Tadić, Vanja

Link to this page

Authority KeyName Variants
2a83af0b-0200-4809-a928-56d2744b3eef
  • Tadić, Vanja (3)
Projects

Author's Bibliography

Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies

Krkobabić, Ana; Radetić, Maja; Zille, Andrea; Ribeiro, Ana Isabel; Tadić, Vanja; Ilić-Tomić, Tatjana; Marković, Darka

(MDPI, 2024)

TY  - JOUR
AU  - Krkobabić, Ana
AU  - Radetić, Maja
AU  - Zille, Andrea
AU  - Ribeiro, Ana Isabel
AU  - Tadić, Vanja
AU  - Ilić-Tomić, Tatjana
AU  - Marković, Darka
PY  - 2024
UR  - https://www.mdpi.com/1420-3049/29/7/1447
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2335
AB  - The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.
PB  - MDPI
T2  - Molecules
T2  - Molecules
T1  - Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies
IS  - 7
SP  - 1447
VL  - 29
DO  - 10.3390/molecules29071447
ER  - 
@article{
author = "Krkobabić, Ana and Radetić, Maja and Zille, Andrea and Ribeiro, Ana Isabel and Tadić, Vanja and Ilić-Tomić, Tatjana and Marković, Darka",
year = "2024",
abstract = "The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.",
publisher = "MDPI",
journal = "Molecules, Molecules",
title = "Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies",
number = "7",
pages = "1447",
volume = "29",
doi = "10.3390/molecules29071447"
}
Krkobabić, A., Radetić, M., Zille, A., Ribeiro, A. I., Tadić, V., Ilić-Tomić, T.,& Marković, D.. (2024). Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies. in Molecules
MDPI., 29(7), 1447.
https://doi.org/10.3390/molecules29071447
Krkobabić A, Radetić M, Zille A, Ribeiro AI, Tadić V, Ilić-Tomić T, Marković D. Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies. in Molecules. 2024;29(7):1447.
doi:10.3390/molecules29071447 .
Krkobabić, Ana, Radetić, Maja, Zille, Andrea, Ribeiro, Ana Isabel, Tadić, Vanja, Ilić-Tomić, Tatjana, Marković, Darka, "Plant-Assisted Synthesis of Ag-Based Nanoparticles on Cotton: Antimicrobial and Cytotoxicity Studies" in Molecules, 29, no. 7 (2024):1447,
https://doi.org/10.3390/molecules29071447 . .

Green in situ synthesis of Ag- and Cu-based nanoparticles on viscose fabric using a Punica granatum peel extract

Krkobabić, Ana; Radetić, Maja; Tseng, Hsiang-Han; Nunney, Tim S.; Tadić, Vanja; Ilic-Tomic, Tatjana; Marković, Darka

(2023)

TY  - JOUR
AU  - Krkobabić, Ana
AU  - Radetić, Maja
AU  - Tseng, Hsiang-Han
AU  - Nunney, Tim S.
AU  - Tadić, Vanja
AU  - Ilic-Tomic, Tatjana
AU  - Marković, Darka
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1668
AB  - The demand for medical textiles in various forms with strong antimicrobial activity drastically increased during the COVID19 pandemic. In an attempt to tackle this issue and to develop antimicrobial textiles in more environmentally benign manner, a viscose fabric after coating with biopolymer chitosan has been impregnated with Ag- and Cu-based nanoparticles. Chitosan was applied in the presence and absence of cross-linker 1,2,3,4-butanetetracarboxylic acid (BTCA). In situ green synthesis of nanoparticles was performed using a Punica granatum (pomegranate) peel extract as a reducing and stabilizing agent. Formation of nanoparticles on the fiber surface was confirmed by FESEM. Elemental analysis by XPS showed the synthesized nanoparticles exist as AgCl and a mixture of Cu/CuO/Cu2O in the modified samples. Moreover, these nanoparticles appeared to be present not only on the sample surface but also buried within the fibers, as indicated by XPS mapping and depth profiling measurements. All impregnated fabrics exhibited excellent antifungal activity providing the maximum reduction of yeast Candida albicans colonies. Antibacterial activity was stronger against Gram-negative bacteria Escherichia coli than Gram-positive bacteria Staphylococcus aureus, and it was highly influenced by metal content. The fabrics impregnated with AgCl nanoparticles showed lower cytotoxicity towards human keratinocyte cells.
T2  - Applied Surface Science
T2  - Applied Surface ScienceApplied Surface Science
T1  - Green in situ synthesis of Ag- and Cu-based nanoparticles on viscose fabric using a Punica granatum peel extract
SP  - 155612
VL  - 611
DO  - 10.1016/j.apsusc.2022.155612
ER  - 
@article{
author = "Krkobabić, Ana and Radetić, Maja and Tseng, Hsiang-Han and Nunney, Tim S. and Tadić, Vanja and Ilic-Tomic, Tatjana and Marković, Darka",
year = "2023",
abstract = "The demand for medical textiles in various forms with strong antimicrobial activity drastically increased during the COVID19 pandemic. In an attempt to tackle this issue and to develop antimicrobial textiles in more environmentally benign manner, a viscose fabric after coating with biopolymer chitosan has been impregnated with Ag- and Cu-based nanoparticles. Chitosan was applied in the presence and absence of cross-linker 1,2,3,4-butanetetracarboxylic acid (BTCA). In situ green synthesis of nanoparticles was performed using a Punica granatum (pomegranate) peel extract as a reducing and stabilizing agent. Formation of nanoparticles on the fiber surface was confirmed by FESEM. Elemental analysis by XPS showed the synthesized nanoparticles exist as AgCl and a mixture of Cu/CuO/Cu2O in the modified samples. Moreover, these nanoparticles appeared to be present not only on the sample surface but also buried within the fibers, as indicated by XPS mapping and depth profiling measurements. All impregnated fabrics exhibited excellent antifungal activity providing the maximum reduction of yeast Candida albicans colonies. Antibacterial activity was stronger against Gram-negative bacteria Escherichia coli than Gram-positive bacteria Staphylococcus aureus, and it was highly influenced by metal content. The fabrics impregnated with AgCl nanoparticles showed lower cytotoxicity towards human keratinocyte cells.",
journal = "Applied Surface Science, Applied Surface ScienceApplied Surface Science",
title = "Green in situ synthesis of Ag- and Cu-based nanoparticles on viscose fabric using a Punica granatum peel extract",
pages = "155612",
volume = "611",
doi = "10.1016/j.apsusc.2022.155612"
}
Krkobabić, A., Radetić, M., Tseng, H., Nunney, T. S., Tadić, V., Ilic-Tomic, T.,& Marković, D.. (2023). Green in situ synthesis of Ag- and Cu-based nanoparticles on viscose fabric using a Punica granatum peel extract. in Applied Surface Science, 611, 155612.
https://doi.org/10.1016/j.apsusc.2022.155612
Krkobabić A, Radetić M, Tseng H, Nunney TS, Tadić V, Ilic-Tomic T, Marković D. Green in situ synthesis of Ag- and Cu-based nanoparticles on viscose fabric using a Punica granatum peel extract. in Applied Surface Science. 2023;611:155612.
doi:10.1016/j.apsusc.2022.155612 .
Krkobabić, Ana, Radetić, Maja, Tseng, Hsiang-Han, Nunney, Tim S., Tadić, Vanja, Ilic-Tomic, Tatjana, Marković, Darka, "Green in situ synthesis of Ag- and Cu-based nanoparticles on viscose fabric using a Punica granatum peel extract" in Applied Surface Science, 611 (2023):155612,
https://doi.org/10.1016/j.apsusc.2022.155612 . .
6
5

Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract

Krkobabić, Ana; Marković, Darka; Kovacević, Aleksandar; Tadić, Vanja; Radoicić, Marija; Barudzija, Tatjana; Ilić-Tomić, Tatjana; Radetić, Maja

(Korean Fiber Soc, Seoul, 2022)

TY  - JOUR
AU  - Krkobabić, Ana
AU  - Marković, Darka
AU  - Kovacević, Aleksandar
AU  - Tadić, Vanja
AU  - Radoicić, Marija
AU  - Barudzija, Tatjana
AU  - Ilić-Tomić, Tatjana
AU  - Radetić, Maja
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1552
AB  - The aim of this study was to develop antimicrobial nanocomposite textile material comprising of Cu-based nanostructures synthesized on oxidized cotton fabric using Arctostaphylos uva-ursi (L.) Spreng., Ericaceae (bearberry leaves) as a green reducing agent for adsorbed Cu2+-ions. In order to provide sufficient number of carboxyl groups for complexation with Cu2+-ions a two-step oxidation process with NaIO4 and NaClO2 was carried out. The influence of NaIO4 concentration on content of carboxyl groups and Cu-based nanoparticles was studied by FTIR and AAS. HPLC analysis identified the gallic acid known as a reducing agent in bearberry leaves extract. FESEM and XRD analyses revealed that using bearberry leaves extract and gallic acid solution as reducing agents led to a formation of spherical Cu2O/CuO nanoparticles and CuO nanosheets, respectively. These nanoparticles and nanosheets provided excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. Cytotoxicity on human keratinocyte cells was shown to depend on their copper content.
PB  - Korean Fiber Soc, Seoul
T2  - Fibers and Polymers
T1  - Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract
EP  - 966
IS  - 4
SP  - 954
VL  - 23
DO  - 10.1007/s12221-022-4639-5
ER  - 
@article{
author = "Krkobabić, Ana and Marković, Darka and Kovacević, Aleksandar and Tadić, Vanja and Radoicić, Marija and Barudzija, Tatjana and Ilić-Tomić, Tatjana and Radetić, Maja",
year = "2022",
abstract = "The aim of this study was to develop antimicrobial nanocomposite textile material comprising of Cu-based nanostructures synthesized on oxidized cotton fabric using Arctostaphylos uva-ursi (L.) Spreng., Ericaceae (bearberry leaves) as a green reducing agent for adsorbed Cu2+-ions. In order to provide sufficient number of carboxyl groups for complexation with Cu2+-ions a two-step oxidation process with NaIO4 and NaClO2 was carried out. The influence of NaIO4 concentration on content of carboxyl groups and Cu-based nanoparticles was studied by FTIR and AAS. HPLC analysis identified the gallic acid known as a reducing agent in bearberry leaves extract. FESEM and XRD analyses revealed that using bearberry leaves extract and gallic acid solution as reducing agents led to a formation of spherical Cu2O/CuO nanoparticles and CuO nanosheets, respectively. These nanoparticles and nanosheets provided excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. Cytotoxicity on human keratinocyte cells was shown to depend on their copper content.",
publisher = "Korean Fiber Soc, Seoul",
journal = "Fibers and Polymers",
title = "Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract",
pages = "966-954",
number = "4",
volume = "23",
doi = "10.1007/s12221-022-4639-5"
}
Krkobabić, A., Marković, D., Kovacević, A., Tadić, V., Radoicić, M., Barudzija, T., Ilić-Tomić, T.,& Radetić, M.. (2022). Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract. in Fibers and Polymers
Korean Fiber Soc, Seoul., 23(4), 954-966.
https://doi.org/10.1007/s12221-022-4639-5
Krkobabić A, Marković D, Kovacević A, Tadić V, Radoicić M, Barudzija T, Ilić-Tomić T, Radetić M. Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract. in Fibers and Polymers. 2022;23(4):954-966.
doi:10.1007/s12221-022-4639-5 .
Krkobabić, Ana, Marković, Darka, Kovacević, Aleksandar, Tadić, Vanja, Radoicić, Marija, Barudzija, Tatjana, Ilić-Tomić, Tatjana, Radetić, Maja, "Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract" in Fibers and Polymers, 23, no. 4 (2022):954-966,
https://doi.org/10.1007/s12221-022-4639-5 . .
6
6