Marković, Zoran

Link to this page

Authority KeyName Variants
7734f42e-3392-4ee0-b143-6c076f676411
  • Marković, Zoran (6)
Projects

Author's Bibliography

Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria

Marković, Zoran; Mišović, Aleksandra; Zmejkoski, Danica; Zdravković, Nemanja; Kovač, Janez; Bajuk-Bogdanović, Danica; Milivojević, Dušan; Mojsin, Marija; Stevanović, Milena; Pavlović, Vladimir; Todorović Marković, Biljana

(2023)

TY  - JOUR
AU  - Marković, Zoran
AU  - Mišović, Aleksandra
AU  - Zmejkoski, Danica
AU  - Zdravković, Nemanja
AU  - Kovač, Janez
AU  - Bajuk-Bogdanović, Danica
AU  - Milivojević, Dušan
AU  - Mojsin, Marija
AU  - Stevanović, Milena
AU  - Pavlović, Vladimir
AU  - Todorović Marković, Biljana
PY  - 2023
UR  - https://www.mdpi.com/2079-6382/12/5/919
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1892
AB  - Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.
T2  - Antibiotics
T1  - Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria
IS  - 5
SP  - 919
VL  - 12
DO  - 10.3390/antibiotics12050919
ER  - 
@article{
author = "Marković, Zoran and Mišović, Aleksandra and Zmejkoski, Danica and Zdravković, Nemanja and Kovač, Janez and Bajuk-Bogdanović, Danica and Milivojević, Dušan and Mojsin, Marija and Stevanović, Milena and Pavlović, Vladimir and Todorović Marković, Biljana",
year = "2023",
abstract = "Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.",
journal = "Antibiotics",
title = "Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria",
number = "5",
pages = "919",
volume = "12",
doi = "10.3390/antibiotics12050919"
}
Marković, Z., Mišović, A., Zmejkoski, D., Zdravković, N., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V.,& Todorović Marković, B.. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics, 12(5), 919.
https://doi.org/10.3390/antibiotics12050919
Marković Z, Mišović A, Zmejkoski D, Zdravković N, Kovač J, Bajuk-Bogdanović D, Milivojević D, Mojsin M, Stevanović M, Pavlović V, Todorović Marković B. Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics. 2023;12(5):919.
doi:10.3390/antibiotics12050919 .
Marković, Zoran, Mišović, Aleksandra, Zmejkoski, Danica, Zdravković, Nemanja, Kovač, Janez, Bajuk-Bogdanović, Danica, Milivojević, Dušan, Mojsin, Marija, Stevanović, Milena, Pavlović, Vladimir, Todorović Marković, Biljana, "Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria" in Antibiotics, 12, no. 5 (2023):919,
https://doi.org/10.3390/antibiotics12050919 . .
4
3

Supplementary data for the article: Marković, Z., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V., Mojsin, M., Stevanović, M.,& Todorović Marković, B.. (2023). Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology, 14(1), 165-174. https://doi.org/10.3762/bjnano.14.17

Marković, Zoran; Budimir, Milica; Danko, Martin; Milivojević, Dušan; Kubat, Pavel; Zmejkoski, Danica; Pavlović, Vladimir; Mojsin, Marija; Stevanović, Milena; Todorović Marković, Biljana

(2023)

TY  - DATA
AU  - Marković, Zoran
AU  - Budimir, Milica
AU  - Danko, Martin
AU  - Milivojević, Dušan
AU  - Kubat, Pavel
AU  - Zmejkoski, Danica
AU  - Pavlović, Vladimir
AU  - Mojsin, Marija
AU  - Stevanović, Milena
AU  - Todorović Marković, Biljana
PY  - 2023
UR  - https://www.beilstein-journals.org/bjnano/articles/14/17
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1894
AB  - Figure S1: (a) TEM micrograph of CQDs, (b) top view AFM image of CQDs, (c) height profile of CQDs, and (d) particle size distribution of CQDs.
T2  - Beilstein Journal of Nanotechnology
T2  - Beilstein Journal of NanotechnologyBeilstein J. Nanotechnol.
T1  - Supplementary data for the article: Marković, Z., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V., Mojsin, M., Stevanović, M.,& Todorović Marković, B.. (2023). Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology, 14(1), 165-174. https://doi.org/10.3762/bjnano.14.17
EP  - 174
IS  - 1
SP  - 165
VL  - 14
DO  - 10.3762/bjnano.14.17
ER  - 
@misc{
author = "Marković, Zoran and Budimir, Milica and Danko, Martin and Milivojević, Dušan and Kubat, Pavel and Zmejkoski, Danica and Pavlović, Vladimir and Mojsin, Marija and Stevanović, Milena and Todorović Marković, Biljana",
year = "2023",
abstract = "Figure S1: (a) TEM micrograph of CQDs, (b) top view AFM image of CQDs, (c) height profile of CQDs, and (d) particle size distribution of CQDs.",
journal = "Beilstein Journal of Nanotechnology, Beilstein Journal of NanotechnologyBeilstein J. Nanotechnol.",
title = "Supplementary data for the article: Marković, Z., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V., Mojsin, M., Stevanović, M.,& Todorović Marković, B.. (2023). Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology, 14(1), 165-174. https://doi.org/10.3762/bjnano.14.17",
pages = "174-165",
number = "1",
volume = "14",
doi = "10.3762/bjnano.14.17"
}
Marković, Z., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V., Mojsin, M., Stevanović, M.,& Todorović Marković, B.. (2023). Supplementary data for the article: Marković, Z., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V., Mojsin, M., Stevanović, M.,& Todorović Marković, B.. (2023). Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology, 14(1), 165-174. https://doi.org/10.3762/bjnano.14.17. in Beilstein Journal of Nanotechnology, 14(1), 165-174.
https://doi.org/10.3762/bjnano.14.17
Marković Z, Budimir M, Danko M, Milivojević D, Kubat P, Zmejkoski D, Pavlović V, Mojsin M, Stevanović M, Todorović Marković B. Supplementary data for the article: Marković, Z., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V., Mojsin, M., Stevanović, M.,& Todorović Marković, B.. (2023). Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology, 14(1), 165-174. https://doi.org/10.3762/bjnano.14.17. in Beilstein Journal of Nanotechnology. 2023;14(1):165-174.
doi:10.3762/bjnano.14.17 .
Marković, Zoran, Budimir, Milica, Danko, Martin, Milivojević, Dušan, Kubat, Pavel, Zmejkoski, Danica, Pavlović, Vladimir, Mojsin, Marija, Stevanović, Milena, Todorović Marković, Biljana, "Supplementary data for the article: Marković, Z., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V., Mojsin, M., Stevanović, M.,& Todorović Marković, B.. (2023). Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology, 14(1), 165-174. https://doi.org/10.3762/bjnano.14.17" in Beilstein Journal of Nanotechnology, 14, no. 1 (2023):165-174,
https://doi.org/10.3762/bjnano.14.17 . .
2
6

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

Marković, Zoran; Budimir, Milica; Danko, Martin; Milivojević, Dušan; Kubat, Pavel; Zmejkoski, Danica; Pavlović, Vladimir; Mojsin, Marija; Stevanović, Milena; Todorović Marković, Biljana

(2023)

TY  - JOUR
AU  - Marković, Zoran
AU  - Budimir, Milica
AU  - Danko, Martin
AU  - Milivojević, Dušan
AU  - Kubat, Pavel
AU  - Zmejkoski, Danica
AU  - Pavlović, Vladimir
AU  - Mojsin, Marija
AU  - Stevanović, Milena
AU  - Todorović Marković, Biljana
PY  - 2023
UR  - https://www.beilstein-journals.org/bjnano/articles/14/17
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1889
AB  - Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their
unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon
quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared
carbon quantum dots were encapsulated into polyurethane films by a swelling–encapsulation–shrink method. Analyses of the
results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these
dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark
cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as
probes for bioimaging.
T2  - Beilstein Journal of Nanotechnology
T2  - Beilstein Journal of NanotechnologyBeilstein J. Nanotechnol.
T1  - Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine
EP  - 174
IS  - 1
SP  - 165
VL  - 14
DO  - 10.3762/bjnano.14.17
ER  - 
@article{
author = "Marković, Zoran and Budimir, Milica and Danko, Martin and Milivojević, Dušan and Kubat, Pavel and Zmejkoski, Danica and Pavlović, Vladimir and Mojsin, Marija and Stevanović, Milena and Todorović Marković, Biljana",
year = "2023",
abstract = "Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their
unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon
quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared
carbon quantum dots were encapsulated into polyurethane films by a swelling–encapsulation–shrink method. Analyses of the
results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these
dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark
cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as
probes for bioimaging.",
journal = "Beilstein Journal of Nanotechnology, Beilstein Journal of NanotechnologyBeilstein J. Nanotechnol.",
title = "Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine",
pages = "174-165",
number = "1",
volume = "14",
doi = "10.3762/bjnano.14.17"
}
Marković, Z., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V., Mojsin, M., Stevanović, M.,& Todorović Marković, B.. (2023). Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology, 14(1), 165-174.
https://doi.org/10.3762/bjnano.14.17
Marković Z, Budimir M, Danko M, Milivojević D, Kubat P, Zmejkoski D, Pavlović V, Mojsin M, Stevanović M, Todorović Marković B. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology. 2023;14(1):165-174.
doi:10.3762/bjnano.14.17 .
Marković, Zoran, Budimir, Milica, Danko, Martin, Milivojević, Dušan, Kubat, Pavel, Zmejkoski, Danica, Pavlović, Vladimir, Mojsin, Marija, Stevanović, Milena, Todorović Marković, Biljana, "Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine" in Beilstein Journal of Nanotechnology, 14, no. 1 (2023):165-174,
https://doi.org/10.3762/bjnano.14.17 . .
2
6
6

Supplementary data for the article:Marković, Z., Mišović, A., Zmejkoski, D., Zdravković, N., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V.,& Todorović Marković, B.. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics, 12(5), 919. https://doi.org/10.3390/antibiotics12050919

Marković, Zoran; Mišović, Aleksandra; Zmejkoski, Danica; Zdravković, Nemanja; Kovač, Janez; Bajuk-Bogdanović, Danica; Milivojević, Dušan; Mojsin, Marija; Stevanović, Milena; Pavlović, Vladimir; Todorović Marković, Biljana

(2023)

TY  - DATA
AU  - Marković, Zoran
AU  - Mišović, Aleksandra
AU  - Zmejkoski, Danica
AU  - Zdravković, Nemanja
AU  - Kovač, Janez
AU  - Bajuk-Bogdanović, Danica
AU  - Milivojević, Dušan
AU  - Mojsin, Marija
AU  - Stevanović, Milena
AU  - Pavlović, Vladimir
AU  - Todorović Marković, Biljana
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1895
AB  - Figure S1. TEM micrographs a) CQD_25, b) CQD_50,c) CQD_100, and d) CQD_200 samples, respectively.
T2  - Antibiotics
T1  - Supplementary data for the article:Marković, Z., Mišović, A., Zmejkoski, D., Zdravković, N., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V.,& Todorović Marković, B.. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics, 12(5), 919. https://doi.org/10.3390/antibiotics12050919
IS  - 5
SP  - 919
VL  - 12
UR  - https://hdl.handle.net/21.15107/rcub_imagine_1895
ER  - 
@misc{
author = "Marković, Zoran and Mišović, Aleksandra and Zmejkoski, Danica and Zdravković, Nemanja and Kovač, Janez and Bajuk-Bogdanović, Danica and Milivojević, Dušan and Mojsin, Marija and Stevanović, Milena and Pavlović, Vladimir and Todorović Marković, Biljana",
year = "2023",
abstract = "Figure S1. TEM micrographs a) CQD_25, b) CQD_50,c) CQD_100, and d) CQD_200 samples, respectively.",
journal = "Antibiotics",
title = "Supplementary data for the article:Marković, Z., Mišović, A., Zmejkoski, D., Zdravković, N., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V.,& Todorović Marković, B.. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics, 12(5), 919. https://doi.org/10.3390/antibiotics12050919",
number = "5",
pages = "919",
volume = "12",
url = "https://hdl.handle.net/21.15107/rcub_imagine_1895"
}
Marković, Z., Mišović, A., Zmejkoski, D., Zdravković, N., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V.,& Todorović Marković, B.. (2023). Supplementary data for the article:Marković, Z., Mišović, A., Zmejkoski, D., Zdravković, N., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V.,& Todorović Marković, B.. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics, 12(5), 919. https://doi.org/10.3390/antibiotics12050919. in Antibiotics, 12(5), 919.
https://hdl.handle.net/21.15107/rcub_imagine_1895
Marković Z, Mišović A, Zmejkoski D, Zdravković N, Kovač J, Bajuk-Bogdanović D, Milivojević D, Mojsin M, Stevanović M, Pavlović V, Todorović Marković B. Supplementary data for the article:Marković, Z., Mišović, A., Zmejkoski, D., Zdravković, N., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V.,& Todorović Marković, B.. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics, 12(5), 919. https://doi.org/10.3390/antibiotics12050919. in Antibiotics. 2023;12(5):919.
https://hdl.handle.net/21.15107/rcub_imagine_1895 .
Marković, Zoran, Mišović, Aleksandra, Zmejkoski, Danica, Zdravković, Nemanja, Kovač, Janez, Bajuk-Bogdanović, Danica, Milivojević, Dušan, Mojsin, Marija, Stevanović, Milena, Pavlović, Vladimir, Todorović Marković, Biljana, "Supplementary data for the article:Marković, Z., Mišović, A., Zmejkoski, D., Zdravković, N., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V.,& Todorović Marković, B.. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics, 12(5), 919. https://doi.org/10.3390/antibiotics12050919" in Antibiotics, 12, no. 5 (2023):919,
https://hdl.handle.net/21.15107/rcub_imagine_1895 .

Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells

Krstić, Aleksandra; Pavić, Aleksandar; Balint, Vanda; Lazić, Stefan; Avdović, Edina; Marković, Zoran; Pejić, Jelena; Stevanović, Milena; Petrović, Isidora

(2022)

TY  - CONF
AU  - Krstić, Aleksandra
AU  - Pavić, Aleksandar
AU  - Balint, Vanda
AU  - Lazić, Stefan
AU  - Avdović, Edina
AU  - Marković, Zoran
AU  - Pejić, Jelena
AU  - Stevanović, Milena
AU  - Petrović, Isidora
PY  - 2022
UR  - https://doi.org/10.21175/rad.spr.abstr.book.2022.9.3
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1866
AB  - Pancreatic carcinoma represents one of the most lethal malignant diseases in the world although some
progress has been made in treating the disease in the past decades. Current multi-agent treatment options
have improved the overall survival of patients, but more effective treatment strategies are still needed. In this
paper we have characterized anticancer potential of coumarin-palladium(II) complex against pancreatic
carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were
assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented
results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being
effective at micromolar concentrations (0.5 M). Treatments induced apoptosis, increased BAX/BCL-2 ratio
and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in
pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma
xenografts resulted in significant reduction of tumor mass, while did not provoke any adverse toxic effects
including hepatotoxicity. Presented results indicate the great potential of tested compound and the
perspective of its further development towards pancreatic cancer therapy.
C3  - RAD International concerence on radiation in various fields of research
T1  - Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells
IS  - Spring Edition
SP  - 34
DO  - 10.21175/rad.spr.abstr.book.2022.9.3
ER  - 
@conference{
author = "Krstić, Aleksandra and Pavić, Aleksandar and Balint, Vanda and Lazić, Stefan and Avdović, Edina and Marković, Zoran and Pejić, Jelena and Stevanović, Milena and Petrović, Isidora",
year = "2022",
abstract = "Pancreatic carcinoma represents one of the most lethal malignant diseases in the world although some
progress has been made in treating the disease in the past decades. Current multi-agent treatment options
have improved the overall survival of patients, but more effective treatment strategies are still needed. In this
paper we have characterized anticancer potential of coumarin-palladium(II) complex against pancreatic
carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were
assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented
results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being
effective at micromolar concentrations (0.5 M). Treatments induced apoptosis, increased BAX/BCL-2 ratio
and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in
pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma
xenografts resulted in significant reduction of tumor mass, while did not provoke any adverse toxic effects
including hepatotoxicity. Presented results indicate the great potential of tested compound and the
perspective of its further development towards pancreatic cancer therapy.",
journal = "RAD International concerence on radiation in various fields of research",
title = "Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells",
number = "Spring Edition",
pages = "34",
doi = "10.21175/rad.spr.abstr.book.2022.9.3"
}
Krstić, A., Pavić, A., Balint, V., Lazić, S., Avdović, E., Marković, Z., Pejić, J., Stevanović, M.,& Petrović, I.. (2022). Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells. in RAD International concerence on radiation in various fields of research(Spring Edition), 34.
https://doi.org/10.21175/rad.spr.abstr.book.2022.9.3
Krstić A, Pavić A, Balint V, Lazić S, Avdović E, Marković Z, Pejić J, Stevanović M, Petrović I. Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells. in RAD International concerence on radiation in various fields of research. 2022;(Spring Edition):34.
doi:10.21175/rad.spr.abstr.book.2022.9.3 .
Krstić, Aleksandra, Pavić, Aleksandar, Balint, Vanda, Lazić, Stefan, Avdović, Edina, Marković, Zoran, Pejić, Jelena, Stevanović, Milena, Petrović, Isidora, "Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells" in RAD International concerence on radiation in various fields of research, no. Spring Edition (2022):34,
https://doi.org/10.21175/rad.spr.abstr.book.2022.9.3 . .

Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells

Krstić, Aleksandra; Pavić, Aleksandar; Avdović, Edina H.; Marković, Zoran; Stevanović, Milena; Petrović, Isidora

(MDPI, Basel, 2022)

TY  - JOUR
AU  - Krstić, Aleksandra
AU  - Pavić, Aleksandar
AU  - Avdović, Edina H.
AU  - Marković, Zoran
AU  - Stevanović, Milena
AU  - Petrović, Isidora
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1559
AB  - Pancreatic carcinoma still represents one of the most lethal malignant diseases in the world although some progress has been made in treating the disease in the past decades. Current multi-agent treatment options have improved the overall survival of patients, however, more effective treatment strategies are still needed. In this paper we have characterized the anticancer potential of coumarin-palladium(II) complex against pancreatic carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being effective at micromolar concentrations (0.5 mu M). Treatments induced apoptosis, increased BAX/BCL-2 ratio and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma xenografts resulted in significant reduction in tumor mass, without provoking any adverse toxic effects including hepatotoxicity. Presented results indicate the great potential of the tested compound and the perspective of its further development towards pancreatic cancer therapy.
PB  - MDPI, Basel
T2  - Molecules
T1  - Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells
IS  - 7
VL  - 27
DO  - 10.3390/molecules27072115
ER  - 
@article{
author = "Krstić, Aleksandra and Pavić, Aleksandar and Avdović, Edina H. and Marković, Zoran and Stevanović, Milena and Petrović, Isidora",
year = "2022",
abstract = "Pancreatic carcinoma still represents one of the most lethal malignant diseases in the world although some progress has been made in treating the disease in the past decades. Current multi-agent treatment options have improved the overall survival of patients, however, more effective treatment strategies are still needed. In this paper we have characterized the anticancer potential of coumarin-palladium(II) complex against pancreatic carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being effective at micromolar concentrations (0.5 mu M). Treatments induced apoptosis, increased BAX/BCL-2 ratio and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma xenografts resulted in significant reduction in tumor mass, without provoking any adverse toxic effects including hepatotoxicity. Presented results indicate the great potential of the tested compound and the perspective of its further development towards pancreatic cancer therapy.",
publisher = "MDPI, Basel",
journal = "Molecules",
title = "Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells",
number = "7",
volume = "27",
doi = "10.3390/molecules27072115"
}
Krstić, A., Pavić, A., Avdović, E. H., Marković, Z., Stevanović, M.,& Petrović, I.. (2022). Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells. in Molecules
MDPI, Basel., 27(7).
https://doi.org/10.3390/molecules27072115
Krstić A, Pavić A, Avdović EH, Marković Z, Stevanović M, Petrović I. Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells. in Molecules. 2022;27(7).
doi:10.3390/molecules27072115 .
Krstić, Aleksandra, Pavić, Aleksandar, Avdović, Edina H., Marković, Zoran, Stevanović, Milena, Petrović, Isidora, "Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells" in Molecules, 27, no. 7 (2022),
https://doi.org/10.3390/molecules27072115 . .
6
6