Liu, Jianquan

Link to this page

Authority KeyName Variants
8e1442b3-dd16-4a62-b796-3546bcf215d2
  • Liu, Jianquan (1)
Projects

Author's Bibliography

A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences

Lockwood, Jared D.; Aleksić, Jelena M.; Zou, Jiabin; Wang, Jing; Liu, Jianquan; Renner, Susanne S.

(Academic Press Inc Elsevier Science, San Diego, 2013)

TY  - JOUR
AU  - Lockwood, Jared D.
AU  - Aleksić, Jelena M.
AU  - Zou, Jiabin
AU  - Wang, Jing
AU  - Liu, Jianquan
AU  - Renner, Susanne S.
PY  - 2013
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/683
AB  - Studies over the past ten years have shown that the crown groups of most conifer genera are only about 15-25 Ma old. The genus Picea (spruces, Pinaceae), with around 35 species, appears to be no exception. In addition, molecular studies of co-existing spruce species have demonstrated frequent introgression. Perhaps not surprisingly therefore previous phylogenetic studies of species relationships in Picea, based mostly on plastid sequences, suffered from poor statistical support. We therefore generated mitochondria], nuclear, and further plastid DNA sequences from carefully sourced material, striking a balance between alignability with outgroups and phylogenetic signal content. Motif duplications in mitochondria] introns were treated as characters in a stochastic Dollo model; molecular clock models were calibrated with fossils; and ancestral ranges were inferred under maximum likelihood. In agreement with previous findings, Picea diverged from its sister clade 180 million years ago (Ma), and the most recent common ancestor of today's spruces dates to 28 Ma. Different from previous analyses though, we find a large Asian clade, an American clade, and a Eurasian clade. Two expansions occurred from Asia to North America and several between Asia and Europe. Chinese P. brachytyla, American P. engelmannii, and Norway spruce, P. abies, are not monophyletic, and North America has ten, not eight species. Divergence times imply that Pleistocene refugia are unlikely to be the full explanation for the relationships between the European species and their East Asian relatives. Thus, northern Norway spruce may be part of an Asian species complex that diverged from the southern Norway spruce lineage in the Upper Miocene, some 6 Ma, which can explain the deep genetic gap noted in phylogeographic studies of Norway spruce. The large effective population sizes of spruces, and incomplete lineage sorting during speciation, mean that the interspecific relationships within each of the geographic clades require further studies, especially based on genomic information and population genetic data.
PB  - Academic Press Inc Elsevier Science, San Diego
T2  - Molecular Phylogenetics and Evolution
T1  - A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences
EP  - 727
IS  - 3
SP  - 717
VL  - 69
DO  - 10.1016/j.ympev.2013.07.004
ER  - 
@article{
author = "Lockwood, Jared D. and Aleksić, Jelena M. and Zou, Jiabin and Wang, Jing and Liu, Jianquan and Renner, Susanne S.",
year = "2013",
abstract = "Studies over the past ten years have shown that the crown groups of most conifer genera are only about 15-25 Ma old. The genus Picea (spruces, Pinaceae), with around 35 species, appears to be no exception. In addition, molecular studies of co-existing spruce species have demonstrated frequent introgression. Perhaps not surprisingly therefore previous phylogenetic studies of species relationships in Picea, based mostly on plastid sequences, suffered from poor statistical support. We therefore generated mitochondria], nuclear, and further plastid DNA sequences from carefully sourced material, striking a balance between alignability with outgroups and phylogenetic signal content. Motif duplications in mitochondria] introns were treated as characters in a stochastic Dollo model; molecular clock models were calibrated with fossils; and ancestral ranges were inferred under maximum likelihood. In agreement with previous findings, Picea diverged from its sister clade 180 million years ago (Ma), and the most recent common ancestor of today's spruces dates to 28 Ma. Different from previous analyses though, we find a large Asian clade, an American clade, and a Eurasian clade. Two expansions occurred from Asia to North America and several between Asia and Europe. Chinese P. brachytyla, American P. engelmannii, and Norway spruce, P. abies, are not monophyletic, and North America has ten, not eight species. Divergence times imply that Pleistocene refugia are unlikely to be the full explanation for the relationships between the European species and their East Asian relatives. Thus, northern Norway spruce may be part of an Asian species complex that diverged from the southern Norway spruce lineage in the Upper Miocene, some 6 Ma, which can explain the deep genetic gap noted in phylogeographic studies of Norway spruce. The large effective population sizes of spruces, and incomplete lineage sorting during speciation, mean that the interspecific relationships within each of the geographic clades require further studies, especially based on genomic information and population genetic data.",
publisher = "Academic Press Inc Elsevier Science, San Diego",
journal = "Molecular Phylogenetics and Evolution",
title = "A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences",
pages = "727-717",
number = "3",
volume = "69",
doi = "10.1016/j.ympev.2013.07.004"
}
Lockwood, J. D., Aleksić, J. M., Zou, J., Wang, J., Liu, J.,& Renner, S. S.. (2013). A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. in Molecular Phylogenetics and Evolution
Academic Press Inc Elsevier Science, San Diego., 69(3), 717-727.
https://doi.org/10.1016/j.ympev.2013.07.004
Lockwood JD, Aleksić JM, Zou J, Wang J, Liu J, Renner SS. A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. in Molecular Phylogenetics and Evolution. 2013;69(3):717-727.
doi:10.1016/j.ympev.2013.07.004 .
Lockwood, Jared D., Aleksić, Jelena M., Zou, Jiabin, Wang, Jing, Liu, Jianquan, Renner, Susanne S., "A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences" in Molecular Phylogenetics and Evolution, 69, no. 3 (2013):717-727,
https://doi.org/10.1016/j.ympev.2013.07.004 . .
4
101
57
92