Linden, David

Link to this page

Authority KeyName Variants
32349a38-198c-4247-8a78-1a6ab952c919
  • Linden, David (2)
Projects

Author's Bibliography

STREAMLINE HUB: a high capacity hub for research of neurodevelopmental disorders in the Western Balkan region

Drakulić, Danijela; Petrakis, Spyros; Harwood, Adrian J.; Linden, David; Lazić, Andrijana; Kovačević-Grujičić, Nataša; Stevanović, Milena

(2024)

TY  - CONF
AU  - Drakulić, Danijela
AU  - Petrakis, Spyros
AU  - Harwood, Adrian J.
AU  - Linden, David
AU  - Lazić, Andrijana
AU  - Kovačević-Grujičić, Nataša
AU  - Stevanović, Milena
PY  - 2024
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/1325
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2361
AB  - Neurodevelopmental disorders (NDDs) are caused by alterations in early brain development. They are a group of geographically dispersed, complex and heterogeneous disorders that give rise to the psychiatric conditions such as autism spectrum disorders, intellectual disability, schizophrenia and bipolar disorder. In order to build global research activity for study of NDDs, the main goals of the Twinning project STREAMLINE are to enhanced strategic networking and reinforce research and innovation potential of the Institute of Molecular Genetics and Genetic Engineering, University of Belgrade (IMGGE) in order to develop IMGGE as a high capacity hub for research of NDDs in the Western Balkans. This will be achieved by twinning IMGGE with three top-class research institutions in Europe (Cardiff University, University of Maastricht and Centre for Research and Technology Hellas) with an exceptional expertise in the stem cells based research of NDDs, -OMICS technologies, bioinformatics data analysis and drug testing and through staff exchanges, training, and organization of summer schools, Industry Open Days, symposia and workshops.
C3  - Hemijska industrija (Chemical Industry)
T1  - STREAMLINE HUB: a high capacity hub for research of neurodevelopmental disorders in the Western Balkan region
EP  - 78
IS  - 1S
SP  - 78
VL  - 78
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2361
ER  - 
@conference{
author = "Drakulić, Danijela and Petrakis, Spyros and Harwood, Adrian J. and Linden, David and Lazić, Andrijana and Kovačević-Grujičić, Nataša and Stevanović, Milena",
year = "2024",
abstract = "Neurodevelopmental disorders (NDDs) are caused by alterations in early brain development. They are a group of geographically dispersed, complex and heterogeneous disorders that give rise to the psychiatric conditions such as autism spectrum disorders, intellectual disability, schizophrenia and bipolar disorder. In order to build global research activity for study of NDDs, the main goals of the Twinning project STREAMLINE are to enhanced strategic networking and reinforce research and innovation potential of the Institute of Molecular Genetics and Genetic Engineering, University of Belgrade (IMGGE) in order to develop IMGGE as a high capacity hub for research of NDDs in the Western Balkans. This will be achieved by twinning IMGGE with three top-class research institutions in Europe (Cardiff University, University of Maastricht and Centre for Research and Technology Hellas) with an exceptional expertise in the stem cells based research of NDDs, -OMICS technologies, bioinformatics data analysis and drug testing and through staff exchanges, training, and organization of summer schools, Industry Open Days, symposia and workshops.",
journal = "Hemijska industrija (Chemical Industry)",
title = "STREAMLINE HUB: a high capacity hub for research of neurodevelopmental disorders in the Western Balkan region",
pages = "78-78",
number = "1S",
volume = "78",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2361"
}
Drakulić, D., Petrakis, S., Harwood, A. J., Linden, D., Lazić, A., Kovačević-Grujičić, N.,& Stevanović, M.. (2024). STREAMLINE HUB: a high capacity hub for research of neurodevelopmental disorders in the Western Balkan region. in Hemijska industrija (Chemical Industry), 78(1S), 78-78.
https://hdl.handle.net/21.15107/rcub_imagine_2361
Drakulić D, Petrakis S, Harwood AJ, Linden D, Lazić A, Kovačević-Grujičić N, Stevanović M. STREAMLINE HUB: a high capacity hub for research of neurodevelopmental disorders in the Western Balkan region. in Hemijska industrija (Chemical Industry). 2024;78(1S):78-78.
https://hdl.handle.net/21.15107/rcub_imagine_2361 .
Drakulić, Danijela, Petrakis, Spyros, Harwood, Adrian J., Linden, David, Lazić, Andrijana, Kovačević-Grujičić, Nataša, Stevanović, Milena, "STREAMLINE HUB: a high capacity hub for research of neurodevelopmental disorders in the Western Balkan region" in Hemijska industrija (Chemical Industry), 78, no. 1S (2024):78-78,
https://hdl.handle.net/21.15107/rcub_imagine_2361 .

22q11.2 Deletion syndrome as a tool for modelling and research of neurodevelopmental disorders

Lazić, Adrijana; Drakulić, Danijela; Kovačević-Grujičić, Nataša; Perić, Mina; Petrakis, Spyros; Linden, David; Harwood, Adrian; Stevanović, Milena

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Lazić, Adrijana
AU  - Drakulić, Danijela
AU  - Kovačević-Grujičić, Nataša
AU  - Perić, Mina
AU  - Petrakis, Spyros
AU  - Linden, David
AU  - Harwood, Adrian
AU  - Stevanović, Milena
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2110
AB  - Introduction: Neurodevelopmental disorders (NDDs) are a group of complex and heterogeneous disorders that include autism spectrum disorders, intellectual disability, schizophrenia and bipolar disorder. However, underlying pathophysiological mechanisms are mostly unknown. In order to get better understanding of the underlying mechanisms and to discover potential therapeutics we have focused our research on 22q11.2 Deletion Syndrome (22q11.2DS), caused by microdeletion of the region q11.2 of chromosome 22 and associated with a high risk for NDDs. Methods: To study molecular mechanisms underlying intrafamilial phenotypic variability, we have identified families with the inherited form of 22q11.2DS with the aim of conducting the following analyses: whole genome sequencing in order to detect additional genetic variation(s) present in the affected child; generation of induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells; analysis of the effects of 22q11.2 microdeletion on neural differentiation including organoids as 3D model system; transcriptome analysis of iPSC-derived neurons and astrocytesto determine differentially expressed gene sets and dysregulated pathways; and testing the metabolic changes and drug responsiveness of neurons and astrocytes by high-throughput cell-based assays. Results: Peripheral blood mononuclear cells of the families with inherited form of 22q11.2DS were reprogrammed and established iPSCs were characterized. Generated iPSCs will be subjected to the further analyses. Conclusion: Currently, most of the treatments of NDDs are symptom-based due to limited understanding of underlying pathophysiological mechanisms. It is expected that patient-derived iPSCs will enable a deeper understanding of unique disease mechanisms and may also provide a significant contribution in preclinical drug development.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - 22q11.2 Deletion syndrome as a tool for modelling and research of neurodevelopmental disorders
EP  - 31
SP  - 31
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2110
ER  - 
@conference{
author = "Lazić, Adrijana and Drakulić, Danijela and Kovačević-Grujičić, Nataša and Perić, Mina and Petrakis, Spyros and Linden, David and Harwood, Adrian and Stevanović, Milena",
year = "2023",
abstract = "Introduction: Neurodevelopmental disorders (NDDs) are a group of complex and heterogeneous disorders that include autism spectrum disorders, intellectual disability, schizophrenia and bipolar disorder. However, underlying pathophysiological mechanisms are mostly unknown. In order to get better understanding of the underlying mechanisms and to discover potential therapeutics we have focused our research on 22q11.2 Deletion Syndrome (22q11.2DS), caused by microdeletion of the region q11.2 of chromosome 22 and associated with a high risk for NDDs. Methods: To study molecular mechanisms underlying intrafamilial phenotypic variability, we have identified families with the inherited form of 22q11.2DS with the aim of conducting the following analyses: whole genome sequencing in order to detect additional genetic variation(s) present in the affected child; generation of induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells; analysis of the effects of 22q11.2 microdeletion on neural differentiation including organoids as 3D model system; transcriptome analysis of iPSC-derived neurons and astrocytesto determine differentially expressed gene sets and dysregulated pathways; and testing the metabolic changes and drug responsiveness of neurons and astrocytes by high-throughput cell-based assays. Results: Peripheral blood mononuclear cells of the families with inherited form of 22q11.2DS were reprogrammed and established iPSCs were characterized. Generated iPSCs will be subjected to the further analyses. Conclusion: Currently, most of the treatments of NDDs are symptom-based due to limited understanding of underlying pathophysiological mechanisms. It is expected that patient-derived iPSCs will enable a deeper understanding of unique disease mechanisms and may also provide a significant contribution in preclinical drug development.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "22q11.2 Deletion syndrome as a tool for modelling and research of neurodevelopmental disorders",
pages = "31-31",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2110"
}
Lazić, A., Drakulić, D., Kovačević-Grujičić, N., Perić, M., Petrakis, S., Linden, D., Harwood, A.,& Stevanović, M.. (2023). 22q11.2 Deletion syndrome as a tool for modelling and research of neurodevelopmental disorders. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 31-31.
https://hdl.handle.net/21.15107/rcub_imagine_2110
Lazić A, Drakulić D, Kovačević-Grujičić N, Perić M, Petrakis S, Linden D, Harwood A, Stevanović M. 22q11.2 Deletion syndrome as a tool for modelling and research of neurodevelopmental disorders. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:31-31.
https://hdl.handle.net/21.15107/rcub_imagine_2110 .
Lazić, Adrijana, Drakulić, Danijela, Kovačević-Grujičić, Nataša, Perić, Mina, Petrakis, Spyros, Linden, David, Harwood, Adrian, Stevanović, Milena, "22q11.2 Deletion syndrome as a tool for modelling and research of neurodevelopmental disorders" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):31-31,
https://hdl.handle.net/21.15107/rcub_imagine_2110 .