Đonlagić, J.

Link to this page

Authority KeyName Variants
c23c011b-9db6-41be-be0e-77599ebefcd1
  • Đonlagić, J. (1)
Projects

Author's Bibliography

Controlled drug release carriers based on PCL/PEO/PCL block copolymers

Ponjavić, Marijana; Nikolić, Marija S.; Nikodinović-Runić, Jasmina; Ilić-Tomić, Tatjana; Đonlagić, J.

(Taylor & Francis As, Oslo, 2019)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Nikodinović-Runić, Jasmina
AU  - Ilić-Tomić, Tatjana
AU  - Đonlagić, J.
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1294
AB  - In order to create a new drug delivery system, the ibuprofen-loaded triblock copolymer PCL/PEO/PCL (PCEC) microspheres with a low PEO content ( lt 2 wt%) were prepared by oil in water (o/w) solvent evaporation technique. The influence of PEO content, molecular weight of a polymer matrix and drug loading on the ibuprofen release profiles were evaluated. The interactions between polymer matrix and ibuprofen were detected by FTIR analysis. The presence of hydrophilic PEO segment in PCL chains caused the decrease in particle size, which further had a great impact on the drug release kinetics, i.e., initially faster release and significantly higher quantity of released drug compared to neat PCL. Ibuprofen release behavior from polymer matrix was governed by a diffusion process. In vitro cytotoxicity tests revealed that empty PCL and PCEC microspheres were not toxic at low concentrations, while ibuprofen-loaded microspheres exhibited cytotoxicity correlated with amounts of incorporated drug.
PB  - Taylor & Francis As, Oslo
T2  - International Journal of Polymeric Materials and Polymeric Biomaterials
T1  - Controlled drug release carriers based on PCL/PEO/PCL block copolymers
EP  - 318
IS  - 6
SP  - 308
VL  - 68
DO  - 10.1080/00914037.2018.1445631
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija S. and Nikodinović-Runić, Jasmina and Ilić-Tomić, Tatjana and Đonlagić, J.",
year = "2019",
abstract = "In order to create a new drug delivery system, the ibuprofen-loaded triblock copolymer PCL/PEO/PCL (PCEC) microspheres with a low PEO content ( lt 2 wt%) were prepared by oil in water (o/w) solvent evaporation technique. The influence of PEO content, molecular weight of a polymer matrix and drug loading on the ibuprofen release profiles were evaluated. The interactions between polymer matrix and ibuprofen were detected by FTIR analysis. The presence of hydrophilic PEO segment in PCL chains caused the decrease in particle size, which further had a great impact on the drug release kinetics, i.e., initially faster release and significantly higher quantity of released drug compared to neat PCL. Ibuprofen release behavior from polymer matrix was governed by a diffusion process. In vitro cytotoxicity tests revealed that empty PCL and PCEC microspheres were not toxic at low concentrations, while ibuprofen-loaded microspheres exhibited cytotoxicity correlated with amounts of incorporated drug.",
publisher = "Taylor & Francis As, Oslo",
journal = "International Journal of Polymeric Materials and Polymeric Biomaterials",
title = "Controlled drug release carriers based on PCL/PEO/PCL block copolymers",
pages = "318-308",
number = "6",
volume = "68",
doi = "10.1080/00914037.2018.1445631"
}
Ponjavić, M., Nikolić, M. S., Nikodinović-Runić, J., Ilić-Tomić, T.,& Đonlagić, J.. (2019). Controlled drug release carriers based on PCL/PEO/PCL block copolymers. in International Journal of Polymeric Materials and Polymeric Biomaterials
Taylor & Francis As, Oslo., 68(6), 308-318.
https://doi.org/10.1080/00914037.2018.1445631
Ponjavić M, Nikolić MS, Nikodinović-Runić J, Ilić-Tomić T, Đonlagić J. Controlled drug release carriers based on PCL/PEO/PCL block copolymers. in International Journal of Polymeric Materials and Polymeric Biomaterials. 2019;68(6):308-318.
doi:10.1080/00914037.2018.1445631 .
Ponjavić, Marijana, Nikolić, Marija S., Nikodinović-Runić, Jasmina, Ilić-Tomić, Tatjana, Đonlagić, J., "Controlled drug release carriers based on PCL/PEO/PCL block copolymers" in International Journal of Polymeric Materials and Polymeric Biomaterials, 68, no. 6 (2019):308-318,
https://doi.org/10.1080/00914037.2018.1445631 . .
12
3
10