Serbian Academy of Sciences and Arts [F128]

Link to this page

Serbian Academy of Sciences and Arts [F128]

Authors

Publications

Zinc(II) Complexes with Dimethyl 2,2 '-Bipyridine-4,5-dicarboxylate: Structure, Antimicrobial Activity and DNA/BSA Binding Study

Andrejević, Tina P.; Aleksić, Ivana; Kljun, Jakob; Pantović, Bojana, V; Milivojević, Dušan; Vojnović, Sandra; Turel, Iztok; Djuran, Milos; Glišić, Biljana

(MDPI, Basel, 2022)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Aleksić, Ivana
AU  - Kljun, Jakob
AU  - Pantović, Bojana, V
AU  - Milivojević, Dušan
AU  - Vojnović, Sandra
AU  - Turel, Iztok
AU  - Djuran, Milos
AU  - Glišić, Biljana
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1589
AB  - Two zinc(II) complexes with dimethyl 2,2 '-bipyridine-4,5-dicarboxylate (py-2py) of the general formula [Zn(py-2py)X-2], X = Cl- (1) and Br- (2) were synthesized and characterized by NMR, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction analysis. Complexes 1 and 2 are isostructural and adopt a slightly distorted tetrahedral geometry with values of tetrahedral indices tau(4) and tau'(4) in the range of 0.80-0.85. The complexes were evaluated for their in vitro antimicrobial activity against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two fungal strains (Candida albicans and Candida parapsilosis), while their cytotoxicity was tested on the normal human lung fibroblast cell line (MRC-5) and the model organism Caenorhabditis elegans. Complex 1 showed moderate activity against both Candida strains. However, this complex was twofold more cytotoxic compared to complex 2. The complexes tested had no effect on the survival rate of C. elegans. Complex 2 showed the ability to inhibit filamentation of C. albicans, while complex 1 was more effective than complex 2 in inhibiting biofilm formation. The interactions of complexes 1 and 2 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) were studied to evaluate their binding affinity toward these biomolecules.
PB  - MDPI, Basel
T2  - Inorganics
T1  - Zinc(II) Complexes with Dimethyl 2,2 '-Bipyridine-4,5-dicarboxylate: Structure, Antimicrobial Activity and DNA/BSA Binding Study
IS  - 6
VL  - 10
DO  - 10.3390/inorganics10060071
ER  - 
@article{
author = "Andrejević, Tina P. and Aleksić, Ivana and Kljun, Jakob and Pantović, Bojana, V and Milivojević, Dušan and Vojnović, Sandra and Turel, Iztok and Djuran, Milos and Glišić, Biljana",
year = "2022",
abstract = "Two zinc(II) complexes with dimethyl 2,2 '-bipyridine-4,5-dicarboxylate (py-2py) of the general formula [Zn(py-2py)X-2], X = Cl- (1) and Br- (2) were synthesized and characterized by NMR, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction analysis. Complexes 1 and 2 are isostructural and adopt a slightly distorted tetrahedral geometry with values of tetrahedral indices tau(4) and tau'(4) in the range of 0.80-0.85. The complexes were evaluated for their in vitro antimicrobial activity against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two fungal strains (Candida albicans and Candida parapsilosis), while their cytotoxicity was tested on the normal human lung fibroblast cell line (MRC-5) and the model organism Caenorhabditis elegans. Complex 1 showed moderate activity against both Candida strains. However, this complex was twofold more cytotoxic compared to complex 2. The complexes tested had no effect on the survival rate of C. elegans. Complex 2 showed the ability to inhibit filamentation of C. albicans, while complex 1 was more effective than complex 2 in inhibiting biofilm formation. The interactions of complexes 1 and 2 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) were studied to evaluate their binding affinity toward these biomolecules.",
publisher = "MDPI, Basel",
journal = "Inorganics",
title = "Zinc(II) Complexes with Dimethyl 2,2 '-Bipyridine-4,5-dicarboxylate: Structure, Antimicrobial Activity and DNA/BSA Binding Study",
number = "6",
volume = "10",
doi = "10.3390/inorganics10060071"
}
Andrejević, T. P., Aleksić, I., Kljun, J., Pantović, B. V., Milivojević, D., Vojnović, S., Turel, I., Djuran, M.,& Glišić, B.. (2022). Zinc(II) Complexes with Dimethyl 2,2 '-Bipyridine-4,5-dicarboxylate: Structure, Antimicrobial Activity and DNA/BSA Binding Study. in Inorganics
MDPI, Basel., 10(6).
https://doi.org/10.3390/inorganics10060071
Andrejević TP, Aleksić I, Kljun J, Pantović BV, Milivojević D, Vojnović S, Turel I, Djuran M, Glišić B. Zinc(II) Complexes with Dimethyl 2,2 '-Bipyridine-4,5-dicarboxylate: Structure, Antimicrobial Activity and DNA/BSA Binding Study. in Inorganics. 2022;10(6).
doi:10.3390/inorganics10060071 .
Andrejević, Tina P., Aleksić, Ivana, Kljun, Jakob, Pantović, Bojana, V, Milivojević, Dušan, Vojnović, Sandra, Turel, Iztok, Djuran, Milos, Glišić, Biljana, "Zinc(II) Complexes with Dimethyl 2,2 '-Bipyridine-4,5-dicarboxylate: Structure, Antimicrobial Activity and DNA/BSA Binding Study" in Inorganics, 10, no. 6 (2022),
https://doi.org/10.3390/inorganics10060071 . .
10
5
5

Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection

Pavić, Aleksandar; Savić, Nada D.; Glišić, Biljana; Crochet, Aurelien; Vojnović, Sandra; Kurutos, Atanas; Stanković, Dalibor; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Djuran, Milos

(Elsevier Science Inc, New York, 2019)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Savić, Nada D.
AU  - Glišić, Biljana
AU  - Crochet, Aurelien
AU  - Vojnović, Sandra
AU  - Kurutos, Atanas
AU  - Stanković, Dalibor
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1261
AB  - Five novel silver(I) complexes with 4,7-phenanthroline (4,7-phen), [Ag(NO3-O)(4,7-phen-mu-N4,N7)](n) (1), [Ag(ClO4-O)(4,7-phen-mu-N4,N7)](n) (2), [Ag(CF3COO-O)(4,7-phen-mu-N4,N7)](n) (3), [Ag-2(H2O)(0.58)(4,7-phen)(3)](SbF6)(2) (4) and {[Ag-2(H2O)(4,7-phen-mu-N4,N7)(2)](n)(BF4)(2)}(n) (5) were synthesized, structurally elucidated and biologically evaluated. These complexes showed selectivity towards Candida spp. in comparison to the tested bacteria and effectively inhibited the growth of four different Candida species, particularly of C. albicans strains, with minimal inhibitory concentrations (MICs) in the range of 2.0-10.0 mu M. In order to evaluate the therapeutic potential of 1-5, in vivo toxicity studies were conducted in the zebrafish model. Based on the favorable therapeutic profiles, complexes 1, 3 and 5 were selected for the evaluation of their antifungal efficacy in vivo using the zebrafish model of lethal disseminated candidiasis. Complexes 1 and 3 efficiently controlled and prevented fungal filamentation even at sub-MIC doses, while drastically increased the survival of the infected embryos. Moreover, at the MIC doses, both complexes totally prevented C. albicans filamentation and rescued almost all infected fish of the fatal infection outcome. On the other side, complex 5, which demonstrated the highest antifungal activity in vitro, affected the neutrophils occurrence of the infected host, failed to inhibit the C. albicans cells filamentation and showed a poor potential to cure candidal infection, highlighting the importance of the in vivo activity evaluation early in the therapeutic design and development process. The mechanism of action of the investigated silver(I) complexes was related to the induction of reactive oxygen species (ROS) response in C. albicans, with DNA being one of the possible target biomolecules.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection
EP  - 163
SP  - 149
VL  - 195
DO  - 10.1016/j.jinorgbio.2019.03.017
ER  - 
@article{
author = "Pavić, Aleksandar and Savić, Nada D. and Glišić, Biljana and Crochet, Aurelien and Vojnović, Sandra and Kurutos, Atanas and Stanković, Dalibor and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Djuran, Milos",
year = "2019",
abstract = "Five novel silver(I) complexes with 4,7-phenanthroline (4,7-phen), [Ag(NO3-O)(4,7-phen-mu-N4,N7)](n) (1), [Ag(ClO4-O)(4,7-phen-mu-N4,N7)](n) (2), [Ag(CF3COO-O)(4,7-phen-mu-N4,N7)](n) (3), [Ag-2(H2O)(0.58)(4,7-phen)(3)](SbF6)(2) (4) and {[Ag-2(H2O)(4,7-phen-mu-N4,N7)(2)](n)(BF4)(2)}(n) (5) were synthesized, structurally elucidated and biologically evaluated. These complexes showed selectivity towards Candida spp. in comparison to the tested bacteria and effectively inhibited the growth of four different Candida species, particularly of C. albicans strains, with minimal inhibitory concentrations (MICs) in the range of 2.0-10.0 mu M. In order to evaluate the therapeutic potential of 1-5, in vivo toxicity studies were conducted in the zebrafish model. Based on the favorable therapeutic profiles, complexes 1, 3 and 5 were selected for the evaluation of their antifungal efficacy in vivo using the zebrafish model of lethal disseminated candidiasis. Complexes 1 and 3 efficiently controlled and prevented fungal filamentation even at sub-MIC doses, while drastically increased the survival of the infected embryos. Moreover, at the MIC doses, both complexes totally prevented C. albicans filamentation and rescued almost all infected fish of the fatal infection outcome. On the other side, complex 5, which demonstrated the highest antifungal activity in vitro, affected the neutrophils occurrence of the infected host, failed to inhibit the C. albicans cells filamentation and showed a poor potential to cure candidal infection, highlighting the importance of the in vivo activity evaluation early in the therapeutic design and development process. The mechanism of action of the investigated silver(I) complexes was related to the induction of reactive oxygen species (ROS) response in C. albicans, with DNA being one of the possible target biomolecules.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection",
pages = "163-149",
volume = "195",
doi = "10.1016/j.jinorgbio.2019.03.017"
}
Pavić, A., Savić, N. D., Glišić, B., Crochet, A., Vojnović, S., Kurutos, A., Stanković, D., Fromm, K. M., Nikodinović-Runić, J.,& Djuran, M.. (2019). Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 195, 149-163.
https://doi.org/10.1016/j.jinorgbio.2019.03.017
Pavić A, Savić ND, Glišić B, Crochet A, Vojnović S, Kurutos A, Stanković D, Fromm KM, Nikodinović-Runić J, Djuran M. Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection. in Journal of Inorganic Biochemistry. 2019;195:149-163.
doi:10.1016/j.jinorgbio.2019.03.017 .
Pavić, Aleksandar, Savić, Nada D., Glišić, Biljana, Crochet, Aurelien, Vojnović, Sandra, Kurutos, Atanas, Stanković, Dalibor, Fromm, Katharina M., Nikodinović-Runić, Jasmina, Djuran, Milos, "Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection" in Journal of Inorganic Biochemistry, 195 (2019):149-163,
https://doi.org/10.1016/j.jinorgbio.2019.03.017 . .
1
17
12
16

Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles

Andrejević, Tina P.; Nikolić, Andrea M.; Glišić, Biljana; Wadepohl, Hubert; Vojnović, Sandra; Zlatović, Mario; Petković, Milos; Nikodinović-Runić, Jasmina; Opsenica, Igor M.; Djuran, Milos

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Nikolić, Andrea M.
AU  - Glišić, Biljana
AU  - Wadepohl, Hubert
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Petković, Milos
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
AU  - Djuran, Milos
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1144
AB  - Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles
EP  - 333
SP  - 325
VL  - 154
DO  - 10.1016/j.poly.2018.08.001
ER  - 
@article{
author = "Andrejević, Tina P. and Nikolić, Andrea M. and Glišić, Biljana and Wadepohl, Hubert and Vojnović, Sandra and Zlatović, Mario and Petković, Milos and Nikodinović-Runić, Jasmina and Opsenica, Igor M. and Djuran, Milos",
year = "2018",
abstract = "Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles",
pages = "333-325",
volume = "154",
doi = "10.1016/j.poly.2018.08.001"
}
Andrejević, T. P., Nikolić, A. M., Glišić, B., Wadepohl, H., Vojnović, S., Zlatović, M., Petković, M., Nikodinović-Runić, J., Opsenica, I. M.,& Djuran, M.. (2018). Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 154, 325-333.
https://doi.org/10.1016/j.poly.2018.08.001
Andrejević TP, Nikolić AM, Glišić B, Wadepohl H, Vojnović S, Zlatović M, Petković M, Nikodinović-Runić J, Opsenica IM, Djuran M. Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron. 2018;154:325-333.
doi:10.1016/j.poly.2018.08.001 .
Andrejević, Tina P., Nikolić, Andrea M., Glišić, Biljana, Wadepohl, Hubert, Vojnović, Sandra, Zlatović, Mario, Petković, Milos, Nikodinović-Runić, Jasmina, Opsenica, Igor M., Djuran, Milos, "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles" in Polyhedron, 154 (2018):325-333,
https://doi.org/10.1016/j.poly.2018.08.001 . .
1
18
12
18

Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049

Savić, Nada D.; Vojnović, Sandra; Glišić, Biljana Đ.; Crochet, Aurelien; Pavić, Aleksandar; Janjić, Goran V.; Pekmezović, Marina; Opsenica, Igor; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Đuran, Miloš I.

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2018)

TY  - DATA
AU  - Savić, Nada D.
AU  - Vojnović, Sandra
AU  - Glišić, Biljana Đ.
AU  - Crochet, Aurelien
AU  - Pavić, Aleksandar
AU  - Janjić, Goran V.
AU  - Pekmezović, Marina
AU  - Opsenica, Igor
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Đuran, Miloš I.
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2229
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2229
ER  - 
@misc{
author = "Savić, Nada D. and Vojnović, Sandra and Glišić, Biljana Đ. and Crochet, Aurelien and Pavić, Aleksandar and Janjić, Goran V. and Pekmezović, Marina and Opsenica, Igor and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Đuran, Miloš I.",
year = "2018",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2229"
}
Savić, N. D., Vojnović, S., Glišić, B. Đ., Crochet, A., Pavić, A., Janjić, G. V., Pekmezović, M., Opsenica, I., Fromm, K. M., Nikodinović-Runić, J.,& Đuran, M. I.. (2018). Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux..
https://hdl.handle.net/21.15107/rcub_imagine_2229
Savić ND, Vojnović S, Glišić BĐ, Crochet A, Pavić A, Janjić GV, Pekmezović M, Opsenica I, Fromm KM, Nikodinović-Runić J, Đuran MI. Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049. in European Journal of Medicinal Chemistry. 2018;.
https://hdl.handle.net/21.15107/rcub_imagine_2229 .
Savić, Nada D., Vojnović, Sandra, Glišić, Biljana Đ., Crochet, Aurelien, Pavić, Aleksandar, Janjić, Goran V., Pekmezović, Marina, Opsenica, Igor, Fromm, Katharina M., Nikodinović-Runić, Jasmina, Đuran, Miloš I., "Supplementary material for the article: Savić, N. D.; Vojnovic, S.; Glišić, B. Đ.; Crochet, A.; Pavic, A.; Janjić, G. V.; Pekmezović, M.; Opsenica, I. M.; Fromm, K. M.; Nikodinovic-Runic, J.; et al. Mononuclear Silver(I) Complexes with 1,7-Phenanthroline as Potent Inhibitors of Candida Growth. Eur. J. Med. Chem. 2018, 156, 760–773. https://doi.org/10.1016/j.ejmech.2018.07.049" in European Journal of Medicinal Chemistry (2018),
https://hdl.handle.net/21.15107/rcub_imagine_2229 .

Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth

Savić, Nada D.; Vojnović, Sandra; Glišić, Biljana Đ.; Crochet, Aurelien; Pavić, Aleksandar; Janjić, Goran V.; Pekmezović, Marina; Opsenica, Igor; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Đuran, Miloš I.

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2018)

TY  - JOUR
AU  - Savić, Nada D.
AU  - Vojnović, Sandra
AU  - Glišić, Biljana Đ.
AU  - Crochet, Aurelien
AU  - Pavić, Aleksandar
AU  - Janjić, Goran V.
AU  - Pekmezović, Marina
AU  - Opsenica, Igor
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Đuran, Miloš I.
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2228
AB  - Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine. (C) 2018 Elsevier Masson SAS. All rights reserved.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth
EP  - 773
SP  - 760
VL  - 156
DO  - 10.1016/j.ejmech.2018.07.049
ER  - 
@article{
author = "Savić, Nada D. and Vojnović, Sandra and Glišić, Biljana Đ. and Crochet, Aurelien and Pavić, Aleksandar and Janjić, Goran V. and Pekmezović, Marina and Opsenica, Igor and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Đuran, Miloš I.",
year = "2018",
abstract = "Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine. (C) 2018 Elsevier Masson SAS. All rights reserved.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth",
pages = "773-760",
volume = "156",
doi = "10.1016/j.ejmech.2018.07.049"
}
Savić, N. D., Vojnović, S., Glišić, B. Đ., Crochet, A., Pavić, A., Janjić, G. V., Pekmezović, M., Opsenica, I., Fromm, K. M., Nikodinović-Runić, J.,& Đuran, M. I.. (2018). Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux., 156, 760-773.
https://doi.org/10.1016/j.ejmech.2018.07.049
Savić ND, Vojnović S, Glišić BĐ, Crochet A, Pavić A, Janjić GV, Pekmezović M, Opsenica I, Fromm KM, Nikodinović-Runić J, Đuran MI. Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. in European Journal of Medicinal Chemistry. 2018;156:760-773.
doi:10.1016/j.ejmech.2018.07.049 .
Savić, Nada D., Vojnović, Sandra, Glišić, Biljana Đ., Crochet, Aurelien, Pavić, Aleksandar, Janjić, Goran V., Pekmezović, Marina, Opsenica, Igor, Fromm, Katharina M., Nikodinović-Runić, Jasmina, Đuran, Miloš I., "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth" in European Journal of Medicinal Chemistry, 156 (2018):760-773,
https://doi.org/10.1016/j.ejmech.2018.07.049 . .
6
37
26
36

Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles

Andrejević, Tina P.; Nikolić, Andrea M.; Glišić, Biljana; Wadepohl, Hubert; Vojnović, Sandra; Zlatović, Mario; Petković, Milos; Nikodinović-Runić, Jasmina; Opsenica, Igor M.; Djuran, Milos

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Nikolić, Andrea M.
AU  - Glišić, Biljana
AU  - Wadepohl, Hubert
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Petković, Milos
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
AU  - Djuran, Milos
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1759
AB  - Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles
EP  - 333
SP  - 325
VL  - 154
DO  - 10.1016/j.poly.2018.08.001
ER  - 
@article{
author = "Andrejević, Tina P. and Nikolić, Andrea M. and Glišić, Biljana and Wadepohl, Hubert and Vojnović, Sandra and Zlatović, Mario and Petković, Milos and Nikodinović-Runić, Jasmina and Opsenica, Igor M. and Djuran, Milos",
year = "2018",
abstract = "Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles",
pages = "333-325",
volume = "154",
doi = "10.1016/j.poly.2018.08.001"
}
Andrejević, T. P., Nikolić, A. M., Glišić, B., Wadepohl, H., Vojnović, S., Zlatović, M., Petković, M., Nikodinović-Runić, J., Opsenica, I. M.,& Djuran, M.. (2018). Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 154, 325-333.
https://doi.org/10.1016/j.poly.2018.08.001
Andrejević TP, Nikolić AM, Glišić B, Wadepohl H, Vojnović S, Zlatović M, Petković M, Nikodinović-Runić J, Opsenica IM, Djuran M. Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron. 2018;154:325-333.
doi:10.1016/j.poly.2018.08.001 .
Andrejević, Tina P., Nikolić, Andrea M., Glišić, Biljana, Wadepohl, Hubert, Vojnović, Sandra, Zlatović, Mario, Petković, Milos, Nikodinović-Runić, Jasmina, Opsenica, Igor M., Djuran, Milos, "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles" in Polyhedron, 154 (2018):325-333,
https://doi.org/10.1016/j.poly.2018.08.001 . .
1
18
12
18

Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine

Glišić, Biljana; Nikodinović-Runić, Jasmina; Ilić-Tomić, Tatjana; Wadepohl, Hubert; Veselinović, Aleksandar; Opsenica, Igor M.; Djuran, Milos I.

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Glišić, Biljana
AU  - Nikodinović-Runić, Jasmina
AU  - Ilić-Tomić, Tatjana
AU  - Wadepohl, Hubert
AU  - Veselinović, Aleksandar
AU  - Opsenica, Igor M.
AU  - Djuran, Milos I.
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1166
AB  - Mononuclear copper(II) complexes with 2,2':6',2 ''-terpyridine (terpy), [Cu(terpy)(ClO4)(2)(H2O)] (1) and [Cu(terpy())2](CF3SO3)(2)center dot 2H(2)O (2), were synthesized and structurally characterized by UV-Vis and IR spectroscopy, ESI mass spectrometry and single-crystal X-ray diffraction analysis. In vitro study of cytotoxicity of the complexes demonstrated good antiproliferative properties in the case of human non-small cell lung cancer (A549), as well as in lung fibroblast (MRC5) cell line. Copper(II) complexes with terpy showed significant ability to interact with the high molecular weight double stranded DNA, without induction of DNA damage. On the other side, they caused nicking of plasmid DNA without presence of co-oxidant, indicating moderate nucleolytic activity. Circular dichroism spectra confirmed intercalation of the complexes to double-stranded DNA. Molecular docking studies also indicated strong binding affinity of the complexes with DNA revealing that two forms of 1 (1a and 1b with and without coordinated perchlorate ion, respectively) and 2 bind to the major groove of DNA.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine
EP  - 322
SP  - 313
VL  - 139
DO  - 10.1016/j.poly.2017.11.008
ER  - 
@article{
author = "Glišić, Biljana and Nikodinović-Runić, Jasmina and Ilić-Tomić, Tatjana and Wadepohl, Hubert and Veselinović, Aleksandar and Opsenica, Igor M. and Djuran, Milos I.",
year = "2018",
abstract = "Mononuclear copper(II) complexes with 2,2':6',2 ''-terpyridine (terpy), [Cu(terpy)(ClO4)(2)(H2O)] (1) and [Cu(terpy())2](CF3SO3)(2)center dot 2H(2)O (2), were synthesized and structurally characterized by UV-Vis and IR spectroscopy, ESI mass spectrometry and single-crystal X-ray diffraction analysis. In vitro study of cytotoxicity of the complexes demonstrated good antiproliferative properties in the case of human non-small cell lung cancer (A549), as well as in lung fibroblast (MRC5) cell line. Copper(II) complexes with terpy showed significant ability to interact with the high molecular weight double stranded DNA, without induction of DNA damage. On the other side, they caused nicking of plasmid DNA without presence of co-oxidant, indicating moderate nucleolytic activity. Circular dichroism spectra confirmed intercalation of the complexes to double-stranded DNA. Molecular docking studies also indicated strong binding affinity of the complexes with DNA revealing that two forms of 1 (1a and 1b with and without coordinated perchlorate ion, respectively) and 2 bind to the major groove of DNA.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine",
pages = "322-313",
volume = "139",
doi = "10.1016/j.poly.2017.11.008"
}
Glišić, B., Nikodinović-Runić, J., Ilić-Tomić, T., Wadepohl, H., Veselinović, A., Opsenica, I. M.,& Djuran, M. I.. (2018). Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 139, 313-322.
https://doi.org/10.1016/j.poly.2017.11.008
Glišić B, Nikodinović-Runić J, Ilić-Tomić T, Wadepohl H, Veselinović A, Opsenica IM, Djuran MI. Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine. in Polyhedron. 2018;139:313-322.
doi:10.1016/j.poly.2017.11.008 .
Glišić, Biljana, Nikodinović-Runić, Jasmina, Ilić-Tomić, Tatjana, Wadepohl, Hubert, Veselinović, Aleksandar, Opsenica, Igor M., Djuran, Milos I., "Synthesis, cytotoxic activity and DNA-binding properties of copper(II) complexes with terpyridine" in Polyhedron, 139 (2018):313-322,
https://doi.org/10.1016/j.poly.2017.11.008 . .
6
27
10
27

Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth

Savić, Nada D.; Vojnović, Sandra; Glišić, Biljana; Crochet, Aurelien; Pavić, Aleksandar; Janjić, Goran V.; Pekmezović, Marina; Opsenica, Igor M.; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Djuran, Milos

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2018)

TY  - JOUR
AU  - Savić, Nada D.
AU  - Vojnović, Sandra
AU  - Glišić, Biljana
AU  - Crochet, Aurelien
AU  - Pavić, Aleksandar
AU  - Janjić, Goran V.
AU  - Pekmezović, Marina
AU  - Opsenica, Igor M.
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1098
AB  - Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth
EP  - 773
SP  - 760
VL  - 156
DO  - 10.1016/j.ejmech.2018.07.049
ER  - 
@article{
author = "Savić, Nada D. and Vojnović, Sandra and Glišić, Biljana and Crochet, Aurelien and Pavić, Aleksandar and Janjić, Goran V. and Pekmezović, Marina and Opsenica, Igor M. and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Djuran, Milos",
year = "2018",
abstract = "Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)(2)] (1) and [Ag(1,7-phen-N7)(2)]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (H-1 and C-13), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 mu M. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth",
pages = "773-760",
volume = "156",
doi = "10.1016/j.ejmech.2018.07.049"
}
Savić, N. D., Vojnović, S., Glišić, B., Crochet, A., Pavić, A., Janjić, G. V., Pekmezović, M., Opsenica, I. M., Fromm, K. M., Nikodinović-Runić, J.,& Djuran, M.. (2018). Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux., 156, 760-773.
https://doi.org/10.1016/j.ejmech.2018.07.049
Savić ND, Vojnović S, Glišić B, Crochet A, Pavić A, Janjić GV, Pekmezović M, Opsenica IM, Fromm KM, Nikodinović-Runić J, Djuran M. Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. in European Journal of Medicinal Chemistry. 2018;156:760-773.
doi:10.1016/j.ejmech.2018.07.049 .
Savić, Nada D., Vojnović, Sandra, Glišić, Biljana, Crochet, Aurelien, Pavić, Aleksandar, Janjić, Goran V., Pekmezović, Marina, Opsenica, Igor M., Fromm, Katharina M., Nikodinović-Runić, Jasmina, Djuran, Milos, "Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth" in European Journal of Medicinal Chemistry, 156 (2018):760-773,
https://doi.org/10.1016/j.ejmech.2018.07.049 . .
6
37
26
36