Crochet, Aurelien

Link to this page

Authority KeyName Variants
4b249d8c-6008-46d3-b3b7-333d38b3d48b
  • Crochet, Aurelien (5)

Author's Bibliography

Synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2′-bipyridine rhenium tricarbonyl complexes

Sovari, Sara Nasiri; Kolly, Isabelle; Schindler, Kevin; Đurić, Ana; Srdić-Rajić, Tatjana; Crochet, Aurelien; Pavić, Aleksandar; Zobi, Fabio

(2023)

TY  - JOUR
AU  - Sovari, Sara Nasiri
AU  - Kolly, Isabelle
AU  - Schindler, Kevin
AU  - Đurić, Ana
AU  - Srdić-Rajić, Tatjana
AU  - Crochet, Aurelien
AU  - Pavić, Aleksandar
AU  - Zobi, Fabio
PY  - 2023
UR  - https://pubs.rsc.org/en/content/articlelanding/2023/dt/d2dt04041g
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1981
AB  - We report the synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2′-bipyridine rhenium tricarbonyl complexes. The study was promoted in order to understand if the presence and position of a reactive halomethyl substituent on the diimine ligand system of fac-[Re(CO)3]+ species may be a key molecular feature for the design of active and non-toxic anticancer agents. Only compounds potentially able to undergo ligand-based alkylating reactions show significant antiproliferative activity against colorectal and pancreatic cell lines. Of the new species presented in this study, one compound (5-(chloromethyl)-2,2′-bipyridine derivative) shows significant inhibition of pancreatic tumour growth in vivo in zebrafish-Panc-1 xenografts. The complex is noticeably effective at 8 μM concentration, lower than its in vitro IC50 values, being also capable of inhibiting in vivo cancer cells dissemination.
T2  - Dalton Transactions
T1  - Synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2′-bipyridine rhenium tricarbonyl complexes
EP  - 6944
IS  - 20
SP  - 6934
VL  - 52
DO  - 10.1039/D2DT04041G
ER  - 
@article{
author = "Sovari, Sara Nasiri and Kolly, Isabelle and Schindler, Kevin and Đurić, Ana and Srdić-Rajić, Tatjana and Crochet, Aurelien and Pavić, Aleksandar and Zobi, Fabio",
year = "2023",
abstract = "We report the synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2′-bipyridine rhenium tricarbonyl complexes. The study was promoted in order to understand if the presence and position of a reactive halomethyl substituent on the diimine ligand system of fac-[Re(CO)3]+ species may be a key molecular feature for the design of active and non-toxic anticancer agents. Only compounds potentially able to undergo ligand-based alkylating reactions show significant antiproliferative activity against colorectal and pancreatic cell lines. Of the new species presented in this study, one compound (5-(chloromethyl)-2,2′-bipyridine derivative) shows significant inhibition of pancreatic tumour growth in vivo in zebrafish-Panc-1 xenografts. The complex is noticeably effective at 8 μM concentration, lower than its in vitro IC50 values, being also capable of inhibiting in vivo cancer cells dissemination.",
journal = "Dalton Transactions",
title = "Synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2′-bipyridine rhenium tricarbonyl complexes",
pages = "6944-6934",
number = "20",
volume = "52",
doi = "10.1039/D2DT04041G"
}
Sovari, S. N., Kolly, I., Schindler, K., Đurić, A., Srdić-Rajić, T., Crochet, A., Pavić, A.,& Zobi, F.. (2023). Synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2′-bipyridine rhenium tricarbonyl complexes. in Dalton Transactions, 52(20), 6934-6944.
https://doi.org/10.1039/D2DT04041G
Sovari SN, Kolly I, Schindler K, Đurić A, Srdić-Rajić T, Crochet A, Pavić A, Zobi F. Synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2′-bipyridine rhenium tricarbonyl complexes. in Dalton Transactions. 2023;52(20):6934-6944.
doi:10.1039/D2DT04041G .
Sovari, Sara Nasiri, Kolly, Isabelle, Schindler, Kevin, Đurić, Ana, Srdić-Rajić, Tatjana, Crochet, Aurelien, Pavić, Aleksandar, Zobi, Fabio, "Synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2′-bipyridine rhenium tricarbonyl complexes" in Dalton Transactions, 52, no. 20 (2023):6934-6944,
https://doi.org/10.1039/D2DT04041G . .
4
3

Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding

Schindler, Kevin; Cortat, Youri; Nedyalkova, Miroslava; Crochet, Aurelien; Lattuada, Marco; Pavić, Aleksandar; Zobi, Fabio

(MDPI, Basel, 2022)

TY  - JOUR
AU  - Schindler, Kevin
AU  - Cortat, Youri
AU  - Nedyalkova, Miroslava
AU  - Crochet, Aurelien
AU  - Lattuada, Marco
AU  - Pavić, Aleksandar
AU  - Zobi, Fabio
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1528
AB  - Antimicrobial resistance is one of the major human health threats, with significant impacts on the global economy. Antibiotics are becoming increasingly ineffective as drug-resistance spreads, imposing an urgent need for new and innovative antimicrobial agents. Metal complexes are an untapped source of antimicrobial potential. Rhenium complexes, amongst others, are particularly attractive due to their low in vivo toxicity and high antimicrobial activity, but little is known about their targets and mechanism of action. In this study, a series of rhenium di- and tricarbonyl diimine complexes were prepared and evaluated for their antimicrobial potential against eight different microorganisms comprising Gram-negative and -positive bacteria. Our data showed that none of the Re dicarbonyl or neutral tricarbonyl species have either bactericidal or bacteriostatic potential. In order to identify possible targets of the molecules, and thus possibly understand the observed differences in the antimicrobial efficacy of the molecules, we computationally evaluated the binding affinity of active and inactive complexes against structurally characterized membrane-bound S. aureus proteins. The computational analysis indicates two possible major targets for this class of compounds, namely lipoteichoic acids flippase (LtaA) and lipoprotein signal peptidase II (LspA). Our results, consistent with the published in vitro studies, will be useful for the future design of rhenium tricarbonyl diimine-based antibiotics.
PB  - MDPI, Basel
T2  - Pharmaceuticals
T1  - Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding
IS  - 9
VL  - 15
DO  - 10.3390/ph15091107
ER  - 
@article{
author = "Schindler, Kevin and Cortat, Youri and Nedyalkova, Miroslava and Crochet, Aurelien and Lattuada, Marco and Pavić, Aleksandar and Zobi, Fabio",
year = "2022",
abstract = "Antimicrobial resistance is one of the major human health threats, with significant impacts on the global economy. Antibiotics are becoming increasingly ineffective as drug-resistance spreads, imposing an urgent need for new and innovative antimicrobial agents. Metal complexes are an untapped source of antimicrobial potential. Rhenium complexes, amongst others, are particularly attractive due to their low in vivo toxicity and high antimicrobial activity, but little is known about their targets and mechanism of action. In this study, a series of rhenium di- and tricarbonyl diimine complexes were prepared and evaluated for their antimicrobial potential against eight different microorganisms comprising Gram-negative and -positive bacteria. Our data showed that none of the Re dicarbonyl or neutral tricarbonyl species have either bactericidal or bacteriostatic potential. In order to identify possible targets of the molecules, and thus possibly understand the observed differences in the antimicrobial efficacy of the molecules, we computationally evaluated the binding affinity of active and inactive complexes against structurally characterized membrane-bound S. aureus proteins. The computational analysis indicates two possible major targets for this class of compounds, namely lipoteichoic acids flippase (LtaA) and lipoprotein signal peptidase II (LspA). Our results, consistent with the published in vitro studies, will be useful for the future design of rhenium tricarbonyl diimine-based antibiotics.",
publisher = "MDPI, Basel",
journal = "Pharmaceuticals",
title = "Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding",
number = "9",
volume = "15",
doi = "10.3390/ph15091107"
}
Schindler, K., Cortat, Y., Nedyalkova, M., Crochet, A., Lattuada, M., Pavić, A.,& Zobi, F.. (2022). Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding. in Pharmaceuticals
MDPI, Basel., 15(9).
https://doi.org/10.3390/ph15091107
Schindler K, Cortat Y, Nedyalkova M, Crochet A, Lattuada M, Pavić A, Zobi F. Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding. in Pharmaceuticals. 2022;15(9).
doi:10.3390/ph15091107 .
Schindler, Kevin, Cortat, Youri, Nedyalkova, Miroslava, Crochet, Aurelien, Lattuada, Marco, Pavić, Aleksandar, Zobi, Fabio, "Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding" in Pharmaceuticals, 15, no. 9 (2022),
https://doi.org/10.3390/ph15091107 . .
1
9
7

Efficient Direct Nitrosylation of alpha-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release

Sovari, Sara Nasiri; Kolly, Isabelle; Schindler, Kevin; Cortat, Youri; Liu, Shing-Chi; Crochet, Aurelien; Pavić, Aleksandar; Zobi, Fabio

(MDPI, Basel, 2021)

TY  - JOUR
AU  - Sovari, Sara Nasiri
AU  - Kolly, Isabelle
AU  - Schindler, Kevin
AU  - Cortat, Youri
AU  - Liu, Shing-Chi
AU  - Crochet, Aurelien
AU  - Pavić, Aleksandar
AU  - Zobi, Fabio
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1459
AB  - The reaction of rhenium alpha-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)(2)(NO)(N-N)X](+) species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)(2)(NO)(N-N)X](+) is that of a hard Re acid, probably due to the stronger pi-acceptor properties of NO+ as compared to those of CO. The metal ion thus shows great affinity for pi-basic ligands, which are consequently difficult to replace by, e.g., sigma-donor or weak pi-acids like pyridine. Attempts of direct nitrosylation of alpha-diimine fac-[Re(CO)(3)](+) complexes bearing pi-basic OR-type ligands gave the [Re(CO)(2)(NO)(N-N)(BF4)][BF4] salt as the only product in good yield, featuring a stable Re-FBF3 bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)(2)(NO)(N-N)X](+) complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs.
PB  - MDPI, Basel
T2  - Molecules
T1  - Efficient Direct Nitrosylation of alpha-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release
IS  - 17
VL  - 26
DO  - 10.3390/molecules26175302
ER  - 
@article{
author = "Sovari, Sara Nasiri and Kolly, Isabelle and Schindler, Kevin and Cortat, Youri and Liu, Shing-Chi and Crochet, Aurelien and Pavić, Aleksandar and Zobi, Fabio",
year = "2021",
abstract = "The reaction of rhenium alpha-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)(2)(NO)(N-N)X](+) species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)(2)(NO)(N-N)X](+) is that of a hard Re acid, probably due to the stronger pi-acceptor properties of NO+ as compared to those of CO. The metal ion thus shows great affinity for pi-basic ligands, which are consequently difficult to replace by, e.g., sigma-donor or weak pi-acids like pyridine. Attempts of direct nitrosylation of alpha-diimine fac-[Re(CO)(3)](+) complexes bearing pi-basic OR-type ligands gave the [Re(CO)(2)(NO)(N-N)(BF4)][BF4] salt as the only product in good yield, featuring a stable Re-FBF3 bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)(2)(NO)(N-N)X](+) complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs.",
publisher = "MDPI, Basel",
journal = "Molecules",
title = "Efficient Direct Nitrosylation of alpha-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release",
number = "17",
volume = "26",
doi = "10.3390/molecules26175302"
}
Sovari, S. N., Kolly, I., Schindler, K., Cortat, Y., Liu, S., Crochet, A., Pavić, A.,& Zobi, F.. (2021). Efficient Direct Nitrosylation of alpha-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release. in Molecules
MDPI, Basel., 26(17).
https://doi.org/10.3390/molecules26175302
Sovari SN, Kolly I, Schindler K, Cortat Y, Liu S, Crochet A, Pavić A, Zobi F. Efficient Direct Nitrosylation of alpha-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release. in Molecules. 2021;26(17).
doi:10.3390/molecules26175302 .
Sovari, Sara Nasiri, Kolly, Isabelle, Schindler, Kevin, Cortat, Youri, Liu, Shing-Chi, Crochet, Aurelien, Pavić, Aleksandar, Zobi, Fabio, "Efficient Direct Nitrosylation of alpha-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release" in Molecules, 26, no. 17 (2021),
https://doi.org/10.3390/molecules26175302 . .
3
3

Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049

Savić, Nada D.; Vojnović, Sandra; Glišić, Biljana Đ.; Crochet, Aurelien; Pavić, Aleksandar; Janjić, Goran V.; Pekmezović, Marina; Opsenica, Igor; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Đuran, Miloš I.

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2018)

TY  - DATA
AU  - Savić, Nada D.
AU  - Vojnović, Sandra
AU  - Glišić, Biljana Đ.
AU  - Crochet, Aurelien
AU  - Pavić, Aleksandar
AU  - Janjić, Goran V.
AU  - Pekmezović, Marina
AU  - Opsenica, Igor
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Đuran, Miloš I.
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2229
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2229
ER  - 
@misc{
author = "Savić, Nada D. and Vojnović, Sandra and Glišić, Biljana Đ. and Crochet, Aurelien and Pavić, Aleksandar and Janjić, Goran V. and Pekmezović, Marina and Opsenica, Igor and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Đuran, Miloš I.",
year = "2018",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2229"
}
Savić, N. D., Vojnović, S., Glišić, B. Đ., Crochet, A., Pavić, A., Janjić, G. V., Pekmezović, M., Opsenica, I., Fromm, K. M., Nikodinović-Runić, J.,& Đuran, M. I.. (2018). Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux..
https://hdl.handle.net/21.15107/rcub_imagine_2229
Savić ND, Vojnović S, Glišić BĐ, Crochet A, Pavić A, Janjić GV, Pekmezović M, Opsenica I, Fromm KM, Nikodinović-Runić J, Đuran MI. Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049. in European Journal of Medicinal Chemistry. 2018;.
https://hdl.handle.net/21.15107/rcub_imagine_2229 .
Savić, Nada D., Vojnović, Sandra, Glišić, Biljana Đ., Crochet, Aurelien, Pavić, Aleksandar, Janjić, Goran V., Pekmezović, Marina, Opsenica, Igor, Fromm, Katharina M., Nikodinović-Runić, Jasmina, Đuran, Miloš I., "Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049" in European Journal of Medicinal Chemistry (2018),
https://hdl.handle.net/21.15107/rcub_imagine_2229 .

Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth

Savić, Nada D.; Vojnović, Sandra; Glišić, Biljana Đ.; Crochet, Aurelien; Pavić, Aleksandar; Janjić, Goran V.; Pekmezović, Marina; Opsenica, Igor; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Đuran, Miloš I.

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2018)

TY  - JOUR
AU  - Savić, Nada D.
AU  - Vojnović, Sandra
AU  - Glišić, Biljana Đ.
AU  - Crochet, Aurelien
AU  - Pavić, Aleksandar
AU  - Janjić, Goran V.
AU  - Pekmezović, Marina
AU  - Opsenica, Igor
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Đuran, Miloš I.
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2228
AB  - Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine. (C) 2018 Elsevier Masson SAS. All rights reserved.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth
EP  - 773
SP  - 760
VL  - 156
DO  - 10.1016/j.ejmech.2018.07.049
ER  - 
@article{
author = "Savić, Nada D. and Vojnović, Sandra and Glišić, Biljana Đ. and Crochet, Aurelien and Pavić, Aleksandar and Janjić, Goran V. and Pekmezović, Marina and Opsenica, Igor and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Đuran, Miloš I.",
year = "2018",
abstract = "Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine. (C) 2018 Elsevier Masson SAS. All rights reserved.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth",
pages = "773-760",
volume = "156",
doi = "10.1016/j.ejmech.2018.07.049"
}
Savić, N. D., Vojnović, S., Glišić, B. Đ., Crochet, A., Pavić, A., Janjić, G. V., Pekmezović, M., Opsenica, I., Fromm, K. M., Nikodinović-Runić, J.,& Đuran, M. I.. (2018). Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux., 156, 760-773.
https://doi.org/10.1016/j.ejmech.2018.07.049
Savić ND, Vojnović S, Glišić BĐ, Crochet A, Pavić A, Janjić GV, Pekmezović M, Opsenica I, Fromm KM, Nikodinović-Runić J, Đuran MI. Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. in European Journal of Medicinal Chemistry. 2018;156:760-773.
doi:10.1016/j.ejmech.2018.07.049 .
Savić, Nada D., Vojnović, Sandra, Glišić, Biljana Đ., Crochet, Aurelien, Pavić, Aleksandar, Janjić, Goran V., Pekmezović, Marina, Opsenica, Igor, Fromm, Katharina M., Nikodinović-Runić, Jasmina, Đuran, Miloš I., "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth" in European Journal of Medicinal Chemistry, 156 (2018):760-773,
https://doi.org/10.1016/j.ejmech.2018.07.049 . .
6
37
26
36