O'Connor, Kevin

Link to this page

Authority KeyName Variants
0000-0001-7202-0076
  • O'Connor, Kevin (28)
  • O'Connor, Kevin (9)
Projects
Microbial diversity study and characterization of beneficial environmental microorganisms Science Foundation Ireland [04/IN3/B581]
University College Dublin Environmental Protection Agency of Ireland [2008-ET-LS1]
Design, synthesis and investigations of fullerene based nanomolecular machines Computational design, synthesis and biological evaluation of new heterocyclic compounds as selective tumorogenesis inhibitors
Synthesis and characterization of novel functional polymers and polymeric nanocomposites Bioplastech Industrial Collaboration [BP2017]
Bioplastech Ltd., Dublin, Ireland Bioplastech Ltd., Dublin, Ireland [BP2013]
Center for Plant and Microbial Complex Carbohydrates COST Action [CA-16217 ENIUS]
DENI Department of Energy-funded [DE-FG09-93ER-20097]
EC FP7 project SYNPOL [311815] Enterprise Ireland [PC/2008/131]
Enterprise Ireland Research Scholarship Programme [BR/1999/043] Environmental Protection Agency [2008-ET-LS-1-S2]
Environmental Protection Agency (EPA) of Ireland [2005-ET-LS-9-M3] Environmental Protection Agency Ireland
Environmental Protection Agency Ireland [ERTDI 2005-ET-LS-9-M3] Environmental Protection Agency of Ireland (ERTDI) [2005-ET-LS-9-M3]
Environmental Protection Agency of Ireland [ERTDI 2005-ET-LS-9-M3] European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
FEMS Research Grant [FEMS-RG-2016-0088] German Research Foundation (Graduate School) [1043]
HEA Ireland PRTLI IV (Bio) Pharmaceutical and Pharmacological Sciences programme HEA PRTLI4 (bio) pharmaceutical and pharmacological sciences programme
Higher Education Authority [PRTLI4] Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology

Author's Bibliography

Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model

Pavić, Aleksandar; Stojanović, Zoran; Pekmezović, Marina; Veljović, Đorđe; O'Connor, Kevin; Malagurski, Ivana; Nikodinović-Runić, Jasmina

(MDPI, Basel, 2022)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Stojanović, Zoran
AU  - Pekmezović, Marina
AU  - Veljović, Đorđe
AU  - O'Connor, Kevin
AU  - Malagurski, Ivana
AU  - Nikodinović-Runić, Jasmina
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1554
AB  - Immobilizing antifungal polyenes such as nystatin (Nys) and amphotericin B (AmB) into biodegradable formulations is advantageous compared to free drug administration providing sustained release, reduced dosing due to localized targeting and overall reduced systemic drug toxicity. In this study, we encapsulated Nys and AmB in medium chain length polyhydroxyalkanoates (mcl-PHA) microspheres (7-8 mu m in diameter). The obtained formulations have been validated for antifungal activity in vitro against a panel of pathogenic fungi including species of Candida, Aspergillus, Microsporum and Trichophyton genera and toxicity and efficacy in vivo using the zebrafish model of disseminated candidiasis. While free polyenes, especially AmB, were highly toxic to zebrafish embryos at the effective (MIC) doses, after their loading into mcl-PHA microspheres, inner organ toxicity and teratogenicity associated with both drugs were not observed, even at 100 x MIC doses. The obtained mcl-PHA/polyene formulations have successfully eradicated C. albicans infection and showed an improved therapeutic profile in zebrafish by enhancing infected embryos survival. This approach is contributing to the antifungal arsenal as polyenes, although the first broad-spectrum antifungals on the market are still the gold standard for treatment of fungal infections.
PB  - MDPI, Basel
T2  - Pharmaceutics
T1  - Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model
IS  - 4
VL  - 14
DO  - 10.3390/pharmaceutics14040696
ER  - 
@article{
author = "Pavić, Aleksandar and Stojanović, Zoran and Pekmezović, Marina and Veljović, Đorđe and O'Connor, Kevin and Malagurski, Ivana and Nikodinović-Runić, Jasmina",
year = "2022",
abstract = "Immobilizing antifungal polyenes such as nystatin (Nys) and amphotericin B (AmB) into biodegradable formulations is advantageous compared to free drug administration providing sustained release, reduced dosing due to localized targeting and overall reduced systemic drug toxicity. In this study, we encapsulated Nys and AmB in medium chain length polyhydroxyalkanoates (mcl-PHA) microspheres (7-8 mu m in diameter). The obtained formulations have been validated for antifungal activity in vitro against a panel of pathogenic fungi including species of Candida, Aspergillus, Microsporum and Trichophyton genera and toxicity and efficacy in vivo using the zebrafish model of disseminated candidiasis. While free polyenes, especially AmB, were highly toxic to zebrafish embryos at the effective (MIC) doses, after their loading into mcl-PHA microspheres, inner organ toxicity and teratogenicity associated with both drugs were not observed, even at 100 x MIC doses. The obtained mcl-PHA/polyene formulations have successfully eradicated C. albicans infection and showed an improved therapeutic profile in zebrafish by enhancing infected embryos survival. This approach is contributing to the antifungal arsenal as polyenes, although the first broad-spectrum antifungals on the market are still the gold standard for treatment of fungal infections.",
publisher = "MDPI, Basel",
journal = "Pharmaceutics",
title = "Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model",
number = "4",
volume = "14",
doi = "10.3390/pharmaceutics14040696"
}
Pavić, A., Stojanović, Z., Pekmezović, M., Veljović, Đ., O'Connor, K., Malagurski, I.,& Nikodinović-Runić, J.. (2022). Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model. in Pharmaceutics
MDPI, Basel., 14(4).
https://doi.org/10.3390/pharmaceutics14040696
Pavić A, Stojanović Z, Pekmezović M, Veljović Đ, O'Connor K, Malagurski I, Nikodinović-Runić J. Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model. in Pharmaceutics. 2022;14(4).
doi:10.3390/pharmaceutics14040696 .
Pavić, Aleksandar, Stojanović, Zoran, Pekmezović, Marina, Veljović, Đorđe, O'Connor, Kevin, Malagurski, Ivana, Nikodinović-Runić, Jasmina, "Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model" in Pharmaceutics, 14, no. 4 (2022),
https://doi.org/10.3390/pharmaceutics14040696 . .
7
6

Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application

Malagurski, Ivana; Frison, Ruggero; Maurya, Anjani K.; Neels, Antonia; Anđelković, Boban; Senthamaraikannan, Ramsankar; Babu, Ramesh; O'Connor, Kevin ; Witko, Tomasz; Solarz, Daria; Nikodinović-Runić, Jasmina

(Elsevier, Amsterdam, 2021)

TY  - JOUR
AU  - Malagurski, Ivana
AU  - Frison, Ruggero
AU  - Maurya, Anjani K.
AU  - Neels, Antonia
AU  - Anđelković, Boban
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh
AU  - O'Connor, Kevin 
AU  - Witko, Tomasz
AU  - Solarz, Daria
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1481
AB  - New polyhydroxyoctanoate based composites with incorporated TiO2 microfibers were produced. The presence of the inorganic constituent influenced morphology, physical properties and functionality of the obtained biomaterials. The degree of PHO crystallinity decreased in the composites in a TiO2 concentration dependent manner. The composites were stiffer than the neat PHO, however they preserved their flexibility. Biocompatibility and cellular migration studies showed that composites support cell viability and migration. The obtained results suggest that PHO/TiO2 composites could be used as novel biomaterials with tunable properties for biomedical applications.
PB  - Elsevier, Amsterdam
T2  - Materials Letters
T1  - Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application
VL  - 285
DO  - 10.1016/j.matlet.2020.129100
ER  - 
@article{
author = "Malagurski, Ivana and Frison, Ruggero and Maurya, Anjani K. and Neels, Antonia and Anđelković, Boban and Senthamaraikannan, Ramsankar and Babu, Ramesh and O'Connor, Kevin  and Witko, Tomasz and Solarz, Daria and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "New polyhydroxyoctanoate based composites with incorporated TiO2 microfibers were produced. The presence of the inorganic constituent influenced morphology, physical properties and functionality of the obtained biomaterials. The degree of PHO crystallinity decreased in the composites in a TiO2 concentration dependent manner. The composites were stiffer than the neat PHO, however they preserved their flexibility. Biocompatibility and cellular migration studies showed that composites support cell viability and migration. The obtained results suggest that PHO/TiO2 composites could be used as novel biomaterials with tunable properties for biomedical applications.",
publisher = "Elsevier, Amsterdam",
journal = "Materials Letters",
title = "Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application",
volume = "285",
doi = "10.1016/j.matlet.2020.129100"
}
Malagurski, I., Frison, R., Maurya, A. K., Neels, A., Anđelković, B., Senthamaraikannan, R., Babu, R., O'Connor, K., Witko, T., Solarz, D.,& Nikodinović-Runić, J.. (2021). Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application. in Materials Letters
Elsevier, Amsterdam., 285.
https://doi.org/10.1016/j.matlet.2020.129100
Malagurski I, Frison R, Maurya AK, Neels A, Anđelković B, Senthamaraikannan R, Babu R, O'Connor K, Witko T, Solarz D, Nikodinović-Runić J. Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application. in Materials Letters. 2021;285.
doi:10.1016/j.matlet.2020.129100 .
Malagurski, Ivana, Frison, Ruggero, Maurya, Anjani K., Neels, Antonia, Anđelković, Boban, Senthamaraikannan, Ramsankar, Babu, Ramesh, O'Connor, Kevin , Witko, Tomasz, Solarz, Daria, Nikodinović-Runić, Jasmina, "Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application" in Materials Letters, 285 (2021),
https://doi.org/10.1016/j.matlet.2020.129100 . .
8
2
9

Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials

Jaksić, Jovana; Ostojić, Sanja; Micić, Darko; Vujosević, Zorana Tokic; Milovanović, Jelena; Karkalić, Radovan; O'Connor, Kevin; Kenny, Shane T.; Casey, William; Nikodinović-Runić, Jasmina; Maslak, Veselin

(Hoboken : Wiley, 2020)

TY  - JOUR
AU  - Jaksić, Jovana
AU  - Ostojić, Sanja
AU  - Micić, Darko
AU  - Vujosević, Zorana Tokic
AU  - Milovanović, Jelena
AU  - Karkalić, Radovan
AU  - O'Connor, Kevin
AU  - Kenny, Shane T.
AU  - Casey, William
AU  - Nikodinović-Runić, Jasmina
AU  - Maslak, Veselin
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1399
AB  - In the present work, we describe the chemical synthesis of 3-HFAs as prominent derivatives of fatty acids and assess if they could be applied as phase change materials (PCM). In addition, 3-HFAs were obtained by depolymerization of a bacterial biopolymeric material, polyhydroxyalkanoate. Thermal properties of 3-hydoxyoctanoic, decanoic, and dodecanoic acids are reported for the first time. These materials showed the potential to be applied as PCM in temperature range from 33 degrees C to 66 degrees C. In order to expand the temperature range for application of 3-HFAs as PCM, eutectic mass ratios of three kinds of binary mixtures of 3-HFAs were calculated, and their properties were predicted using the Schroder-van Laar equation. Thermal properties of these mixtures were validated by differential scanning calorimetry (DSC) analysis. These results showed that eutectics considerably expanded the scope of applications of 3-HFAs as PCMs. 3-HFAs originating from biotechnologically obtained polyhydroxyalkanoates also showed potential to be applied in development of PCMs.
PB  - Hoboken : Wiley
T2  - International Journal of Energy Research
T1  - Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials
EP  - 1302
IS  - 2
SP  - 1294
VL  - 44
DO  - 10.1002/er.4934
ER  - 
@article{
author = "Jaksić, Jovana and Ostojić, Sanja and Micić, Darko and Vujosević, Zorana Tokic and Milovanović, Jelena and Karkalić, Radovan and O'Connor, Kevin and Kenny, Shane T. and Casey, William and Nikodinović-Runić, Jasmina and Maslak, Veselin",
year = "2020",
abstract = "In the present work, we describe the chemical synthesis of 3-HFAs as prominent derivatives of fatty acids and assess if they could be applied as phase change materials (PCM). In addition, 3-HFAs were obtained by depolymerization of a bacterial biopolymeric material, polyhydroxyalkanoate. Thermal properties of 3-hydoxyoctanoic, decanoic, and dodecanoic acids are reported for the first time. These materials showed the potential to be applied as PCM in temperature range from 33 degrees C to 66 degrees C. In order to expand the temperature range for application of 3-HFAs as PCM, eutectic mass ratios of three kinds of binary mixtures of 3-HFAs were calculated, and their properties were predicted using the Schroder-van Laar equation. Thermal properties of these mixtures were validated by differential scanning calorimetry (DSC) analysis. These results showed that eutectics considerably expanded the scope of applications of 3-HFAs as PCMs. 3-HFAs originating from biotechnologically obtained polyhydroxyalkanoates also showed potential to be applied in development of PCMs.",
publisher = "Hoboken : Wiley",
journal = "International Journal of Energy Research",
title = "Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials",
pages = "1302-1294",
number = "2",
volume = "44",
doi = "10.1002/er.4934"
}
Jaksić, J., Ostojić, S., Micić, D., Vujosević, Z. T., Milovanović, J., Karkalić, R., O'Connor, K., Kenny, S. T., Casey, W., Nikodinović-Runić, J.,& Maslak, V.. (2020). Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials. in International Journal of Energy Research
Hoboken : Wiley., 44(2), 1294-1302.
https://doi.org/10.1002/er.4934
Jaksić J, Ostojić S, Micić D, Vujosević ZT, Milovanović J, Karkalić R, O'Connor K, Kenny ST, Casey W, Nikodinović-Runić J, Maslak V. Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials. in International Journal of Energy Research. 2020;44(2):1294-1302.
doi:10.1002/er.4934 .
Jaksić, Jovana, Ostojić, Sanja, Micić, Darko, Vujosević, Zorana Tokic, Milovanović, Jelena, Karkalić, Radovan, O'Connor, Kevin, Kenny, Shane T., Casey, William, Nikodinović-Runić, Jasmina, Maslak, Veselin, "Thermal properties of 3-hydroxy fatty acids and their binary mixtures as phase change energy storage materials" in International Journal of Energy Research, 44, no. 2 (2020):1294-1302,
https://doi.org/10.1002/er.4934 . .
8
4
8

Medium chain length (mcl)-pha-based nanocomposites for biomedical applications: system evaluation through xrd

Malagurski, Ivana; Frison, Ruggero; Maurya, Anjani; Nikodinović-Runić, Jasmina; Babu, Ramesh; O'Connor, Kevin; Neels, Antonia

(Int Union Crystallography, Chester, 2019)

TY  - CONF
AU  - Malagurski, Ivana
AU  - Frison, Ruggero
AU  - Maurya, Anjani
AU  - Nikodinović-Runić, Jasmina
AU  - Babu, Ramesh
AU  - O'Connor, Kevin
AU  - Neels, Antonia
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1216
AB  - Medium-chain polyhydroxyalkanoates (mcl-PHA) are flexible, elastomeric polymers produced by wide range of
bacteria as intercellular storage of carbon and energy. They represent attractive components in biomaterial design
because they are biocompatible, biodegradable and can be obtained using variety of carbon sources including
waste streams[1]. However, being semi-crystalline, all mcl-PHAs are characterized by low melting temperature and
poor tensile strength which can interfere with processing methods and wider biomedical application. Simple way
to improve mcl-PHAs properties is to incorporate a nanophase within biopolymer to obtain nanocomposites.
Nano-sized constituents interact with biopolymer more intimately affecting in turn the obtained nanocomposite
properties as well as functionality. Among inorganic nanofillers, TiO2 nanostructures with high aspect ratio (e.g.
nanofibers) have unique properties that support osteogenic phenotype which makes them suitable for bone tissue
engineering [2].
PB  - Int Union Crystallography, Chester
C3  - Acta Crystallographica A-Foundation and Advances
T1  - Medium chain length (mcl)-pha-based nanocomposites for biomedical applications: system evaluation through xrd
VL  - 75
DO  - 10.1107/S2053273319089794
ER  - 
@conference{
author = "Malagurski, Ivana and Frison, Ruggero and Maurya, Anjani and Nikodinović-Runić, Jasmina and Babu, Ramesh and O'Connor, Kevin and Neels, Antonia",
year = "2019",
abstract = "Medium-chain polyhydroxyalkanoates (mcl-PHA) are flexible, elastomeric polymers produced by wide range of
bacteria as intercellular storage of carbon and energy. They represent attractive components in biomaterial design
because they are biocompatible, biodegradable and can be obtained using variety of carbon sources including
waste streams[1]. However, being semi-crystalline, all mcl-PHAs are characterized by low melting temperature and
poor tensile strength which can interfere with processing methods and wider biomedical application. Simple way
to improve mcl-PHAs properties is to incorporate a nanophase within biopolymer to obtain nanocomposites.
Nano-sized constituents interact with biopolymer more intimately affecting in turn the obtained nanocomposite
properties as well as functionality. Among inorganic nanofillers, TiO2 nanostructures with high aspect ratio (e.g.
nanofibers) have unique properties that support osteogenic phenotype which makes them suitable for bone tissue
engineering [2].",
publisher = "Int Union Crystallography, Chester",
journal = "Acta Crystallographica A-Foundation and Advances",
title = "Medium chain length (mcl)-pha-based nanocomposites for biomedical applications: system evaluation through xrd",
volume = "75",
doi = "10.1107/S2053273319089794"
}
Malagurski, I., Frison, R., Maurya, A., Nikodinović-Runić, J., Babu, R., O'Connor, K.,& Neels, A.. (2019). Medium chain length (mcl)-pha-based nanocomposites for biomedical applications: system evaluation through xrd. in Acta Crystallographica A-Foundation and Advances
Int Union Crystallography, Chester., 75.
https://doi.org/10.1107/S2053273319089794
Malagurski I, Frison R, Maurya A, Nikodinović-Runić J, Babu R, O'Connor K, Neels A. Medium chain length (mcl)-pha-based nanocomposites for biomedical applications: system evaluation through xrd. in Acta Crystallographica A-Foundation and Advances. 2019;75.
doi:10.1107/S2053273319089794 .
Malagurski, Ivana, Frison, Ruggero, Maurya, Anjani, Nikodinović-Runić, Jasmina, Babu, Ramesh, O'Connor, Kevin, Neels, Antonia, "Medium chain length (mcl)-pha-based nanocomposites for biomedical applications: system evaluation through xrd" in Acta Crystallographica A-Foundation and Advances, 75 (2019),
https://doi.org/10.1107/S2053273319089794 . .

Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes

Mandić, Mina; Đokić, Lidija; Nikolaivits, Efstratios; Prodanović, Radivoje; O'Connor, Kevin; Jeremić, Sanja; Topakas, Evangelos; Nikodinović-Runić, Jasmina

(MDPI, Basel, 2019)

TY  - JOUR
AU  - Mandić, Mina
AU  - Đokić, Lidija
AU  - Nikolaivits, Efstratios
AU  - Prodanović, Radivoje
AU  - O'Connor, Kevin
AU  - Jeremić, Sanja
AU  - Topakas, Evangelos
AU  - Nikodinović-Runić, Jasmina
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1284
AB  - Laccases are multicopper-oxidases with variety of biotechnological applications. While predominantly used, fungal laccases have limitations such as narrow pH and temperature range and their production via heterologous protein expression is more complex due to posttranslational modifications. In comparison, bacterial enzymes, including laccases, usually possess higher thermal and pH stability, and are more suitable for expression and genetic manipulations in bacterial expression hosts. Therefore, the aim of this study was to identify, recombinantly express, and characterize novel laccases from Pseudomonas spp. A combination of approaches including DNA sequence analysis, N-terminal protein sequencing, and genome sequencing data analysis for laccase amplification, cloning, and overexpression have been used. Four active recombinant laccases were obtained, one each from P. putida KT2440 and P. putida CA-3, and two from P. putida F6. The new laccases exhibited broad temperature and pH range and high thermal stability, as well as the potential to degrade selection of synthetic textile dyes. The best performing laccase was CopA from P. putida F6 which degraded five out of seven tested dyes, including Amido Black 10B, Brom Cresol Purple, Evans Blue, Reactive Black 5, and Remazol Brilliant Blue. This work highlighted species of Pseudomonas genus as still being good sources of biocatalytically relevant enzymes.
PB  - MDPI, Basel
T2  - Catalysts
T1  - Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes
IS  - 7
VL  - 9
DO  - 10.3390/catal9070629
ER  - 
@article{
author = "Mandić, Mina and Đokić, Lidija and Nikolaivits, Efstratios and Prodanović, Radivoje and O'Connor, Kevin and Jeremić, Sanja and Topakas, Evangelos and Nikodinović-Runić, Jasmina",
year = "2019",
abstract = "Laccases are multicopper-oxidases with variety of biotechnological applications. While predominantly used, fungal laccases have limitations such as narrow pH and temperature range and their production via heterologous protein expression is more complex due to posttranslational modifications. In comparison, bacterial enzymes, including laccases, usually possess higher thermal and pH stability, and are more suitable for expression and genetic manipulations in bacterial expression hosts. Therefore, the aim of this study was to identify, recombinantly express, and characterize novel laccases from Pseudomonas spp. A combination of approaches including DNA sequence analysis, N-terminal protein sequencing, and genome sequencing data analysis for laccase amplification, cloning, and overexpression have been used. Four active recombinant laccases were obtained, one each from P. putida KT2440 and P. putida CA-3, and two from P. putida F6. The new laccases exhibited broad temperature and pH range and high thermal stability, as well as the potential to degrade selection of synthetic textile dyes. The best performing laccase was CopA from P. putida F6 which degraded five out of seven tested dyes, including Amido Black 10B, Brom Cresol Purple, Evans Blue, Reactive Black 5, and Remazol Brilliant Blue. This work highlighted species of Pseudomonas genus as still being good sources of biocatalytically relevant enzymes.",
publisher = "MDPI, Basel",
journal = "Catalysts",
title = "Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes",
number = "7",
volume = "9",
doi = "10.3390/catal9070629"
}
Mandić, M., Đokić, L., Nikolaivits, E., Prodanović, R., O'Connor, K., Jeremić, S., Topakas, E.,& Nikodinović-Runić, J.. (2019). Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes. in Catalysts
MDPI, Basel., 9(7).
https://doi.org/10.3390/catal9070629
Mandić M, Đokić L, Nikolaivits E, Prodanović R, O'Connor K, Jeremić S, Topakas E, Nikodinović-Runić J. Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes. in Catalysts. 2019;9(7).
doi:10.3390/catal9070629 .
Mandić, Mina, Đokić, Lidija, Nikolaivits, Efstratios, Prodanović, Radivoje, O'Connor, Kevin, Jeremić, Sanja, Topakas, Evangelos, Nikodinović-Runić, Jasmina, "Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes" in Catalysts, 9, no. 7 (2019),
https://doi.org/10.3390/catal9070629 . .
44
2
48

Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Mandić, Mina; Spasić, Jelena; Ponjavić, Marijana; Nikolić, Marija S.; Cosović, Vladan R.; O'Connor, Kevin; Nikodinović-Runić, Jasmina; Đokić, Lidija; Jeremić, Sanja

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Mandić, Mina
AU  - Spasić, Jelena
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Cosović, Vladan R.
AU  - O'Connor, Kevin
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1760
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(epsilon-caprolactone) (PCL) or poly-hydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 mu m) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 mu m) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chiororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis13-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier Sci Ltd, Oxford
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
EP  - 168
SP  - 160
VL  - 162
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandić, Mina and Spasić, Jelena and Ponjavić, Marijana and Nikolić, Marija S. and Cosović, Vladan R. and O'Connor, Kevin and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(epsilon-caprolactone) (PCL) or poly-hydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 mu m) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 mu m) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chiororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis13-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
pages = "168-160",
volume = "162",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandić, M., Spasić, J., Ponjavić, M., Nikolić, M. S., Cosović, V. R., O'Connor, K., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S.. (2019). Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability
Elsevier Sci Ltd, Oxford., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandić M, Spasić J, Ponjavić M, Nikolić MS, Cosović VR, O'Connor K, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability. 2019;162:160-168.
doi:10.1016/j.polymdegradstab.2019.02.012 .
Mandić, Mina, Spasić, Jelena, Ponjavić, Marijana, Nikolić, Marija S., Cosović, Vladan R., O'Connor, Kevin, Nikodinović-Runić, Jasmina, Đokić, Lidija, Jeremić, Sanja, "Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" in Polymer Degradation and Stability, 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 . .
21
6
21

Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Mandić, Mina; Spasić, Jelena; Ponjavić, Marijana; Nikolić, Marija S.; Cosović, Vladan R.; O'Connor, Kevin; Nikodinović-Runić, Jasmina; Đokić, Lidija; Jeremić, Sanja

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Mandić, Mina
AU  - Spasić, Jelena
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Cosović, Vladan R.
AU  - O'Connor, Kevin
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1246
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(epsilon-caprolactone) (PCL) or poly-hydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 mu m) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 mu m) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chiororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis13-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier Sci Ltd, Oxford
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
EP  - 168
SP  - 160
VL  - 162
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandić, Mina and Spasić, Jelena and Ponjavić, Marijana and Nikolić, Marija S. and Cosović, Vladan R. and O'Connor, Kevin and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(epsilon-caprolactone) (PCL) or poly-hydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 mu m) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 mu m) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chiororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis13-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
pages = "168-160",
volume = "162",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandić, M., Spasić, J., Ponjavić, M., Nikolić, M. S., Cosović, V. R., O'Connor, K., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S.. (2019). Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability
Elsevier Sci Ltd, Oxford., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandić M, Spasić J, Ponjavić M, Nikolić MS, Cosović VR, O'Connor K, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability. 2019;162:160-168.
doi:10.1016/j.polymdegradstab.2019.02.012 .
Mandić, Mina, Spasić, Jelena, Ponjavić, Marijana, Nikolić, Marija S., Cosović, Vladan R., O'Connor, Kevin, Nikodinović-Runić, Jasmina, Đokić, Lidija, Jeremić, Sanja, "Biodegradation of poly(epsilon-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" in Polymer Degradation and Stability, 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 . .
21
6
21

Novel sodium alkyl-1,3-disulfates, anionic biosurfactants produced from microbial polyesters

Cerrone, Federico; Milovanović, Jelena; Nikodinović-Runić, Jasmina; Walsh, Meg; Kenny, Shane T.; Babu, Ramesh; O'Connor, Kevin

(Elsevier, Amsterdam, 2019)

TY  - JOUR
AU  - Cerrone, Federico
AU  - Milovanović, Jelena
AU  - Nikodinović-Runić, Jasmina
AU  - Walsh, Meg
AU  - Kenny, Shane T.
AU  - Babu, Ramesh
AU  - O'Connor, Kevin 
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1199
AB  - A sodium alkyl disulfate mixture (SADM) synthesised from microbially produced 3-hydroxy fatty acids methyl esters (HFAMEs), showed 13-fold surface tension decrease when compared with the reference surfactant sodium dodecyl sulfate (SDS). Polyhydroxyalkanoates, accumulated by bacteria intracellularly when supplied with a mixture of fatty acids derived from hydrolysed rapeseed oil, were isolated, depolymerised and methylated to produce HFAMEs in very high yield (90%). A sequential chemical reduction and sulfation of the HFAMEs produced the sodium alkyl disulfates in high yields ( gt  65%). SADM performs also 1.3-times better than dodecyl (1,3) disulfate, in surface tension tests. SADM shows also the formation of a specific critical micelle concentration (CMC) at a concentration 21-fold lower than SDS. The wettability of the SADM mixture is similar to SDS but the foaming volume of SADM is 1.5-fold higher. The foam is also more stable with its volume decreasing 3 times slower over time compared to SDS at their respective CMC values. Established sulfation technologies in chemical manufacturing could use the 3-hydroxy fatty acids methyl esters moiety (3-HFAME) given its origin from rapeseed oil and the extra OH residue on 3-position in the molecule, which affords the opportunity to produce disulfate surfactants with a proven superior performance to monosulphated surfactants. Thus, not only addressing environmental issues by avoiding threats of deforestation and monocultivation associated with palm oil use but also achieve a higher performance with lower use of surfactants.
PB  - Elsevier, Amsterdam
T2  - Colloids and Surfaces B-Biointerfaces
T1  - Novel sodium alkyl-1,3-disulfates, anionic biosurfactants produced from microbial polyesters
VL  - 182
DO  - 10.1016/j.colsurfb.2019.06.062
ER  - 
@article{
author = "Cerrone, Federico and Milovanović, Jelena and Nikodinović-Runić, Jasmina and Walsh, Meg and Kenny, Shane T. and Babu, Ramesh and O'Connor, Kevin ",
year = "2019",
abstract = "A sodium alkyl disulfate mixture (SADM) synthesised from microbially produced 3-hydroxy fatty acids methyl esters (HFAMEs), showed 13-fold surface tension decrease when compared with the reference surfactant sodium dodecyl sulfate (SDS). Polyhydroxyalkanoates, accumulated by bacteria intracellularly when supplied with a mixture of fatty acids derived from hydrolysed rapeseed oil, were isolated, depolymerised and methylated to produce HFAMEs in very high yield (90%). A sequential chemical reduction and sulfation of the HFAMEs produced the sodium alkyl disulfates in high yields ( gt  65%). SADM performs also 1.3-times better than dodecyl (1,3) disulfate, in surface tension tests. SADM shows also the formation of a specific critical micelle concentration (CMC) at a concentration 21-fold lower than SDS. The wettability of the SADM mixture is similar to SDS but the foaming volume of SADM is 1.5-fold higher. The foam is also more stable with its volume decreasing 3 times slower over time compared to SDS at their respective CMC values. Established sulfation technologies in chemical manufacturing could use the 3-hydroxy fatty acids methyl esters moiety (3-HFAME) given its origin from rapeseed oil and the extra OH residue on 3-position in the molecule, which affords the opportunity to produce disulfate surfactants with a proven superior performance to monosulphated surfactants. Thus, not only addressing environmental issues by avoiding threats of deforestation and monocultivation associated with palm oil use but also achieve a higher performance with lower use of surfactants.",
publisher = "Elsevier, Amsterdam",
journal = "Colloids and Surfaces B-Biointerfaces",
title = "Novel sodium alkyl-1,3-disulfates, anionic biosurfactants produced from microbial polyesters",
volume = "182",
doi = "10.1016/j.colsurfb.2019.06.062"
}
Cerrone, F., Milovanović, J., Nikodinović-Runić, J., Walsh, M., Kenny, S. T., Babu, R.,& O'Connor, K.. (2019). Novel sodium alkyl-1,3-disulfates, anionic biosurfactants produced from microbial polyesters. in Colloids and Surfaces B-Biointerfaces
Elsevier, Amsterdam., 182.
https://doi.org/10.1016/j.colsurfb.2019.06.062
Cerrone F, Milovanović J, Nikodinović-Runić J, Walsh M, Kenny ST, Babu R, O'Connor K. Novel sodium alkyl-1,3-disulfates, anionic biosurfactants produced from microbial polyesters. in Colloids and Surfaces B-Biointerfaces. 2019;182.
doi:10.1016/j.colsurfb.2019.06.062 .
Cerrone, Federico, Milovanović, Jelena, Nikodinović-Runić, Jasmina, Walsh, Meg, Kenny, Shane T., Babu, Ramesh, O'Connor, Kevin , "Novel sodium alkyl-1,3-disulfates, anionic biosurfactants produced from microbial polyesters" in Colloids and Surfaces B-Biointerfaces, 182 (2019),
https://doi.org/10.1016/j.colsurfb.2019.06.062 . .
3
9
10

Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans

Jovanović, Milos; Milovanović, Jelena; O'Connor, Kevin; Blagojević, Stevan; Begović, Biljana ; Lukić, Vera; Nikodinović-Runić, Jasmina; Savić, Vladimir

(Academic Press Inc Elsevier Science, San Diego, 2019)

TY  - JOUR
AU  - Jovanović, Milos
AU  - Milovanović, Jelena
AU  - O'Connor, Kevin
AU  - Blagojević, Stevan
AU  - Begović, Biljana 
AU  - Lukić, Vera
AU  - Nikodinović-Runić, Jasmina
AU  - Savić, Vladimir
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1258
AB  - Rhamnolipids are biodegradable low toxic biosurfactants which exert antimicrobial and anti-biofilm properties. They have attracted much attention recently due to potential applications in areas of bioremediation, therapeutics, cosmetics and agriculture, however, the full potential of these versatile molecules is yet to be explored. Based on the facts that many naturally occurring lipopeptides are potent antimicrobials, our study aimed to explore the potential of replacing rhamnose in rhamnolipids with amino acids thus creating lipopeptides that would mimic or enhance properties of the parent molecule. This would allow not only for more economical and greener production but also, due to the availability of structurally different amino acids, facile manipulation of physico-chemical and biological properties. Our synthetic efforts produced a library of 43 lipopeptides revealing biologically more potent molecules. The structural changes significantly increased, in particular, anti-biofilm properties against Candida albicans, although surface activity of the parent molecule was almost completely abolished. Our findings show that the most active compounds are leucine derivatives of 3-hydroxy acids containing benzylic ester functionality. The SAR study demonstrated a further increase in activity with aliphatic chain elongation. The most promising lipopeptides 15, 23 and 36 at 12.5 mu g/mL concentration allowed only 14.3%, 5.1% and 11.2% of biofilm formation, respectively after 24 h. These compounds inhibit biofilm formation by preventing adhesion of C. albicans to abiotic and biotic surfaces.
PB  - Academic Press Inc Elsevier Science, San Diego
T2  - Bioorganic Chemistry
T1  - Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans
EP  - 217
SP  - 209
VL  - 87
DO  - 10.1016/j.bioorg.2019.03.023
ER  - 
@article{
author = "Jovanović, Milos and Milovanović, Jelena and O'Connor, Kevin and Blagojević, Stevan and Begović, Biljana  and Lukić, Vera and Nikodinović-Runić, Jasmina and Savić, Vladimir",
year = "2019",
abstract = "Rhamnolipids are biodegradable low toxic biosurfactants which exert antimicrobial and anti-biofilm properties. They have attracted much attention recently due to potential applications in areas of bioremediation, therapeutics, cosmetics and agriculture, however, the full potential of these versatile molecules is yet to be explored. Based on the facts that many naturally occurring lipopeptides are potent antimicrobials, our study aimed to explore the potential of replacing rhamnose in rhamnolipids with amino acids thus creating lipopeptides that would mimic or enhance properties of the parent molecule. This would allow not only for more economical and greener production but also, due to the availability of structurally different amino acids, facile manipulation of physico-chemical and biological properties. Our synthetic efforts produced a library of 43 lipopeptides revealing biologically more potent molecules. The structural changes significantly increased, in particular, anti-biofilm properties against Candida albicans, although surface activity of the parent molecule was almost completely abolished. Our findings show that the most active compounds are leucine derivatives of 3-hydroxy acids containing benzylic ester functionality. The SAR study demonstrated a further increase in activity with aliphatic chain elongation. The most promising lipopeptides 15, 23 and 36 at 12.5 mu g/mL concentration allowed only 14.3%, 5.1% and 11.2% of biofilm formation, respectively after 24 h. These compounds inhibit biofilm formation by preventing adhesion of C. albicans to abiotic and biotic surfaces.",
publisher = "Academic Press Inc Elsevier Science, San Diego",
journal = "Bioorganic Chemistry",
title = "Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans",
pages = "217-209",
volume = "87",
doi = "10.1016/j.bioorg.2019.03.023"
}
Jovanović, M., Milovanović, J., O'Connor, K., Blagojević, S., Begović, B., Lukić, V., Nikodinović-Runić, J.,& Savić, V.. (2019). Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans. in Bioorganic Chemistry
Academic Press Inc Elsevier Science, San Diego., 87, 209-217.
https://doi.org/10.1016/j.bioorg.2019.03.023
Jovanović M, Milovanović J, O'Connor K, Blagojević S, Begović B, Lukić V, Nikodinović-Runić J, Savić V. Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans. in Bioorganic Chemistry. 2019;87:209-217.
doi:10.1016/j.bioorg.2019.03.023 .
Jovanović, Milos, Milovanović, Jelena, O'Connor, Kevin, Blagojević, Stevan, Begović, Biljana , Lukić, Vera, Nikodinović-Runić, Jasmina, Savić, Vladimir, "Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans" in Bioorganic Chemistry, 87 (2019):209-217,
https://doi.org/10.1016/j.bioorg.2019.03.023 . .
2
14
7
14

Biocatalytic versatility of engineered and wild-type tyrosinase from R-solanacearum for the synthesis of 4-halocatechols

Davis, Reeta; Molloy, Susan; Quigley, Blathnaid; Nikodinović-Runić, Jasmina; Solano, Francisco; O'Connor, Kevin

(Springer, New York, 2018)

TY  - JOUR
AU  - Davis, Reeta
AU  - Molloy, Susan
AU  - Quigley, Blathnaid
AU  - Nikodinović-Runić, Jasmina
AU  - Solano, Francisco
AU  - O'Connor, Kevin 
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1175
AB  - We evaluated the kinetic characteristics of wild type (WT) and three engineered variants (RVC10, RV145, and C10_N322S) of tyrosinase from Ralstonia solanacearum and their potential as biocatalysts to produce halogenated catechols. RV145 exhibited a 3.6- to 14.5-fold improvement in catalytic efficiency (k (cat)/K (m)) with both reductions in K (m) and increases in k (cat) compared to WT, making it the best R. solanacearum tyrosinase variant towards halogenated phenols. RVC10 also exhibited increases in catalytic efficiency with all the tested phenols. A single-mutation variant (C10_N322S) exhibited the greatest improvement in k (cat) but lowest improvement in catalytic efficiency due to an increase in K (m) compared to WT. Consistent with kinetic characteristics, biotransformation experiments showed that RV145 was a superior biocatalyst in comparison to WT. To prevent through conversion of the catechol to quinone, ascorbic acid (AA) was added to the biotransformation medium in 1:2 (substrate:AA) ratio resulting in a catechol yield of  gt  90%. Flask experiments with 10 mM 4-iodophenol and 10 mu g/mL of the RV145 enzyme yielded 9.5 mM 4-iodocatechol in the presence of 20 mM AA in 30 min. Similarly, 10 mM 4-fluorophenol was completely consumed by 20 mu g/mL of RV145 enzyme and yielded 9.2 mM 4-fluorocatechol in the presence of 20 mM AA in 80 min. The biotransformation of 20 mM 4-fluorphenol was incomplete (93%) and the yield of 4-flurocatechol was 87.5%. The 4-halophenol conversion rates and product yields obtained in this study are the highest reported using tyrosinase or any other enzyme.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Biocatalytic versatility of engineered and wild-type tyrosinase from R-solanacearum for the synthesis of 4-halocatechols
EP  - 5131
IS  - 12
SP  - 5121
VL  - 102
DO  - 10.1007/s00253-018-8994-5
ER  - 
@article{
author = "Davis, Reeta and Molloy, Susan and Quigley, Blathnaid and Nikodinović-Runić, Jasmina and Solano, Francisco and O'Connor, Kevin ",
year = "2018",
abstract = "We evaluated the kinetic characteristics of wild type (WT) and three engineered variants (RVC10, RV145, and C10_N322S) of tyrosinase from Ralstonia solanacearum and their potential as biocatalysts to produce halogenated catechols. RV145 exhibited a 3.6- to 14.5-fold improvement in catalytic efficiency (k (cat)/K (m)) with both reductions in K (m) and increases in k (cat) compared to WT, making it the best R. solanacearum tyrosinase variant towards halogenated phenols. RVC10 also exhibited increases in catalytic efficiency with all the tested phenols. A single-mutation variant (C10_N322S) exhibited the greatest improvement in k (cat) but lowest improvement in catalytic efficiency due to an increase in K (m) compared to WT. Consistent with kinetic characteristics, biotransformation experiments showed that RV145 was a superior biocatalyst in comparison to WT. To prevent through conversion of the catechol to quinone, ascorbic acid (AA) was added to the biotransformation medium in 1:2 (substrate:AA) ratio resulting in a catechol yield of  gt  90%. Flask experiments with 10 mM 4-iodophenol and 10 mu g/mL of the RV145 enzyme yielded 9.5 mM 4-iodocatechol in the presence of 20 mM AA in 30 min. Similarly, 10 mM 4-fluorophenol was completely consumed by 20 mu g/mL of RV145 enzyme and yielded 9.2 mM 4-fluorocatechol in the presence of 20 mM AA in 80 min. The biotransformation of 20 mM 4-fluorphenol was incomplete (93%) and the yield of 4-flurocatechol was 87.5%. The 4-halophenol conversion rates and product yields obtained in this study are the highest reported using tyrosinase or any other enzyme.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Biocatalytic versatility of engineered and wild-type tyrosinase from R-solanacearum for the synthesis of 4-halocatechols",
pages = "5131-5121",
number = "12",
volume = "102",
doi = "10.1007/s00253-018-8994-5"
}
Davis, R., Molloy, S., Quigley, B., Nikodinović-Runić, J., Solano, F.,& O'Connor, K.. (2018). Biocatalytic versatility of engineered and wild-type tyrosinase from R-solanacearum for the synthesis of 4-halocatechols. in Applied Microbiology and Biotechnology
Springer, New York., 102(12), 5121-5131.
https://doi.org/10.1007/s00253-018-8994-5
Davis R, Molloy S, Quigley B, Nikodinović-Runić J, Solano F, O'Connor K. Biocatalytic versatility of engineered and wild-type tyrosinase from R-solanacearum for the synthesis of 4-halocatechols. in Applied Microbiology and Biotechnology. 2018;102(12):5121-5131.
doi:10.1007/s00253-018-8994-5 .
Davis, Reeta, Molloy, Susan, Quigley, Blathnaid, Nikodinović-Runić, Jasmina, Solano, Francisco, O'Connor, Kevin , "Biocatalytic versatility of engineered and wild-type tyrosinase from R-solanacearum for the synthesis of 4-halocatechols" in Applied Microbiology and Biotechnology, 102, no. 12 (2018):5121-5131,
https://doi.org/10.1007/s00253-018-8994-5 . .
9
1
9

Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity

Almahboub, Sarah A.; Narancić, Tanja; Devocelle, Marc; Kenny, Shane T.; Palmer-Brown, William; Murphy, Cormac; Nikodinović-Runić, Jasmina; O'Connor, Kevin

(Springer, New York, 2018)

TY  - JOUR
AU  - Almahboub, Sarah A.
AU  - Narancić, Tanja
AU  - Devocelle, Marc
AU  - Kenny, Shane T.
AU  - Palmer-Brown, William
AU  - Murphy, Cormac
AU  - Nikodinović-Runić, Jasmina
AU  - O'Connor, Kevin 
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1161
AB  - Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess  gt  98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 mu g/ml for Escherichia coli, 50 mu g/ml for Bacillus subtilis, 100 mu g/ml for Salmonella typhimurium, 200 mu g/ml for Pseudomonas aeruginosa and 400 mu g/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity
EP  - 799
IS  - 2
SP  - 789
VL  - 102
DO  - 10.1007/s00253-017-8655-0
ER  - 
@article{
author = "Almahboub, Sarah A. and Narancić, Tanja and Devocelle, Marc and Kenny, Shane T. and Palmer-Brown, William and Murphy, Cormac and Nikodinović-Runić, Jasmina and O'Connor, Kevin ",
year = "2018",
abstract = "Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess  gt  98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 mu g/ml for Escherichia coli, 50 mu g/ml for Bacillus subtilis, 100 mu g/ml for Salmonella typhimurium, 200 mu g/ml for Pseudomonas aeruginosa and 400 mu g/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity",
pages = "799-789",
number = "2",
volume = "102",
doi = "10.1007/s00253-017-8655-0"
}
Almahboub, S. A., Narancić, T., Devocelle, M., Kenny, S. T., Palmer-Brown, W., Murphy, C., Nikodinović-Runić, J.,& O'Connor, K.. (2018). Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity. in Applied Microbiology and Biotechnology
Springer, New York., 102(2), 789-799.
https://doi.org/10.1007/s00253-017-8655-0
Almahboub SA, Narancić T, Devocelle M, Kenny ST, Palmer-Brown W, Murphy C, Nikodinović-Runić J, O'Connor K. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity. in Applied Microbiology and Biotechnology. 2018;102(2):789-799.
doi:10.1007/s00253-017-8655-0 .
Almahboub, Sarah A., Narancić, Tanja, Devocelle, Marc, Kenny, Shane T., Palmer-Brown, William, Murphy, Cormac, Nikodinović-Runić, Jasmina, O'Connor, Kevin , "Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity" in Applied Microbiology and Biotechnology, 102, no. 2 (2018):789-799,
https://doi.org/10.1007/s00253-017-8655-0 . .
12
2
12

Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies

Veselinović, Jovana B.; Veselinović, Aleksandar M.; Ilić-Tomić, Tatjana; Davis, Reeta; O'Connor, Kevin; Pavić, Aleksandar; Nikodinović-Runić, Jasmina

(Pergamon-Elsevier Science Ltd, Oxford, 2017)

TY  - JOUR
AU  - Veselinović, Jovana B.
AU  - Veselinović, Aleksandar M.
AU  - Ilić-Tomić, Tatjana
AU  - Davis, Reeta
AU  - O'Connor, Kevin
AU  - Pavić, Aleksandar
AU  - Nikodinović-Runić, Jasmina
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1009
AB  - 7-Hydroxy-4-phenylcoumarin (7C) and 5,7-dihydroxy-4-phenylcoumarin (5,7C) have been evaluated as potential anti-melanogenic agents in the zebrafish (Danio rerio) model in comparison to commercially utilized depigmenting agents hydroquinone and kojic acid. 7C and 5,7C decreased the body pigmentation at 5 mu g/mL, while did not affect the embryos development and survival at doses  lt = 50 mu g/mL and  lt = 25 mu g/mL. Unlike hydroquinone and kojic acid, 4-phenyl hydroxycoumarins were no melanocytotoxic, showed no cardiotoxic side effects, neither caused neutropenia in zebrafish embryos, suggesting these compounds may present novel skin-whitening agents with improved pharmacological properties. Inhibition of tyrosinase was identified as the possible mode of anti-melanogenic action. Molecular docking studies using the homology model of human tyrosinase as well as adenylate cyclase revealed excellent correlation with experimentally obtained results.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Bioorganic & Medicinal Chemistry
T1  - Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies
EP  - 6296
IS  - 24
SP  - 6286
VL  - 25
DO  - 10.1016/j.bmc.2017.09.021
ER  - 
@article{
author = "Veselinović, Jovana B. and Veselinović, Aleksandar M. and Ilić-Tomić, Tatjana and Davis, Reeta and O'Connor, Kevin and Pavić, Aleksandar and Nikodinović-Runić, Jasmina",
year = "2017",
abstract = "7-Hydroxy-4-phenylcoumarin (7C) and 5,7-dihydroxy-4-phenylcoumarin (5,7C) have been evaluated as potential anti-melanogenic agents in the zebrafish (Danio rerio) model in comparison to commercially utilized depigmenting agents hydroquinone and kojic acid. 7C and 5,7C decreased the body pigmentation at 5 mu g/mL, while did not affect the embryos development and survival at doses  lt = 50 mu g/mL and  lt = 25 mu g/mL. Unlike hydroquinone and kojic acid, 4-phenyl hydroxycoumarins were no melanocytotoxic, showed no cardiotoxic side effects, neither caused neutropenia in zebrafish embryos, suggesting these compounds may present novel skin-whitening agents with improved pharmacological properties. Inhibition of tyrosinase was identified as the possible mode of anti-melanogenic action. Molecular docking studies using the homology model of human tyrosinase as well as adenylate cyclase revealed excellent correlation with experimentally obtained results.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Bioorganic & Medicinal Chemistry",
title = "Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies",
pages = "6296-6286",
number = "24",
volume = "25",
doi = "10.1016/j.bmc.2017.09.021"
}
Veselinović, J. B., Veselinović, A. M., Ilić-Tomić, T., Davis, R., O'Connor, K., Pavić, A.,& Nikodinović-Runić, J.. (2017). Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies. in Bioorganic & Medicinal Chemistry
Pergamon-Elsevier Science Ltd, Oxford., 25(24), 6286-6296.
https://doi.org/10.1016/j.bmc.2017.09.021
Veselinović JB, Veselinović AM, Ilić-Tomić T, Davis R, O'Connor K, Pavić A, Nikodinović-Runić J. Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies. in Bioorganic & Medicinal Chemistry. 2017;25(24):6286-6296.
doi:10.1016/j.bmc.2017.09.021 .
Veselinović, Jovana B., Veselinović, Aleksandar M., Ilić-Tomić, Tatjana, Davis, Reeta, O'Connor, Kevin, Pavić, Aleksandar, Nikodinović-Runić, Jasmina, "Potent anti-melanogenic activity and favorable toxicity profile of selected 4-phenyl hydroxycoumarins in the zebrafish model and the computational molecular modeling studies" in Bioorganic & Medicinal Chemistry, 25, no. 24 (2017):6286-6296,
https://doi.org/10.1016/j.bmc.2017.09.021 . .
19
3
21

Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds

Milovanović, Jelena; Škaro Bogojević, Sanja; Šenerović, Lidija; Vasiljević, Branka; Guzik, Maciej; Kenny, Shane T.; Maslak, Veselin; Nikodinović-Runić, Jasmina; O'Connor, Kevin

(Springer, New York, 2016)

TY  - JOUR
AU  - Milovanović, Jelena
AU  - Škaro Bogojević, Sanja
AU  - Šenerović, Lidija
AU  - Vasiljević, Branka
AU  - Guzik, Maciej
AU  - Kenny, Shane T.
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
AU  - O'Connor, Kevin 
PY  - 2016
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/974
AB  - A library of 18 different compounds was synthesized starting from (R)-3-hydroxyoctanoic acid which is derived from the bacterial polymer polyhydroxyalkanoate (PHA). Ten derivatives, including halo and unsaturated methyl and benzyl esters, were synthesized and characterized for the first time. Given that (R)-3-hydroxyalkanoic acids are known to have biological activity, the new compounds were evaluated for antimicrobial activity and in vitro antiproliferative effect with mammalian cell lines. The presence of the carboxylic group was essential for the antimicrobial activity, with minimal inhibitory concentrations against a panel of bacteria (Gram-positive and Gram-negative) and fungi (Candida albicans and Microsporum gypseum) in the range 2.8-7.0 mM and 0.1-6.3 mM, respectively. 3-Halogenated octanoic acids exhibited the ability to inhibit C. albicans hyphae formation. In addition, (R)-3-hydroxyoctanoic and (E)-oct-2-enoic acids inhibited quorum sensing-regulated pyocyanin production in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Generally, derivatives did not inhibit mammalian cell proliferation even at 3-mM concentrations, while only (E)-oct-2-enoic and 3-oxooctanoic acid had IC50 values of 1.7 and 1.6 mM with the human lung fibroblast cell line.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds
EP  - 172
IS  - 1
SP  - 161
VL  - 100
DO  - 10.1007/s00253-015-6984-4
ER  - 
@article{
author = "Milovanović, Jelena and Škaro Bogojević, Sanja and Šenerović, Lidija and Vasiljević, Branka and Guzik, Maciej and Kenny, Shane T. and Maslak, Veselin and Nikodinović-Runić, Jasmina and O'Connor, Kevin ",
year = "2016",
abstract = "A library of 18 different compounds was synthesized starting from (R)-3-hydroxyoctanoic acid which is derived from the bacterial polymer polyhydroxyalkanoate (PHA). Ten derivatives, including halo and unsaturated methyl and benzyl esters, were synthesized and characterized for the first time. Given that (R)-3-hydroxyalkanoic acids are known to have biological activity, the new compounds were evaluated for antimicrobial activity and in vitro antiproliferative effect with mammalian cell lines. The presence of the carboxylic group was essential for the antimicrobial activity, with minimal inhibitory concentrations against a panel of bacteria (Gram-positive and Gram-negative) and fungi (Candida albicans and Microsporum gypseum) in the range 2.8-7.0 mM and 0.1-6.3 mM, respectively. 3-Halogenated octanoic acids exhibited the ability to inhibit C. albicans hyphae formation. In addition, (R)-3-hydroxyoctanoic and (E)-oct-2-enoic acids inhibited quorum sensing-regulated pyocyanin production in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Generally, derivatives did not inhibit mammalian cell proliferation even at 3-mM concentrations, while only (E)-oct-2-enoic and 3-oxooctanoic acid had IC50 values of 1.7 and 1.6 mM with the human lung fibroblast cell line.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds",
pages = "172-161",
number = "1",
volume = "100",
doi = "10.1007/s00253-015-6984-4"
}
Milovanović, J., Škaro Bogojević, S., Šenerović, L., Vasiljević, B., Guzik, M., Kenny, S. T., Maslak, V., Nikodinović-Runić, J.,& O'Connor, K.. (2016). Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. in Applied Microbiology and Biotechnology
Springer, New York., 100(1), 161-172.
https://doi.org/10.1007/s00253-015-6984-4
Milovanović J, Škaro Bogojević S, Šenerović L, Vasiljević B, Guzik M, Kenny ST, Maslak V, Nikodinović-Runić J, O'Connor K. Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. in Applied Microbiology and Biotechnology. 2016;100(1):161-172.
doi:10.1007/s00253-015-6984-4 .
Milovanović, Jelena, Škaro Bogojević, Sanja, Šenerović, Lidija, Vasiljević, Branka, Guzik, Maciej, Kenny, Shane T., Maslak, Veselin, Nikodinović-Runić, Jasmina, O'Connor, Kevin , "Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds" in Applied Microbiology and Biotechnology, 100, no. 1 (2016):161-172,
https://doi.org/10.1007/s00253-015-6984-4 . .
2
51
28
48

The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides

Szwej, Emilia; Devocelle, Marc; Kenny, Shane; Guzik, Maciej; O'Connor, Stephen; Nikodinović-Runić, Jasmina; Milovanović, Jelena; Maslak, Veselin; Byrne, Annete T.; Gallagher, William M.; Zulian, Qun Ren; Zinn, Manfred; O'Connor, Kevin

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Szwej, Emilia
AU  - Devocelle, Marc
AU  - Kenny, Shane
AU  - Guzik, Maciej
AU  - O'Connor, Stephen
AU  - Nikodinović-Runić, Jasmina
AU  - Milovanović, Jelena
AU  - Maslak, Veselin
AU  - Byrne, Annete T.
AU  - Gallagher, William M.
AU  - Zulian, Qun Ren
AU  - Zinn, Manfred
AU  - O'Connor, Kevin 
PY  - 2015
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/877
AB  - Conjugation of DP18L peptide with (R)-3-hydroxydecanoic acid, derived from the biopolymer polyhydroxyalkanoate, enhances its anti-cancer activity (O'Connor et al., 2013. Biomaterials 34, 2710-2718). However, it is unknown if other (R)-3-hydroxyalkanoic acids (R3HA5) can enhance peptide activity, if chain length affects enhancement, and what effect R3HA5 have on peptide structure. Here we show that the degree of enhancement of peptide (DP18L) anti-cancer activity by R3HA5 is carbon chain length dependent. In all but one example the R3HA conjugated peptides were more active against cancer cells than the unconjugated peptides. However, R3HA5 with 9 and 10 carbons were most effective at improving DPI 8L activity. DPI 8L peptide variant DPI 7L, missing a hydrophobic amino acid (leucine residue 4) exhibited lower efficacy against MiaPaCa cells. Circular dichroism analysis showed DP17L had a lower alpha helix content and the conjugation of any R3HA ((R)-3-hydroxyhexanoic acid to (R)-3-hydroxydodecanoic acid) to DPI 7L returned the helix content back to levels of DPI 8L. However (R)-3-hydroxyhexanoic did not enhance the anti-cancer activity of DPI 7L and at least 7 carbons were needed in the R3HA to enhance activity of D17L. DP17L needs a longer chain R3HA to achieve the same activity as DP18L conjugated to an R3HA. As a first step to assess the synthetic potential of polyhydroxyalkanoate derived R3HA5, (R)-3-hydroxydecanoic acid was synthetically converted to (+/-)3-chlorodecanoic acid, which when conjugated to DP18L improved its antiproliferative activity against MiaPaCa cells.
PB  - Elsevier Science Bv, Amsterdam
T2  - Journal of Biotechnology
T1  - The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides
EP  - 12
SP  - 7
VL  - 204
DO  - 10.1016/j.jbiotec.2015.02.036
ER  - 
@article{
author = "Szwej, Emilia and Devocelle, Marc and Kenny, Shane and Guzik, Maciej and O'Connor, Stephen and Nikodinović-Runić, Jasmina and Milovanović, Jelena and Maslak, Veselin and Byrne, Annete T. and Gallagher, William M. and Zulian, Qun Ren and Zinn, Manfred and O'Connor, Kevin ",
year = "2015",
abstract = "Conjugation of DP18L peptide with (R)-3-hydroxydecanoic acid, derived from the biopolymer polyhydroxyalkanoate, enhances its anti-cancer activity (O'Connor et al., 2013. Biomaterials 34, 2710-2718). However, it is unknown if other (R)-3-hydroxyalkanoic acids (R3HA5) can enhance peptide activity, if chain length affects enhancement, and what effect R3HA5 have on peptide structure. Here we show that the degree of enhancement of peptide (DP18L) anti-cancer activity by R3HA5 is carbon chain length dependent. In all but one example the R3HA conjugated peptides were more active against cancer cells than the unconjugated peptides. However, R3HA5 with 9 and 10 carbons were most effective at improving DPI 8L activity. DPI 8L peptide variant DPI 7L, missing a hydrophobic amino acid (leucine residue 4) exhibited lower efficacy against MiaPaCa cells. Circular dichroism analysis showed DP17L had a lower alpha helix content and the conjugation of any R3HA ((R)-3-hydroxyhexanoic acid to (R)-3-hydroxydodecanoic acid) to DPI 7L returned the helix content back to levels of DPI 8L. However (R)-3-hydroxyhexanoic did not enhance the anti-cancer activity of DPI 7L and at least 7 carbons were needed in the R3HA to enhance activity of D17L. DP17L needs a longer chain R3HA to achieve the same activity as DP18L conjugated to an R3HA. As a first step to assess the synthetic potential of polyhydroxyalkanoate derived R3HA5, (R)-3-hydroxydecanoic acid was synthetically converted to (+/-)3-chlorodecanoic acid, which when conjugated to DP18L improved its antiproliferative activity against MiaPaCa cells.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Journal of Biotechnology",
title = "The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides",
pages = "12-7",
volume = "204",
doi = "10.1016/j.jbiotec.2015.02.036"
}
Szwej, E., Devocelle, M., Kenny, S., Guzik, M., O'Connor, S., Nikodinović-Runić, J., Milovanović, J., Maslak, V., Byrne, A. T., Gallagher, W. M., Zulian, Q. R., Zinn, M.,& O'Connor, K.. (2015). The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides. in Journal of Biotechnology
Elsevier Science Bv, Amsterdam., 204, 7-12.
https://doi.org/10.1016/j.jbiotec.2015.02.036
Szwej E, Devocelle M, Kenny S, Guzik M, O'Connor S, Nikodinović-Runić J, Milovanović J, Maslak V, Byrne AT, Gallagher WM, Zulian QR, Zinn M, O'Connor K. The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides. in Journal of Biotechnology. 2015;204:7-12.
doi:10.1016/j.jbiotec.2015.02.036 .
Szwej, Emilia, Devocelle, Marc, Kenny, Shane, Guzik, Maciej, O'Connor, Stephen, Nikodinović-Runić, Jasmina, Milovanović, Jelena, Maslak, Veselin, Byrne, Annete T., Gallagher, William M., Zulian, Qun Ren, Zinn, Manfred, O'Connor, Kevin , "The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides" in Journal of Biotechnology, 204 (2015):7-12,
https://doi.org/10.1016/j.jbiotec.2015.02.036 . .
4
15
15
17

Recent developments in biocatalysis beyond the laboratory

Narancić, Tanja; Davis, Reeta; Nikodinović-Runić, Jasmina; O'Connor, Kevin

(Springer, Dordrecht, 2015)

TY  - JOUR
AU  - Narancić, Tanja
AU  - Davis, Reeta
AU  - Nikodinović-Runić, Jasmina
AU  - O'Connor, Kevin 
PY  - 2015
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/883
AB  - Recent developments in biocatalysis, where implementation beyond the laboratory has been demonstrated, are explored: the use of transglutaminases to modify foods, reduce allergenicity and produce advanced materials, lipases for biodiesel production, and transaminases for biochemical production. The availability and application of enzymes at pilot and larger scale opens up possibilities for further improvements of biocatalyst-based processes and the development of new processes. Enzyme production, stability, activity, re-use, and product retrieval are common challenges for biocatalytic processes. We explore recent advances in biocatalysis within the process chain, such as protein engineering, enzyme expression, and biocatalyst immobilization, in the context of these challenges.
PB  - Springer, Dordrecht
T2  - Biotechnology Letters
T1  - Recent developments in biocatalysis beyond the laboratory
EP  - 954
IS  - 5
SP  - 943
VL  - 37
DO  - 10.1007/s10529-014-1762-4
ER  - 
@article{
author = "Narancić, Tanja and Davis, Reeta and Nikodinović-Runić, Jasmina and O'Connor, Kevin ",
year = "2015",
abstract = "Recent developments in biocatalysis, where implementation beyond the laboratory has been demonstrated, are explored: the use of transglutaminases to modify foods, reduce allergenicity and produce advanced materials, lipases for biodiesel production, and transaminases for biochemical production. The availability and application of enzymes at pilot and larger scale opens up possibilities for further improvements of biocatalyst-based processes and the development of new processes. Enzyme production, stability, activity, re-use, and product retrieval are common challenges for biocatalytic processes. We explore recent advances in biocatalysis within the process chain, such as protein engineering, enzyme expression, and biocatalyst immobilization, in the context of these challenges.",
publisher = "Springer, Dordrecht",
journal = "Biotechnology Letters",
title = "Recent developments in biocatalysis beyond the laboratory",
pages = "954-943",
number = "5",
volume = "37",
doi = "10.1007/s10529-014-1762-4"
}
Narancić, T., Davis, R., Nikodinović-Runić, J.,& O'Connor, K.. (2015). Recent developments in biocatalysis beyond the laboratory. in Biotechnology Letters
Springer, Dordrecht., 37(5), 943-954.
https://doi.org/10.1007/s10529-014-1762-4
Narancić T, Davis R, Nikodinović-Runić J, O'Connor K. Recent developments in biocatalysis beyond the laboratory. in Biotechnology Letters. 2015;37(5):943-954.
doi:10.1007/s10529-014-1762-4 .
Narancić, Tanja, Davis, Reeta, Nikodinović-Runić, Jasmina, O'Connor, Kevin , "Recent developments in biocatalysis beyond the laboratory" in Biotechnology Letters, 37, no. 5 (2015):943-954,
https://doi.org/10.1007/s10529-014-1762-4 . .
50
37
44

Synthesis of gamma-nitroaldehydes containing quaternary carbon in the alpha-position using a 4-oxalocrotonate tautomerase whole-cell biocatalyst

Milovanović, Jelena; Minovska, Gordana; Šenerović, Lidija; O'Connor, Kevin; Jovanović, Predrag; Savić, Vladimir; Tokić-Vujosević, Zorana; Nikodinović-Runić, Jasmina; Maslak, Veselin

(Royal Soc Chemistry, Cambridge, 2014)

TY  - JOUR
AU  - Milovanović, Jelena
AU  - Minovska, Gordana
AU  - Šenerović, Lidija
AU  - O'Connor, Kevin
AU  - Jovanović, Predrag
AU  - Savić, Vladimir
AU  - Tokić-Vujosević, Zorana
AU  - Nikodinović-Runić, Jasmina
AU  - Maslak, Veselin
PY  - 2014
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/759
AB  - Synthesis of gamma-nitroaldehydes from branched chain aldehydes and a range of alpha,beta-unsaturated nitroalkenes was achieved by a whole-cell biocatalytic reaction using 4-oxalocrotonate tautomerase as catalyst. Under mild conditions, cyclic and acyclic branched aldehydes were converted into synthetically valuable quaternary carbon containing gamma-nitroaldehydes. The yields of the desired products were influenced by reaction condition parameters such as organic solvent, temperature and pH. The whole-cell biocatalytic approach to the generation of alpha,alpha-substituted gamma-nitroaldehydes was compared to the organocatalytic approach involving the lithium salt of phenylalanine as a catalyst. As the resulting gamma-nitroaldehydes exhibited moderate antifungal activity and mild in vitro cytotoxicity against human fibroblasts (0.2-0.4 mM) they could further be examined as potentially useful pharmaceutical synthons.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Synthesis of gamma-nitroaldehydes containing quaternary carbon in the alpha-position using a 4-oxalocrotonate tautomerase whole-cell biocatalyst
EP  - 60510
IS  - 105
SP  - 60502
VL  - 4
DO  - 10.1039/c4ra05517a
ER  - 
@article{
author = "Milovanović, Jelena and Minovska, Gordana and Šenerović, Lidija and O'Connor, Kevin and Jovanović, Predrag and Savić, Vladimir and Tokić-Vujosević, Zorana and Nikodinović-Runić, Jasmina and Maslak, Veselin",
year = "2014",
abstract = "Synthesis of gamma-nitroaldehydes from branched chain aldehydes and a range of alpha,beta-unsaturated nitroalkenes was achieved by a whole-cell biocatalytic reaction using 4-oxalocrotonate tautomerase as catalyst. Under mild conditions, cyclic and acyclic branched aldehydes were converted into synthetically valuable quaternary carbon containing gamma-nitroaldehydes. The yields of the desired products were influenced by reaction condition parameters such as organic solvent, temperature and pH. The whole-cell biocatalytic approach to the generation of alpha,alpha-substituted gamma-nitroaldehydes was compared to the organocatalytic approach involving the lithium salt of phenylalanine as a catalyst. As the resulting gamma-nitroaldehydes exhibited moderate antifungal activity and mild in vitro cytotoxicity against human fibroblasts (0.2-0.4 mM) they could further be examined as potentially useful pharmaceutical synthons.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Synthesis of gamma-nitroaldehydes containing quaternary carbon in the alpha-position using a 4-oxalocrotonate tautomerase whole-cell biocatalyst",
pages = "60510-60502",
number = "105",
volume = "4",
doi = "10.1039/c4ra05517a"
}
Milovanović, J., Minovska, G., Šenerović, L., O'Connor, K., Jovanović, P., Savić, V., Tokić-Vujosević, Z., Nikodinović-Runić, J.,& Maslak, V.. (2014). Synthesis of gamma-nitroaldehydes containing quaternary carbon in the alpha-position using a 4-oxalocrotonate tautomerase whole-cell biocatalyst. in RSC Advances
Royal Soc Chemistry, Cambridge., 4(105), 60502-60510.
https://doi.org/10.1039/c4ra05517a
Milovanović J, Minovska G, Šenerović L, O'Connor K, Jovanović P, Savić V, Tokić-Vujosević Z, Nikodinović-Runić J, Maslak V. Synthesis of gamma-nitroaldehydes containing quaternary carbon in the alpha-position using a 4-oxalocrotonate tautomerase whole-cell biocatalyst. in RSC Advances. 2014;4(105):60502-60510.
doi:10.1039/c4ra05517a .
Milovanović, Jelena, Minovska, Gordana, Šenerović, Lidija, O'Connor, Kevin, Jovanović, Predrag, Savić, Vladimir, Tokić-Vujosević, Zorana, Nikodinović-Runić, Jasmina, Maslak, Veselin, "Synthesis of gamma-nitroaldehydes containing quaternary carbon in the alpha-position using a 4-oxalocrotonate tautomerase whole-cell biocatalyst" in RSC Advances, 4, no. 105 (2014):60502-60510,
https://doi.org/10.1039/c4ra05517a . .
3
3
2

Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids

Guzik, Maciej W.; Narancić, Tanja; Ilić-Tomić, Tatjana; Vojnović, Sandra; Kenny, Shane T.; Casey, William T.; Duane, Gearoid F.; Casey, Eoin; Woods, Trevor; Babu, Ramesh; Nikodinović-Runić, Jasmina; O'Connor, Kevin

(Microbiology Soc, London, 2014)

TY  - JOUR
AU  - Guzik, Maciej W.
AU  - Narancić, Tanja
AU  - Ilić-Tomić, Tatjana
AU  - Vojnović, Sandra
AU  - Kenny, Shane T.
AU  - Casey, William T.
AU  - Duane, Gearoid F.
AU  - Casey, Eoin
AU  - Woods, Trevor
AU  - Babu, Ramesh
AU  - Nikodinović-Runić, Jasmina
AU  - O'Connor, Kevin 
PY  - 2014
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/749
AB  - Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (beta-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 degrees C and pH 6.5-7.
PB  - Microbiology Soc, London
T2  - Microbiology-Sgm
T1  - Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids
EP  - 1771
SP  - 1760
VL  - 160
DO  - 10.1099/mic.0.078758-0
ER  - 
@article{
author = "Guzik, Maciej W. and Narancić, Tanja and Ilić-Tomić, Tatjana and Vojnović, Sandra and Kenny, Shane T. and Casey, William T. and Duane, Gearoid F. and Casey, Eoin and Woods, Trevor and Babu, Ramesh and Nikodinović-Runić, Jasmina and O'Connor, Kevin ",
year = "2014",
abstract = "Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (beta-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 degrees C and pH 6.5-7.",
publisher = "Microbiology Soc, London",
journal = "Microbiology-Sgm",
title = "Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids",
pages = "1771-1760",
volume = "160",
doi = "10.1099/mic.0.078758-0"
}
Guzik, M. W., Narancić, T., Ilić-Tomić, T., Vojnović, S., Kenny, S. T., Casey, W. T., Duane, G. F., Casey, E., Woods, T., Babu, R., Nikodinović-Runić, J.,& O'Connor, K.. (2014). Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. in Microbiology-Sgm
Microbiology Soc, London., 160, 1760-1771.
https://doi.org/10.1099/mic.0.078758-0
Guzik MW, Narancić T, Ilić-Tomić T, Vojnović S, Kenny ST, Casey WT, Duane GF, Casey E, Woods T, Babu R, Nikodinović-Runić J, O'Connor K. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. in Microbiology-Sgm. 2014;160:1760-1771.
doi:10.1099/mic.0.078758-0 .
Guzik, Maciej W., Narancić, Tanja, Ilić-Tomić, Tatjana, Vojnović, Sandra, Kenny, Shane T., Casey, William T., Duane, Gearoid F., Casey, Eoin, Woods, Trevor, Babu, Ramesh, Nikodinović-Runić, Jasmina, O'Connor, Kevin , "Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids" in Microbiology-Sgm, 160 (2014):1760-1771,
https://doi.org/10.1099/mic.0.078758-0 . .
22
13
18

Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate

Guzik, Maciej W.; Kenny, Shane T.; Duane, Gearoid F.; Casey, Eoin; Woods, Trevor; Babu, Ramesh; Nikodinović-Runić, Jasmina; Murray, Michael; O'Connor, Kevin

(Springer, New York, 2014)

TY  - JOUR
AU  - Guzik, Maciej W.
AU  - Kenny, Shane T.
AU  - Duane, Gearoid F.
AU  - Casey, Eoin
AU  - Woods, Trevor
AU  - Babu, Ramesh
AU  - Nikodinović-Runić, Jasmina
AU  - Murray, Michael
AU  - O'Connor, Kevin 
PY  - 2014
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/784
AB  - A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate
EP  - 4232
IS  - 9
SP  - 4223
VL  - 98
DO  - 10.1007/s00253-013-5489-2
ER  - 
@article{
author = "Guzik, Maciej W. and Kenny, Shane T. and Duane, Gearoid F. and Casey, Eoin and Woods, Trevor and Babu, Ramesh and Nikodinović-Runić, Jasmina and Murray, Michael and O'Connor, Kevin ",
year = "2014",
abstract = "A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate",
pages = "4232-4223",
number = "9",
volume = "98",
doi = "10.1007/s00253-013-5489-2"
}
Guzik, M. W., Kenny, S. T., Duane, G. F., Casey, E., Woods, T., Babu, R., Nikodinović-Runić, J., Murray, M.,& O'Connor, K.. (2014). Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. in Applied Microbiology and Biotechnology
Springer, New York., 98(9), 4223-4232.
https://doi.org/10.1007/s00253-013-5489-2
Guzik MW, Kenny ST, Duane GF, Casey E, Woods T, Babu R, Nikodinović-Runić J, Murray M, O'Connor K. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. in Applied Microbiology and Biotechnology. 2014;98(9):4223-4232.
doi:10.1007/s00253-013-5489-2 .
Guzik, Maciej W., Kenny, Shane T., Duane, Gearoid F., Casey, Eoin, Woods, Trevor, Babu, Ramesh, Nikodinović-Runić, Jasmina, Murray, Michael, O'Connor, Kevin , "Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate" in Applied Microbiology and Biotechnology, 98, no. 9 (2014):4223-4232,
https://doi.org/10.1007/s00253-013-5489-2 . .
7
104
44
94

Production of a chiral alcohol, 1-(3,4-dihydroxyphenyl) ethanol, by mushroom tyrosinase

Brooks, Sarah J.; Nikodinović-Runić, Jasmina; Martin, Leona; Doyle, Evelyn M.; O'Sullivan, Timothy; Guiry, Patrick J.; Coulombel, Lydie; Li, Zhi; O'Connor, Kevin

(Springer, Dordrecht, 2013)

TY  - JOUR
AU  - Brooks, Sarah J.
AU  - Nikodinović-Runić, Jasmina
AU  - Martin, Leona
AU  - Doyle, Evelyn M.
AU  - O'Sullivan, Timothy
AU  - Guiry, Patrick J.
AU  - Coulombel, Lydie
AU  - Li, Zhi
AU  - O'Connor, Kevin 
PY  - 2013
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/624
AB  - 1-(3,4-Dihydroxyphenyl) ethanol was produced biocatalytically for the first time using mushroom tyrosinase. 4-Ethylphenol at 1 mM was consumed over 12 min giving 0.23 mM 4-ethylcatechol and 0.36 mM (R/S)-1-(3,4-dihydroxyphenyl) ethanol (ee 0.5 %). Mushroom tyrosinase consumed 4-ethylphenol at 6.7 mu mol min(-1) mg protein(-1) while the rates of formation of 4-ethylcatechol and 1-(3,4-dihydroxyphenyl) ethanol were 1.1 and 1.9 mu mol min(-1) mg protein(-1). Addition of the ascorbic acid, as a reducing agent to biotransformation reactions, increased 4-ethylcatechol formation by 340 %. However, accumulation of 1-(3,4-dihydroxyphenyl) ethanol was not observed in the presence of ascorbic acid. While the 1-(3,4-dihydroxyphenyl) ethanol was racemic, it is the first chiral product produced by tyrosinase starting from a non-chiral substrate.
PB  - Springer, Dordrecht
T2  - Biotechnology Letters
T1  - Production of a chiral alcohol, 1-(3,4-dihydroxyphenyl) ethanol, by mushroom tyrosinase
EP  - 783
IS  - 5
SP  - 779
VL  - 35
DO  - 10.1007/s10529-013-1148-z
ER  - 
@article{
author = "Brooks, Sarah J. and Nikodinović-Runić, Jasmina and Martin, Leona and Doyle, Evelyn M. and O'Sullivan, Timothy and Guiry, Patrick J. and Coulombel, Lydie and Li, Zhi and O'Connor, Kevin ",
year = "2013",
abstract = "1-(3,4-Dihydroxyphenyl) ethanol was produced biocatalytically for the first time using mushroom tyrosinase. 4-Ethylphenol at 1 mM was consumed over 12 min giving 0.23 mM 4-ethylcatechol and 0.36 mM (R/S)-1-(3,4-dihydroxyphenyl) ethanol (ee 0.5 %). Mushroom tyrosinase consumed 4-ethylphenol at 6.7 mu mol min(-1) mg protein(-1) while the rates of formation of 4-ethylcatechol and 1-(3,4-dihydroxyphenyl) ethanol were 1.1 and 1.9 mu mol min(-1) mg protein(-1). Addition of the ascorbic acid, as a reducing agent to biotransformation reactions, increased 4-ethylcatechol formation by 340 %. However, accumulation of 1-(3,4-dihydroxyphenyl) ethanol was not observed in the presence of ascorbic acid. While the 1-(3,4-dihydroxyphenyl) ethanol was racemic, it is the first chiral product produced by tyrosinase starting from a non-chiral substrate.",
publisher = "Springer, Dordrecht",
journal = "Biotechnology Letters",
title = "Production of a chiral alcohol, 1-(3,4-dihydroxyphenyl) ethanol, by mushroom tyrosinase",
pages = "783-779",
number = "5",
volume = "35",
doi = "10.1007/s10529-013-1148-z"
}
Brooks, S. J., Nikodinović-Runić, J., Martin, L., Doyle, E. M., O'Sullivan, T., Guiry, P. J., Coulombel, L., Li, Z.,& O'Connor, K.. (2013). Production of a chiral alcohol, 1-(3,4-dihydroxyphenyl) ethanol, by mushroom tyrosinase. in Biotechnology Letters
Springer, Dordrecht., 35(5), 779-783.
https://doi.org/10.1007/s10529-013-1148-z
Brooks SJ, Nikodinović-Runić J, Martin L, Doyle EM, O'Sullivan T, Guiry PJ, Coulombel L, Li Z, O'Connor K. Production of a chiral alcohol, 1-(3,4-dihydroxyphenyl) ethanol, by mushroom tyrosinase. in Biotechnology Letters. 2013;35(5):779-783.
doi:10.1007/s10529-013-1148-z .
Brooks, Sarah J., Nikodinović-Runić, Jasmina, Martin, Leona, Doyle, Evelyn M., O'Sullivan, Timothy, Guiry, Patrick J., Coulombel, Lydie, Li, Zhi, O'Connor, Kevin , "Production of a chiral alcohol, 1-(3,4-dihydroxyphenyl) ethanol, by mushroom tyrosinase" in Biotechnology Letters, 35, no. 5 (2013):779-783,
https://doi.org/10.1007/s10529-013-1148-z . .
3
3
3

The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate

O'Connor, Stephen; Szwej, Emilia; Nikodinović-Runić, Jasmina; O'Connor, Aisling; Byrne, Annette T.; Devocelle, Marc; O'Donovan, Norma; Gallagher, William M.; Babu, Ramesh; Kenny, Shane T.; Zinn, Manfred; Zulian, Qun Ren; O'Connor, Kevin

(Elsevier Sci Ltd, Oxford, 2013)

TY  - JOUR
AU  - O'Connor, Stephen
AU  - Szwej, Emilia
AU  - Nikodinović-Runić, Jasmina
AU  - O'Connor, Aisling
AU  - Byrne, Annette T.
AU  - Devocelle, Marc
AU  - O'Donovan, Norma
AU  - Gallagher, William M.
AU  - Babu, Ramesh
AU  - Kenny, Shane T.
AU  - Zinn, Manfred
AU  - Zulian, Qun Ren
AU  - O'Connor, Kevin 
PY  - 2013
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/637
AB  - The biodegradable polymer medium chain length polyhydroxyalkanoate (mclPHA), produced by Pseudomonas putida CA-3, was depolymerised and the predominant monomer (R)-3-hydroxydecanoic acid (R10) purified. R10 was conjugated to a D-peptide DP18 and its derivatives. All peptides conjugated with R10 exhibited greater anti-cancer activity compared to the unconjugated peptides. Unconjugated and conjugated peptides were cytocidal for cancer cells. Conjugation of R10 to peptides was essential for enhanced anti-proliferation activity, as unconjugated mixes did not result in enhancement of anti-cancer activity. The conjugation of R10 resulted in more rapid uptake of peptides into HeLa and MiaPaCa cells compared to unconjugated peptide. Both unconjugated and R10 conjugated peptides localized to the mitochondria of HeLa and MiaPaCa cells and induced apoptosis. Peptide conjugated with a terminally hydroxylated decanoic acid (omega-hydroxydecanoic acid) exhibited 3.3 and 6.3 fold higher IC50 values compared to R10 conjugated peptide indicating a role for the position of the hydroxyl moiety in enhancement of anti-cancer activity. Conjugation of decanoic acid (C10) to peptides resulted in similar or higher IC50 values compared to R10 conjugates but C10 conjugates did not exhibit any cancer selectivity. Combination studies showed that R10DP18L exhibited synergy with cisplatin, gemcitabine, and taxotere with IC50 values in the nanomolar range.
PB  - Elsevier Sci Ltd, Oxford
T2  - Biomaterials
T1  - The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate
EP  - 2718
IS  - 11
SP  - 2710
VL  - 34
DO  - 10.1016/j.biomaterials.2012.12.032
ER  - 
@article{
author = "O'Connor, Stephen and Szwej, Emilia and Nikodinović-Runić, Jasmina and O'Connor, Aisling and Byrne, Annette T. and Devocelle, Marc and O'Donovan, Norma and Gallagher, William M. and Babu, Ramesh and Kenny, Shane T. and Zinn, Manfred and Zulian, Qun Ren and O'Connor, Kevin ",
year = "2013",
abstract = "The biodegradable polymer medium chain length polyhydroxyalkanoate (mclPHA), produced by Pseudomonas putida CA-3, was depolymerised and the predominant monomer (R)-3-hydroxydecanoic acid (R10) purified. R10 was conjugated to a D-peptide DP18 and its derivatives. All peptides conjugated with R10 exhibited greater anti-cancer activity compared to the unconjugated peptides. Unconjugated and conjugated peptides were cytocidal for cancer cells. Conjugation of R10 to peptides was essential for enhanced anti-proliferation activity, as unconjugated mixes did not result in enhancement of anti-cancer activity. The conjugation of R10 resulted in more rapid uptake of peptides into HeLa and MiaPaCa cells compared to unconjugated peptide. Both unconjugated and R10 conjugated peptides localized to the mitochondria of HeLa and MiaPaCa cells and induced apoptosis. Peptide conjugated with a terminally hydroxylated decanoic acid (omega-hydroxydecanoic acid) exhibited 3.3 and 6.3 fold higher IC50 values compared to R10 conjugated peptide indicating a role for the position of the hydroxyl moiety in enhancement of anti-cancer activity. Conjugation of decanoic acid (C10) to peptides resulted in similar or higher IC50 values compared to R10 conjugates but C10 conjugates did not exhibit any cancer selectivity. Combination studies showed that R10DP18L exhibited synergy with cisplatin, gemcitabine, and taxotere with IC50 values in the nanomolar range.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Biomaterials",
title = "The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate",
pages = "2718-2710",
number = "11",
volume = "34",
doi = "10.1016/j.biomaterials.2012.12.032"
}
O'Connor, S., Szwej, E., Nikodinović-Runić, J., O'Connor, A., Byrne, A. T., Devocelle, M., O'Donovan, N., Gallagher, W. M., Babu, R., Kenny, S. T., Zinn, M., Zulian, Q. R.,& O'Connor, K.. (2013). The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. in Biomaterials
Elsevier Sci Ltd, Oxford., 34(11), 2710-2718.
https://doi.org/10.1016/j.biomaterials.2012.12.032
O'Connor S, Szwej E, Nikodinović-Runić J, O'Connor A, Byrne AT, Devocelle M, O'Donovan N, Gallagher WM, Babu R, Kenny ST, Zinn M, Zulian QR, O'Connor K. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. in Biomaterials. 2013;34(11):2710-2718.
doi:10.1016/j.biomaterials.2012.12.032 .
O'Connor, Stephen, Szwej, Emilia, Nikodinović-Runić, Jasmina, O'Connor, Aisling, Byrne, Annette T., Devocelle, Marc, O'Donovan, Norma, Gallagher, William M., Babu, Ramesh, Kenny, Shane T., Zinn, Manfred, Zulian, Qun Ren, O'Connor, Kevin , "The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate" in Biomaterials, 34, no. 11 (2013):2710-2718,
https://doi.org/10.1016/j.biomaterials.2012.12.032 . .
55
38
55

Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase

Narancić, Tanja; Milovanović, Jelena; Jovanović, Predrag; Francuski, Djordje; Bigović, Miljan; Maslak, Veselin; Savić, Vladimir; Vasiljević, Branka; O'Connor, Kevin ; Nikodinović-Runić, Jasmina

(Elsevier Sci Ltd, Oxford, 2013)

TY  - JOUR
AU  - Narancić, Tanja
AU  - Milovanović, Jelena
AU  - Jovanović, Predrag
AU  - Francuski, Djordje
AU  - Bigović, Miljan
AU  - Maslak, Veselin
AU  - Savić, Vladimir
AU  - Vasiljević, Branka
AU  - O'Connor, Kevin 
AU  - Nikodinović-Runić, Jasmina
PY  - 2013
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/656
AB  - A novel whole cell system based on recombinantly expressed 4-oxalocrotonate tautomerase (4-OT) was developed and shown to be an effective biocatalyst for the asymmetric Michael addition of acetaldehyde to beta-nitrostyrenes. Optimal ratio of substrates (2 mM beta-nitrostyrenes and 20 mM acetaldehyde) and biocatalyst of 5 g of cell dry weight of biocatalyst per liter was determined. Through further bioprocess improvement by sequential addition of substrate 10 mM nitrostyrene biotransformation was achieved within 150 min. Excellent enantioselectivity ( gt 99% ee) and product yields of up to 60% were obtained with beta-nitrostyrene substrate. The biotransformation product, 4-nitro-3-phenyl-butanal, was isolated from aqueous media and further transformed into the corresponding amino alcohol. The biocatalyst exhibited lower reaction rates with p-Cl-, o-Cl- and p-F-beta-nitrostyrenes with product yields of 38%, 51%, 31% and ee values of 84%, 88% and 94% respectively. The importance of the terminal,proline of 4-UT was confirmed by two proline enriched variants and homology modeling.
PB  - Elsevier Sci Ltd, Oxford
T2  - Bioresource Technology
T1  - Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase
EP  - 468
SP  - 462
VL  - 142
DO  - 10.1016/j.biortech.2013.05.074
ER  - 
@article{
author = "Narancić, Tanja and Milovanović, Jelena and Jovanović, Predrag and Francuski, Djordje and Bigović, Miljan and Maslak, Veselin and Savić, Vladimir and Vasiljević, Branka and O'Connor, Kevin  and Nikodinović-Runić, Jasmina",
year = "2013",
abstract = "A novel whole cell system based on recombinantly expressed 4-oxalocrotonate tautomerase (4-OT) was developed and shown to be an effective biocatalyst for the asymmetric Michael addition of acetaldehyde to beta-nitrostyrenes. Optimal ratio of substrates (2 mM beta-nitrostyrenes and 20 mM acetaldehyde) and biocatalyst of 5 g of cell dry weight of biocatalyst per liter was determined. Through further bioprocess improvement by sequential addition of substrate 10 mM nitrostyrene biotransformation was achieved within 150 min. Excellent enantioselectivity ( gt 99% ee) and product yields of up to 60% were obtained with beta-nitrostyrene substrate. The biotransformation product, 4-nitro-3-phenyl-butanal, was isolated from aqueous media and further transformed into the corresponding amino alcohol. The biocatalyst exhibited lower reaction rates with p-Cl-, o-Cl- and p-F-beta-nitrostyrenes with product yields of 38%, 51%, 31% and ee values of 84%, 88% and 94% respectively. The importance of the terminal,proline of 4-UT was confirmed by two proline enriched variants and homology modeling.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Bioresource Technology",
title = "Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase",
pages = "468-462",
volume = "142",
doi = "10.1016/j.biortech.2013.05.074"
}
Narancić, T., Milovanović, J., Jovanović, P., Francuski, D., Bigović, M., Maslak, V., Savić, V., Vasiljević, B., O'Connor, K.,& Nikodinović-Runić, J.. (2013). Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase. in Bioresource Technology
Elsevier Sci Ltd, Oxford., 142, 462-468.
https://doi.org/10.1016/j.biortech.2013.05.074
Narancić T, Milovanović J, Jovanović P, Francuski D, Bigović M, Maslak V, Savić V, Vasiljević B, O'Connor K, Nikodinović-Runić J. Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase. in Bioresource Technology. 2013;142:462-468.
doi:10.1016/j.biortech.2013.05.074 .
Narancić, Tanja, Milovanović, Jelena, Jovanović, Predrag, Francuski, Djordje, Bigović, Miljan, Maslak, Veselin, Savić, Vladimir, Vasiljević, Branka, O'Connor, Kevin , Nikodinović-Runić, Jasmina, "Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase" in Bioresource Technology, 142 (2013):462-468,
https://doi.org/10.1016/j.biortech.2013.05.074 . .
22
17
19

The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440

Casey, William T.; Nikodinović-Runić, Jasmina; Fonseca Garcia, Pilar; Guzik, Maciej W.; McGrath, John W.; Quinn, John P.; Cagney, Gerard; Auxiliadora Prieto, Maria; O'Connor, Kevin

(Wiley, Hoboken, 2013)

TY  - JOUR
AU  - Casey, William T.
AU  - Nikodinović-Runić, Jasmina
AU  - Fonseca Garcia, Pilar
AU  - Guzik, Maciej W.
AU  - McGrath, John W.
AU  - Quinn, John P.
AU  - Cagney, Gerard
AU  - Auxiliadora Prieto, Maria
AU  - O'Connor, Kevin 
PY  - 2013
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/628
AB  - The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putidaKT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by ppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and ppk strains under all growth conditions tested. In the ppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. ppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42h of lag period compared with 24h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the ppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.
PB  - Wiley, Hoboken
T2  - Environmental Microbiology Reports
T1  - The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440
EP  - 746
IS  - 5
SP  - 740
VL  - 5
DO  - 10.1111/1758-2229.12076
ER  - 
@article{
author = "Casey, William T. and Nikodinović-Runić, Jasmina and Fonseca Garcia, Pilar and Guzik, Maciej W. and McGrath, John W. and Quinn, John P. and Cagney, Gerard and Auxiliadora Prieto, Maria and O'Connor, Kevin ",
year = "2013",
abstract = "The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putidaKT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by ppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and ppk strains under all growth conditions tested. In the ppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. ppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42h of lag period compared with 24h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the ppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.",
publisher = "Wiley, Hoboken",
journal = "Environmental Microbiology Reports",
title = "The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440",
pages = "746-740",
number = "5",
volume = "5",
doi = "10.1111/1758-2229.12076"
}
Casey, W. T., Nikodinović-Runić, J., Fonseca Garcia, P., Guzik, M. W., McGrath, J. W., Quinn, J. P., Cagney, G., Auxiliadora Prieto, M.,& O'Connor, K.. (2013). The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440. in Environmental Microbiology Reports
Wiley, Hoboken., 5(5), 740-746.
https://doi.org/10.1111/1758-2229.12076
Casey WT, Nikodinović-Runić J, Fonseca Garcia P, Guzik MW, McGrath JW, Quinn JP, Cagney G, Auxiliadora Prieto M, O'Connor K. The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440. in Environmental Microbiology Reports. 2013;5(5):740-746.
doi:10.1111/1758-2229.12076 .
Casey, William T., Nikodinović-Runić, Jasmina, Fonseca Garcia, Pilar, Guzik, Maciej W., McGrath, John W., Quinn, John P., Cagney, Gerard, Auxiliadora Prieto, Maria, O'Connor, Kevin , "The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440" in Environmental Microbiology Reports, 5, no. 5 (2013):740-746,
https://doi.org/10.1111/1758-2229.12076 . .
13
8
11

Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches

Molloy, Susan; Nikodinović-Runić, Jasmina; Martin, Leona B.; Hartmann, Hermann; Solano, Francisco; Decker, Heinz; O'Connor, Kevin

(Wiley, Hoboken, 2013)

TY  - JOUR
AU  - Molloy, Susan
AU  - Nikodinović-Runić, Jasmina
AU  - Martin, Leona B.
AU  - Hartmann, Hermann
AU  - Solano, Francisco
AU  - Decker, Heinz
AU  - O'Connor, Kevin 
PY  - 2013
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/646
AB  - The tyrosinase gene from Ralstonia solanacearum (GenBank NP518458) was subjected to random mutagenesis resulting in tyrosinase variants (RVC10 and RV145) with up to 3.2-fold improvement in kcat, 5.2-fold lower Km and 16-fold improvement in catalytic efficiency for D-tyrosine. Based on RVC10 and RV145 mutated sequences, single mutation variants were generated with all variants showing increased kcat for D-tyrosine compared to the wild type (WT). All single mutation variants based on RV145 had a higher kcat and Km value compared to the RV145 and thus the combination of four mutations in RV145 was antagonistic for turnover, but synergistic for affinity of the enzyme for D-tyrosine. Single mutation variant 145_V153A exhibited the highest (6.9-fold) improvement in kcat and a 2.4-fold increase in Km compared to the WT. Two single mutation variants, C10_N322S and C10_T183I reduced the Km up to 2.6-fold for D-tyrosine but one variant 145_V153A increased the Km 2.4-fold compared to the WT. Homology based modeling of R. solanacearum tyrosinase showed that mutation V153A disrupts the van der Waals interactions with an -helix providing one of the conserved histidine residues of the active site. The kcat and Km values for L-tyrosine decreased for RV145 and RVC10 compared to the WT. RV145 exhibited a 2.1-fold high catalytic efficiency compared to the WT which is a 7.6-fold lower improvement compared to D-tyrosine. RV145 exhibited a threefold higher monophenolase:diphenolase activity ratio for D-tyrosine:D-DOPA and a 1.4-fold higher L-tyrosine:L-DOPA activity ratio compared to the WT. Biotechnol. Bioeng. 2013; 110: 1849-1857.
PB  - Wiley, Hoboken
T2  - Biotechnology and Bioengineering
T1  - Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches
EP  - 1857
IS  - 7
SP  - 1849
VL  - 110
DO  - 10.1002/bit.24859
ER  - 
@article{
author = "Molloy, Susan and Nikodinović-Runić, Jasmina and Martin, Leona B. and Hartmann, Hermann and Solano, Francisco and Decker, Heinz and O'Connor, Kevin ",
year = "2013",
abstract = "The tyrosinase gene from Ralstonia solanacearum (GenBank NP518458) was subjected to random mutagenesis resulting in tyrosinase variants (RVC10 and RV145) with up to 3.2-fold improvement in kcat, 5.2-fold lower Km and 16-fold improvement in catalytic efficiency for D-tyrosine. Based on RVC10 and RV145 mutated sequences, single mutation variants were generated with all variants showing increased kcat for D-tyrosine compared to the wild type (WT). All single mutation variants based on RV145 had a higher kcat and Km value compared to the RV145 and thus the combination of four mutations in RV145 was antagonistic for turnover, but synergistic for affinity of the enzyme for D-tyrosine. Single mutation variant 145_V153A exhibited the highest (6.9-fold) improvement in kcat and a 2.4-fold increase in Km compared to the WT. Two single mutation variants, C10_N322S and C10_T183I reduced the Km up to 2.6-fold for D-tyrosine but one variant 145_V153A increased the Km 2.4-fold compared to the WT. Homology based modeling of R. solanacearum tyrosinase showed that mutation V153A disrupts the van der Waals interactions with an -helix providing one of the conserved histidine residues of the active site. The kcat and Km values for L-tyrosine decreased for RV145 and RVC10 compared to the WT. RV145 exhibited a 2.1-fold high catalytic efficiency compared to the WT which is a 7.6-fold lower improvement compared to D-tyrosine. RV145 exhibited a threefold higher monophenolase:diphenolase activity ratio for D-tyrosine:D-DOPA and a 1.4-fold higher L-tyrosine:L-DOPA activity ratio compared to the WT. Biotechnol. Bioeng. 2013; 110: 1849-1857.",
publisher = "Wiley, Hoboken",
journal = "Biotechnology and Bioengineering",
title = "Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches",
pages = "1857-1849",
number = "7",
volume = "110",
doi = "10.1002/bit.24859"
}
Molloy, S., Nikodinović-Runić, J., Martin, L. B., Hartmann, H., Solano, F., Decker, H.,& O'Connor, K.. (2013). Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches. in Biotechnology and Bioengineering
Wiley, Hoboken., 110(7), 1849-1857.
https://doi.org/10.1002/bit.24859
Molloy S, Nikodinović-Runić J, Martin LB, Hartmann H, Solano F, Decker H, O'Connor K. Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches. in Biotechnology and Bioengineering. 2013;110(7):1849-1857.
doi:10.1002/bit.24859 .
Molloy, Susan, Nikodinović-Runić, Jasmina, Martin, Leona B., Hartmann, Hermann, Solano, Francisco, Decker, Heinz, O'Connor, Kevin , "Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches" in Biotechnology and Bioengineering, 110, no. 7 (2013):1849-1857,
https://doi.org/10.1002/bit.24859 . .
6
34
27
36

The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3

Nikodinović-Runić, Jasmina; Coulombel, Lydie; Francuski, Djordje; Sharma, Narain D.; Boyd, Derek R.; Ferrall, Rory Moore O.; O'Connor, Kevin

(Springer, New York, 2013)

TY  - JOUR
AU  - Nikodinović-Runić, Jasmina
AU  - Coulombel, Lydie
AU  - Francuski, Djordje
AU  - Sharma, Narain D.
AU  - Boyd, Derek R.
AU  - Ferrall, Rory Moore O.
AU  - O'Connor, Kevin 
PY  - 2013
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/644
AB  - Nine different sulfur-containing compounds were biotransformed to the corresponding sulfoxides by Escherichia coli Bl21(DE3) cells expressing styrene monooxygenase (SMO) from Pseudomonas putida CA-3. Thioanisole was consumed at 83.3 mu moles min(-1) g cell dry weight(-1) resulting mainly in the formation of R-thioanisole sulfoxide with an enantiomeric excess (ee) value of 45 %. The rate of 2-methyl-, 2-chloro- and 2-bromo-thioanisole consumption was 2-fold lower than that of thioanisole. Surprisingly, the 2-methylthioanisole sulfoxide product had the opposite (S) configuration to that of the other 2-substituted thioanisole derivatives and had a higher ee value (84 %). The rate of oxidation of 4-substituted thioanisoles was higher than the corresponding 2-substituted substrates but the ee values of the products were consistently lower (10-23 %). The rate of benzo[b]thiophene and 2-methylbenzo[b]thiophene sulfoxidation was approximately 10-fold lower than that of thioanisole. The ee value of the benzo[b]thiophene sulfoxide could not be determined as the product racemized rapidly. E. coli cells expressing an engineered SMO (SMOeng R3-11) oxidised 2-substituted thioanisoles between 1.8- and 2.8-fold faster compared to cells expressing the wild-type enzyme. SMOeng R3-11 oxidised benzo[b]thiophene and 2-methylbenzo[b]thiophene 10.1 and 5.6 times faster that the wild-type enzyme. The stereospecificity of the reaction catalysed by SMOeng was unchanged from that of the wild type. Using the X-ray crystal structure of the P. putida S12 SMO, it was evident that the entrance of substrates into the SMO active site is limited by the binding pocket bottleneck formed by the side chains of Val-211 and Asn-46 carboxyamide group.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3
EP  - 4858
IS  - 11
SP  - 4849
VL  - 97
DO  - 10.1007/s00253-012-4332-5
ER  - 
@article{
author = "Nikodinović-Runić, Jasmina and Coulombel, Lydie and Francuski, Djordje and Sharma, Narain D. and Boyd, Derek R. and Ferrall, Rory Moore O. and O'Connor, Kevin ",
year = "2013",
abstract = "Nine different sulfur-containing compounds were biotransformed to the corresponding sulfoxides by Escherichia coli Bl21(DE3) cells expressing styrene monooxygenase (SMO) from Pseudomonas putida CA-3. Thioanisole was consumed at 83.3 mu moles min(-1) g cell dry weight(-1) resulting mainly in the formation of R-thioanisole sulfoxide with an enantiomeric excess (ee) value of 45 %. The rate of 2-methyl-, 2-chloro- and 2-bromo-thioanisole consumption was 2-fold lower than that of thioanisole. Surprisingly, the 2-methylthioanisole sulfoxide product had the opposite (S) configuration to that of the other 2-substituted thioanisole derivatives and had a higher ee value (84 %). The rate of oxidation of 4-substituted thioanisoles was higher than the corresponding 2-substituted substrates but the ee values of the products were consistently lower (10-23 %). The rate of benzo[b]thiophene and 2-methylbenzo[b]thiophene sulfoxidation was approximately 10-fold lower than that of thioanisole. The ee value of the benzo[b]thiophene sulfoxide could not be determined as the product racemized rapidly. E. coli cells expressing an engineered SMO (SMOeng R3-11) oxidised 2-substituted thioanisoles between 1.8- and 2.8-fold faster compared to cells expressing the wild-type enzyme. SMOeng R3-11 oxidised benzo[b]thiophene and 2-methylbenzo[b]thiophene 10.1 and 5.6 times faster that the wild-type enzyme. The stereospecificity of the reaction catalysed by SMOeng was unchanged from that of the wild type. Using the X-ray crystal structure of the P. putida S12 SMO, it was evident that the entrance of substrates into the SMO active site is limited by the binding pocket bottleneck formed by the side chains of Val-211 and Asn-46 carboxyamide group.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3",
pages = "4858-4849",
number = "11",
volume = "97",
doi = "10.1007/s00253-012-4332-5"
}
Nikodinović-Runić, J., Coulombel, L., Francuski, D., Sharma, N. D., Boyd, D. R., Ferrall, R. M. O.,& O'Connor, K.. (2013). The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3. in Applied Microbiology and Biotechnology
Springer, New York., 97(11), 4849-4858.
https://doi.org/10.1007/s00253-012-4332-5
Nikodinović-Runić J, Coulombel L, Francuski D, Sharma ND, Boyd DR, Ferrall RMO, O'Connor K. The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3. in Applied Microbiology and Biotechnology. 2013;97(11):4849-4858.
doi:10.1007/s00253-012-4332-5 .
Nikodinović-Runić, Jasmina, Coulombel, Lydie, Francuski, Djordje, Sharma, Narain D., Boyd, Derek R., Ferrall, Rory Moore O., O'Connor, Kevin , "The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3" in Applied Microbiology and Biotechnology, 97, no. 11 (2013):4849-4858,
https://doi.org/10.1007/s00253-012-4332-5 . .
32
22
29

Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes

Boyd, Derek R.; Sharma, Narain D.; McMurray, Brian; Haughey, Simon A.; Allen, Christopher C. R.; Hamilton, John T. G.; McRoberts, W. Colin; O'Ferrall, Rory A. More; Nikodinović-Runić, Jasmina; Coulombel, Lydie A.; O'Connor, Kevin

(Royal Soc Chemistry, Cambridge, 2012)

TY  - JOUR
AU  - Boyd, Derek R.
AU  - Sharma, Narain D.
AU  - McMurray, Brian
AU  - Haughey, Simon A.
AU  - Allen, Christopher C. R.
AU  - Hamilton, John T. G.
AU  - McRoberts, W. Colin
AU  - O'Ferrall, Rory A. More
AU  - Nikodinović-Runić, Jasmina
AU  - Coulombel, Lydie A.
AU  - O'Connor, Kevin 
PY  - 2012
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/612
AB  - Asymmetric heteroatom oxidation of benzo[b]thiophenes to yield the corresponding sulfoxides was catalysed by toluene dioxygenase (TDO), naphthalene dioxygenase (NDO) and styrene monooxygenase (SMO) enzymes present in P. putida mutant and E. coli recombinant whole cells. TDO-catalysed oxidation yielded the relatively unstable benzo[b] thiophene sulfoxide; its dimerization, followed by dehydrogenation, resulted in the isolation of stable tetracyclic sulfoxides as minor products with cis-dihydrodiols being the dominant metabolites. SMO mainly catalysed the formation of enantioenriched benzo[b] thiophene sulfoxide and 2-methyl benzo[b] thiophene sulfoxides which racemized at ambient temperature. The barriers to pyramidal sulfur inversion of 2- and 3-methyl benzo[b] thiophene sulfoxide metabolites, obtained using TDO and NDO as biocatalysts, were found to be ca.: 25-27 kcal mol(-1). The absolute configurations of the benzo[b] thiophene sulfoxides were determined by ECD spectroscopy, X-ray crystallography and stereochemical correlation. A site-directed mutant E. coli strain containing an engineered form of NDO, was found to change the regioselectivity toward preferential oxidation of the thiophene ring rather than the benzene ring.
PB  - Royal Soc Chemistry, Cambridge
T2  - Organic & Biomolecular Chemistry
T1  - Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes
EP  - 790
IS  - 4
SP  - 782
VL  - 10
DO  - 10.1039/c1ob06678a
ER  - 
@article{
author = "Boyd, Derek R. and Sharma, Narain D. and McMurray, Brian and Haughey, Simon A. and Allen, Christopher C. R. and Hamilton, John T. G. and McRoberts, W. Colin and O'Ferrall, Rory A. More and Nikodinović-Runić, Jasmina and Coulombel, Lydie A. and O'Connor, Kevin ",
year = "2012",
abstract = "Asymmetric heteroatom oxidation of benzo[b]thiophenes to yield the corresponding sulfoxides was catalysed by toluene dioxygenase (TDO), naphthalene dioxygenase (NDO) and styrene monooxygenase (SMO) enzymes present in P. putida mutant and E. coli recombinant whole cells. TDO-catalysed oxidation yielded the relatively unstable benzo[b] thiophene sulfoxide; its dimerization, followed by dehydrogenation, resulted in the isolation of stable tetracyclic sulfoxides as minor products with cis-dihydrodiols being the dominant metabolites. SMO mainly catalysed the formation of enantioenriched benzo[b] thiophene sulfoxide and 2-methyl benzo[b] thiophene sulfoxides which racemized at ambient temperature. The barriers to pyramidal sulfur inversion of 2- and 3-methyl benzo[b] thiophene sulfoxide metabolites, obtained using TDO and NDO as biocatalysts, were found to be ca.: 25-27 kcal mol(-1). The absolute configurations of the benzo[b] thiophene sulfoxides were determined by ECD spectroscopy, X-ray crystallography and stereochemical correlation. A site-directed mutant E. coli strain containing an engineered form of NDO, was found to change the regioselectivity toward preferential oxidation of the thiophene ring rather than the benzene ring.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Organic & Biomolecular Chemistry",
title = "Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes",
pages = "790-782",
number = "4",
volume = "10",
doi = "10.1039/c1ob06678a"
}
Boyd, D. R., Sharma, N. D., McMurray, B., Haughey, S. A., Allen, C. C. R., Hamilton, J. T. G., McRoberts, W. C., O'Ferrall, R. A. M., Nikodinović-Runić, J., Coulombel, L. A.,& O'Connor, K.. (2012). Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes. in Organic & Biomolecular Chemistry
Royal Soc Chemistry, Cambridge., 10(4), 782-790.
https://doi.org/10.1039/c1ob06678a
Boyd DR, Sharma ND, McMurray B, Haughey SA, Allen CCR, Hamilton JTG, McRoberts WC, O'Ferrall RAM, Nikodinović-Runić J, Coulombel LA, O'Connor K. Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes. in Organic & Biomolecular Chemistry. 2012;10(4):782-790.
doi:10.1039/c1ob06678a .
Boyd, Derek R., Sharma, Narain D., McMurray, Brian, Haughey, Simon A., Allen, Christopher C. R., Hamilton, John T. G., McRoberts, W. Colin, O'Ferrall, Rory A. More, Nikodinović-Runić, Jasmina, Coulombel, Lydie A., O'Connor, Kevin , "Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes" in Organic & Biomolecular Chemistry, 10, no. 4 (2012):782-790,
https://doi.org/10.1039/c1ob06678a . .
31
19
25