković, Radmila; Cochis, Andrea; Bella, Elena Della; Stoddart, Martin; Rimondini, Lia; Stojkovska, Jasmina; Obradović, Bojana

(2024)

TY  - CONF
AU  - Banićević, Ivana
AU  - Milošević, Mia
AU  - Petrović, Jelena
AU  - Menshikh, Ksenia
AU  - Milivojević, Milena
AU  - Stevanović, Milena
AU  - Janković, Radmila
AU  - Cochis, Andrea
AU  - Bella, Elena Della
AU  - Stoddart, Martin
AU  - Rimondini, Lia
AU  - Stojkovska, Jasmina
AU  - Obradović, Bojana
PY  - 2024
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/1261
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2363
AB  - Comprehensive research, particularly in evaluating drug efficacy, still heavily relies on the results obtained by the utilization of cell monolayers and animals. However, the inherent limitations of these models such as their physiological disparities from humans pose significant obstacles to acquiring reliable results thus impeding further scientific progression. To address this challenge, 3D in vitro cell culture models emerged as physiologically relevant models having the potential to enhance research and drug discovery. Our study aimed to develop a 3D in vitro cell culture model based on bone-like scaffolds in conjunction with a perfusion bioreactor (“3D Perfuse”, Innovation Center FTM, Belgrade, Serbia) for studying both physiological and pathological (i.e. tumors) bone conditions.
C3  - Hemijska industrija (Chemical Industry)
T1  - A 3D in vitro cell culture model based on perfused bone-like scaffolds for healthy and pathological bone research
EP  - 19
IS  - 1S
SP  - 19
VL  - 78
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2363
ER  - 
@conference{
author = "Banićević, Ivana and Milošević, Mia and Petrović, Jelena and Menshikh, Ksenia and Milivojević, Milena and Stevanović, Milena and Janković, Radmila and Cochis, Andrea and Bella, Elena Della and Stoddart, Martin and Rimondini, Lia and Stojkovska, Jasmina and Obradović, Bojana",
year = "2024",
abstract = "Comprehensive research, particularly in evaluating drug efficacy, still heavily relies on the results obtained by the utilization of cell monolayers and animals. However, the inherent limitations of these models such as their physiological disparities from humans pose significant obstacles to acquiring reliable results thus impeding further scientific progression. To address this challenge, 3D in vitro cell culture models emerged as physiologically relevant models having the potential to enhance research and drug discovery. Our study aimed to develop a 3D in vitro cell culture model based on bone-like scaffolds in conjunction with a perfusion bioreactor (“3D Perfuse”, Innovation Center FTM, Belgrade, Serbia) for studying both physiological and pathological (i.e. tumors) bone conditions.",
journal = "Hemijska industrija (Chemical Industry)",
title = "A 3D in vitro cell culture model based on perfused bone-like scaffolds for healthy and pathological bone research",
pages = "19-19",
number = "1S",
volume = "78",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2363"
}
Banićević, I., Milošević, M., Petrović, J., Menshikh, K., Milivojević, M., Stevanović, M., Janković, R., Cochis, A., Bella, E. D., Stoddart, M., Rimondini, L., Stojkovska, J.,& Obradović, B.. (2024). A 3D in vitro cell culture model based on perfused bone-like scaffolds for healthy and pathological bone research. in Hemijska industrija (Chemical Industry), 78(1S), 19-19.
https://hdl.handle.net/21.15107/rcub_imagine_2363
Banićević I, Milošević M, Petrović J, Menshikh K, Milivojević M, Stevanović M, Janković R, Cochis A, Bella ED, Stoddart M, Rimondini L, Stojkovska J, Obradović B. A 3D in vitro cell culture model based on perfused bone-like scaffolds for healthy and pathological bone research. in Hemijska industrija (Chemical Industry). 2024;78(1S):19-19.
https://hdl.handle.net/21.15107/rcub_imagine_2363 .
Banićević, Ivana, Milošević, Mia, Petrović, Jelena, Menshikh, Ksenia, Milivojević, Milena, Stevanović, Milena, Janković, Radmila, Cochis, Andrea, Bella, Elena Della, Stoddart, Martin, Rimondini, Lia, Stojkovska, Jasmina, Obradović, Bojana, "A 3D in vitro cell culture model based on perfused bone-like scaffolds for healthy and pathological bone research" in Hemijska industrija (Chemical Industry), 78, no. 1S (2024):19-19,
https://hdl.handle.net/21.15107/rcub_imagine_2363 .