Advancing research in agricultural and food sciences at Faculty of Agriculture, University of Belgrade

Link to this page

info:eu-repo/grantAgreement/EC/FP7/316004/EU//

Advancing research in agricultural and food sciences at Faculty of Agriculture, University of Belgrade (en)
Authors

Publications

Aspergillus piperis a/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen pythium aphanidermatum

Jovicić-Petrović, Jelena; Jeremić, Sanja; Vucković, Ivan; Vojnović, Sandra; Bulajić, Aleksandra; Raicević, Vera; Nikodinović-Runić, Jasmina

(Srpsko biološko društvo, Beograd, i dr., 2016)

TY  - JOUR
AU  - Jovicić-Petrović, Jelena
AU  - Jeremić, Sanja
AU  - Vucković, Ivan
AU  - Vojnović, Sandra
AU  - Bulajić, Aleksandra
AU  - Raicević, Vera
AU  - Nikodinović-Runić, Jasmina
PY  - 2016
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/941
AB  - Adding compost to soil can result in plant disease suppression through the mechanisms of antagonistic action of compost microflora against plant pathogens. The aim of the study was to select effective antagonists of Pythium aphanidermatum from compost, to assess the effect of its extracellular metabolites on the plant pathogen, and to characterize antifungal metabolites. The fungal isolate selected by a confrontation test was identified as Aspergillus piperis A/5 on the basis of morphological features and the internal transcribed spacer (ITS) region, beta-tubulin and calmodulin partial sequences. Liquid chromatography-mass spectroscopy (LC-MS) analysis showed that gluconic and citric acid were the most abundant in the organic culture extract. However, the main antifungal activity was contained in the aqueous phase remaining after the organic solvent extraction. The presence of considerable amounts of proteins in both the crude culture extract as well as the aqueous phase remaining after solvent extraction was confirmed by SDS-PAGE. Isolated Aspergillus piperis A/ 5 exhibits strong antifungal activity against the phytopathogen Pythium aphanidermatum. It secretes a complex mixture of metabolites consisting of small molecules, including gluconic acid, citric acid and itaconic acid derivatives, but the most potent antifungal activity was associated with proteins resistant to heat and organic solvents. Our findings about the activity and characterization of antagonistic strain metabolites contribute to the understanding of the mechanism of interaction of antifungal metabolites as well as fungal-fungal interaction. The obtained results provide a basis for further application development in agriculture and food processing.
PB  - Srpsko biološko društvo, Beograd, i dr.
T2  - Archives of Biological Sciences
T1  - Aspergillus piperis a/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen pythium aphanidermatum
EP  - 289
IS  - 2
SP  - 279
VL  - 68
DO  - 10.2298/ABS150602016J
ER  - 
@article{
author = "Jovicić-Petrović, Jelena and Jeremić, Sanja and Vucković, Ivan and Vojnović, Sandra and Bulajić, Aleksandra and Raicević, Vera and Nikodinović-Runić, Jasmina",
year = "2016",
abstract = "Adding compost to soil can result in plant disease suppression through the mechanisms of antagonistic action of compost microflora against plant pathogens. The aim of the study was to select effective antagonists of Pythium aphanidermatum from compost, to assess the effect of its extracellular metabolites on the plant pathogen, and to characterize antifungal metabolites. The fungal isolate selected by a confrontation test was identified as Aspergillus piperis A/5 on the basis of morphological features and the internal transcribed spacer (ITS) region, beta-tubulin and calmodulin partial sequences. Liquid chromatography-mass spectroscopy (LC-MS) analysis showed that gluconic and citric acid were the most abundant in the organic culture extract. However, the main antifungal activity was contained in the aqueous phase remaining after the organic solvent extraction. The presence of considerable amounts of proteins in both the crude culture extract as well as the aqueous phase remaining after solvent extraction was confirmed by SDS-PAGE. Isolated Aspergillus piperis A/ 5 exhibits strong antifungal activity against the phytopathogen Pythium aphanidermatum. It secretes a complex mixture of metabolites consisting of small molecules, including gluconic acid, citric acid and itaconic acid derivatives, but the most potent antifungal activity was associated with proteins resistant to heat and organic solvents. Our findings about the activity and characterization of antagonistic strain metabolites contribute to the understanding of the mechanism of interaction of antifungal metabolites as well as fungal-fungal interaction. The obtained results provide a basis for further application development in agriculture and food processing.",
publisher = "Srpsko biološko društvo, Beograd, i dr.",
journal = "Archives of Biological Sciences",
title = "Aspergillus piperis a/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen pythium aphanidermatum",
pages = "289-279",
number = "2",
volume = "68",
doi = "10.2298/ABS150602016J"
}
Jovicić-Petrović, J., Jeremić, S., Vucković, I., Vojnović, S., Bulajić, A., Raicević, V.,& Nikodinović-Runić, J.. (2016). Aspergillus piperis a/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen pythium aphanidermatum. in Archives of Biological Sciences
Srpsko biološko društvo, Beograd, i dr.., 68(2), 279-289.
https://doi.org/10.2298/ABS150602016J
Jovicić-Petrović J, Jeremić S, Vucković I, Vojnović S, Bulajić A, Raicević V, Nikodinović-Runić J. Aspergillus piperis a/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen pythium aphanidermatum. in Archives of Biological Sciences. 2016;68(2):279-289.
doi:10.2298/ABS150602016J .
Jovicić-Petrović, Jelena, Jeremić, Sanja, Vucković, Ivan, Vojnović, Sandra, Bulajić, Aleksandra, Raicević, Vera, Nikodinović-Runić, Jasmina, "Aspergillus piperis a/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen pythium aphanidermatum" in Archives of Biological Sciences, 68, no. 2 (2016):279-289,
https://doi.org/10.2298/ABS150602016J . .
7
7

Advances in in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds

Duvnjak, Dunja; Pantić, Milena; Pavlović, Vladimir; Nedović, Viktor; Lević, Steva; Matijašević, Danka; Sknepnek, Aleksandra; Nikšić, Miomir

(Elsevier Sci Ltd, Oxford, 2016)

TY  - JOUR
AU  - Duvnjak, Dunja
AU  - Pantić, Milena
AU  - Pavlović, Vladimir
AU  - Nedović, Viktor
AU  - Lević, Steva
AU  - Matijašević, Danka
AU  - Sknepnek, Aleksandra
AU  - Nikšić, Miomir
PY  - 2016
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/969
AB  - Bioactive compounds obtained from Coriolus versicolor (Trametes versicolor (L: Fr) Lloyd, 1920.) mushrooms cultivated in a stirred-tank bioreactor were tested to determine their antimicrobial potential. Extracellular polysaccharides were isolated from the fermentation broth by ethanol precipitation. A methanol extract was prepared from mycelium. The cultivation conditions applied during the fermentation process provided for significant biomass 6.63 +/- 0.31 g dry weight L-1 and yield of extracellular polysaccharides (EPS) (0.74 +/- 0.12 g L-1). Microscopic analyses revealed that the mycelium grew predominately in the form of fluffy pellets. The methanol extract demonstrated very good activity against all the tested Gram-positive bacteria. Bacillus spizizeni and Staphylococcus epidermidis were the most sensitive strains (minimum inhibitory concentration (MIC)  lt 0.3125 mg mL(-1)). Among the Gram-negative bacteria, Yersinia enterocolitica had the lowest MIC value, 5 mg mL(-1). Microbicidal activity of mycelia methanol extract was established in seven out of ten tested Gram-negative bacteria strains with minimum bactericidal concentration (MBC) values ranged from 20 to 40 mg mL(-1). Enterococcus faecalis and Staphylococcus aureus showed higher sensitivity to the extracellular polysaccharides (MIC values 2.5 mg mL(-1)). FTIR analysis revealed a more complex chemical composition of the methanol extract compared to EPS, which might explain the better antibacterial activity of the methanol extract. Our results suggested that the submerged cultivation of Coriolus versicolor followed by ethanol precipitation of EPS and the methanol extraction of mycelia can be a promising process to obtain biological active compounds with significant antimicrobial activity. Industrial Relevance: Mushrooms contain a large number of chemicals with potential use as antimicrobial compounds. One of the biggest challenges for providing biologically active compounds from mushrooms is short-term process standardization with a low risk for contamination. Submerged culture cultivation is the best choice for providing antimicrobial compounds from mushrooms. The submerged culture method represents an effective and energy-efficient means to produce novel antibacterial compound from mushrooms. Antibacterial activity testing revealed that methanol extract and isolated exopolysaccharides exhibited strong antibacterial activity, especially against Gram-positive bacteria.
PB  - Elsevier Sci Ltd, Oxford
T2  - Innovative Food Science & Emerging Technologies
T1  - Advances in in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds
EP  - 8
SP  - 1
VL  - 34
DO  - 10.1016/j.ifset.2015.12.028
ER  - 
@article{
author = "Duvnjak, Dunja and Pantić, Milena and Pavlović, Vladimir and Nedović, Viktor and Lević, Steva and Matijašević, Danka and Sknepnek, Aleksandra and Nikšić, Miomir",
year = "2016",
abstract = "Bioactive compounds obtained from Coriolus versicolor (Trametes versicolor (L: Fr) Lloyd, 1920.) mushrooms cultivated in a stirred-tank bioreactor were tested to determine their antimicrobial potential. Extracellular polysaccharides were isolated from the fermentation broth by ethanol precipitation. A methanol extract was prepared from mycelium. The cultivation conditions applied during the fermentation process provided for significant biomass 6.63 +/- 0.31 g dry weight L-1 and yield of extracellular polysaccharides (EPS) (0.74 +/- 0.12 g L-1). Microscopic analyses revealed that the mycelium grew predominately in the form of fluffy pellets. The methanol extract demonstrated very good activity against all the tested Gram-positive bacteria. Bacillus spizizeni and Staphylococcus epidermidis were the most sensitive strains (minimum inhibitory concentration (MIC)  lt 0.3125 mg mL(-1)). Among the Gram-negative bacteria, Yersinia enterocolitica had the lowest MIC value, 5 mg mL(-1). Microbicidal activity of mycelia methanol extract was established in seven out of ten tested Gram-negative bacteria strains with minimum bactericidal concentration (MBC) values ranged from 20 to 40 mg mL(-1). Enterococcus faecalis and Staphylococcus aureus showed higher sensitivity to the extracellular polysaccharides (MIC values 2.5 mg mL(-1)). FTIR analysis revealed a more complex chemical composition of the methanol extract compared to EPS, which might explain the better antibacterial activity of the methanol extract. Our results suggested that the submerged cultivation of Coriolus versicolor followed by ethanol precipitation of EPS and the methanol extraction of mycelia can be a promising process to obtain biological active compounds with significant antimicrobial activity. Industrial Relevance: Mushrooms contain a large number of chemicals with potential use as antimicrobial compounds. One of the biggest challenges for providing biologically active compounds from mushrooms is short-term process standardization with a low risk for contamination. Submerged culture cultivation is the best choice for providing antimicrobial compounds from mushrooms. The submerged culture method represents an effective and energy-efficient means to produce novel antibacterial compound from mushrooms. Antibacterial activity testing revealed that methanol extract and isolated exopolysaccharides exhibited strong antibacterial activity, especially against Gram-positive bacteria.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Innovative Food Science & Emerging Technologies",
title = "Advances in in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds",
pages = "8-1",
volume = "34",
doi = "10.1016/j.ifset.2015.12.028"
}
Duvnjak, D., Pantić, M., Pavlović, V., Nedović, V., Lević, S., Matijašević, D., Sknepnek, A.,& Nikšić, M.. (2016). Advances in in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds. in Innovative Food Science & Emerging Technologies
Elsevier Sci Ltd, Oxford., 34, 1-8.
https://doi.org/10.1016/j.ifset.2015.12.028
Duvnjak D, Pantić M, Pavlović V, Nedović V, Lević S, Matijašević D, Sknepnek A, Nikšić M. Advances in in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds. in Innovative Food Science & Emerging Technologies. 2016;34:1-8.
doi:10.1016/j.ifset.2015.12.028 .
Duvnjak, Dunja, Pantić, Milena, Pavlović, Vladimir, Nedović, Viktor, Lević, Steva, Matijašević, Danka, Sknepnek, Aleksandra, Nikšić, Miomir, "Advances in in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds" in Innovative Food Science & Emerging Technologies, 34 (2016):1-8,
https://doi.org/10.1016/j.ifset.2015.12.028 . .
34
37