SupraMedChem"Balkans.Net SCOPES Institutional Partnership [IZ74Z0_160515]

Link to this page

SupraMedChem"Balkans.Net SCOPES Institutional Partnership [IZ74Z0_160515]

Authors

Publications

Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection

Pavić, Aleksandar; Savić, Nada D.; Glišić, Biljana; Crochet, Aurelien; Vojnović, Sandra; Kurutos, Atanas; Stanković, Dalibor; Fromm, Katharina M.; Nikodinović-Runić, Jasmina; Djuran, Milos

(Elsevier Science Inc, New York, 2019)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Savić, Nada D.
AU  - Glišić, Biljana
AU  - Crochet, Aurelien
AU  - Vojnović, Sandra
AU  - Kurutos, Atanas
AU  - Stanković, Dalibor
AU  - Fromm, Katharina M.
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1261
AB  - Five novel silver(I) complexes with 4,7-phenanthroline (4,7-phen), [Ag(NO3-O)(4,7-phen-mu-N4,N7)](n) (1), [Ag(ClO4-O)(4,7-phen-mu-N4,N7)](n) (2), [Ag(CF3COO-O)(4,7-phen-mu-N4,N7)](n) (3), [Ag-2(H2O)(0.58)(4,7-phen)(3)](SbF6)(2) (4) and {[Ag-2(H2O)(4,7-phen-mu-N4,N7)(2)](n)(BF4)(2)}(n) (5) were synthesized, structurally elucidated and biologically evaluated. These complexes showed selectivity towards Candida spp. in comparison to the tested bacteria and effectively inhibited the growth of four different Candida species, particularly of C. albicans strains, with minimal inhibitory concentrations (MICs) in the range of 2.0-10.0 mu M. In order to evaluate the therapeutic potential of 1-5, in vivo toxicity studies were conducted in the zebrafish model. Based on the favorable therapeutic profiles, complexes 1, 3 and 5 were selected for the evaluation of their antifungal efficacy in vivo using the zebrafish model of lethal disseminated candidiasis. Complexes 1 and 3 efficiently controlled and prevented fungal filamentation even at sub-MIC doses, while drastically increased the survival of the infected embryos. Moreover, at the MIC doses, both complexes totally prevented C. albicans filamentation and rescued almost all infected fish of the fatal infection outcome. On the other side, complex 5, which demonstrated the highest antifungal activity in vitro, affected the neutrophils occurrence of the infected host, failed to inhibit the C. albicans cells filamentation and showed a poor potential to cure candidal infection, highlighting the importance of the in vivo activity evaluation early in the therapeutic design and development process. The mechanism of action of the investigated silver(I) complexes was related to the induction of reactive oxygen species (ROS) response in C. albicans, with DNA being one of the possible target biomolecules.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection
EP  - 163
SP  - 149
VL  - 195
DO  - 10.1016/j.jinorgbio.2019.03.017
ER  - 
@article{
author = "Pavić, Aleksandar and Savić, Nada D. and Glišić, Biljana and Crochet, Aurelien and Vojnović, Sandra and Kurutos, Atanas and Stanković, Dalibor and Fromm, Katharina M. and Nikodinović-Runić, Jasmina and Djuran, Milos",
year = "2019",
abstract = "Five novel silver(I) complexes with 4,7-phenanthroline (4,7-phen), [Ag(NO3-O)(4,7-phen-mu-N4,N7)](n) (1), [Ag(ClO4-O)(4,7-phen-mu-N4,N7)](n) (2), [Ag(CF3COO-O)(4,7-phen-mu-N4,N7)](n) (3), [Ag-2(H2O)(0.58)(4,7-phen)(3)](SbF6)(2) (4) and {[Ag-2(H2O)(4,7-phen-mu-N4,N7)(2)](n)(BF4)(2)}(n) (5) were synthesized, structurally elucidated and biologically evaluated. These complexes showed selectivity towards Candida spp. in comparison to the tested bacteria and effectively inhibited the growth of four different Candida species, particularly of C. albicans strains, with minimal inhibitory concentrations (MICs) in the range of 2.0-10.0 mu M. In order to evaluate the therapeutic potential of 1-5, in vivo toxicity studies were conducted in the zebrafish model. Based on the favorable therapeutic profiles, complexes 1, 3 and 5 were selected for the evaluation of their antifungal efficacy in vivo using the zebrafish model of lethal disseminated candidiasis. Complexes 1 and 3 efficiently controlled and prevented fungal filamentation even at sub-MIC doses, while drastically increased the survival of the infected embryos. Moreover, at the MIC doses, both complexes totally prevented C. albicans filamentation and rescued almost all infected fish of the fatal infection outcome. On the other side, complex 5, which demonstrated the highest antifungal activity in vitro, affected the neutrophils occurrence of the infected host, failed to inhibit the C. albicans cells filamentation and showed a poor potential to cure candidal infection, highlighting the importance of the in vivo activity evaluation early in the therapeutic design and development process. The mechanism of action of the investigated silver(I) complexes was related to the induction of reactive oxygen species (ROS) response in C. albicans, with DNA being one of the possible target biomolecules.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection",
pages = "163-149",
volume = "195",
doi = "10.1016/j.jinorgbio.2019.03.017"
}
Pavić, A., Savić, N. D., Glišić, B., Crochet, A., Vojnović, S., Kurutos, A., Stanković, D., Fromm, K. M., Nikodinović-Runić, J.,& Djuran, M.. (2019). Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 195, 149-163.
https://doi.org/10.1016/j.jinorgbio.2019.03.017
Pavić A, Savić ND, Glišić B, Crochet A, Vojnović S, Kurutos A, Stanković D, Fromm KM, Nikodinović-Runić J, Djuran M. Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection. in Journal of Inorganic Biochemistry. 2019;195:149-163.
doi:10.1016/j.jinorgbio.2019.03.017 .
Pavić, Aleksandar, Savić, Nada D., Glišić, Biljana, Crochet, Aurelien, Vojnović, Sandra, Kurutos, Atanas, Stanković, Dalibor, Fromm, Katharina M., Nikodinović-Runić, Jasmina, Djuran, Milos, "Silver(I) complexes with 4,7-phenanthroline efficient in rescuing the zebrafish embryos of lethal Candida albicans infection" in Journal of Inorganic Biochemistry, 195 (2019):149-163,
https://doi.org/10.1016/j.jinorgbio.2019.03.017 . .
1
17
12
16

Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles

Andrejević, Tina P.; Nikolić, Andrea M.; Glišić, Biljana; Wadepohl, Hubert; Vojnović, Sandra; Zlatović, Mario; Petković, Milos; Nikodinović-Runić, Jasmina; Opsenica, Igor M.; Djuran, Milos

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Nikolić, Andrea M.
AU  - Glišić, Biljana
AU  - Wadepohl, Hubert
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Petković, Milos
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
AU  - Djuran, Milos
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1144
AB  - Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles
EP  - 333
SP  - 325
VL  - 154
DO  - 10.1016/j.poly.2018.08.001
ER  - 
@article{
author = "Andrejević, Tina P. and Nikolić, Andrea M. and Glišić, Biljana and Wadepohl, Hubert and Vojnović, Sandra and Zlatović, Mario and Petković, Milos and Nikodinović-Runić, Jasmina and Opsenica, Igor M. and Djuran, Milos",
year = "2018",
abstract = "Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles",
pages = "333-325",
volume = "154",
doi = "10.1016/j.poly.2018.08.001"
}
Andrejević, T. P., Nikolić, A. M., Glišić, B., Wadepohl, H., Vojnović, S., Zlatović, M., Petković, M., Nikodinović-Runić, J., Opsenica, I. M.,& Djuran, M.. (2018). Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 154, 325-333.
https://doi.org/10.1016/j.poly.2018.08.001
Andrejević TP, Nikolić AM, Glišić B, Wadepohl H, Vojnović S, Zlatović M, Petković M, Nikodinović-Runić J, Opsenica IM, Djuran M. Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron. 2018;154:325-333.
doi:10.1016/j.poly.2018.08.001 .
Andrejević, Tina P., Nikolić, Andrea M., Glišić, Biljana, Wadepohl, Hubert, Vojnović, Sandra, Zlatović, Mario, Petković, Milos, Nikodinović-Runić, Jasmina, Opsenica, Igor M., Djuran, Milos, "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles" in Polyhedron, 154 (2018):325-333,
https://doi.org/10.1016/j.poly.2018.08.001 . .
1
18
12
18

Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles

Andrejević, Tina P.; Nikolić, Andrea M.; Glišić, Biljana; Wadepohl, Hubert; Vojnović, Sandra; Zlatović, Mario; Petković, Milos; Nikodinović-Runić, Jasmina; Opsenica, Igor M.; Djuran, Milos

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Nikolić, Andrea M.
AU  - Glišić, Biljana
AU  - Wadepohl, Hubert
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Petković, Milos
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
AU  - Djuran, Milos
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1759
AB  - Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles
EP  - 333
SP  - 325
VL  - 154
DO  - 10.1016/j.poly.2018.08.001
ER  - 
@article{
author = "Andrejević, Tina P. and Nikolić, Andrea M. and Glišić, Biljana and Wadepohl, Hubert and Vojnović, Sandra and Zlatović, Mario and Petković, Milos and Nikodinović-Runić, Jasmina and Opsenica, Igor M. and Djuran, Milos",
year = "2018",
abstract = "Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles",
pages = "333-325",
volume = "154",
doi = "10.1016/j.poly.2018.08.001"
}
Andrejević, T. P., Nikolić, A. M., Glišić, B., Wadepohl, H., Vojnović, S., Zlatović, M., Petković, M., Nikodinović-Runić, J., Opsenica, I. M.,& Djuran, M.. (2018). Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 154, 325-333.
https://doi.org/10.1016/j.poly.2018.08.001
Andrejević TP, Nikolić AM, Glišić B, Wadepohl H, Vojnović S, Zlatović M, Petković M, Nikodinović-Runić J, Opsenica IM, Djuran M. Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron. 2018;154:325-333.
doi:10.1016/j.poly.2018.08.001 .
Andrejević, Tina P., Nikolić, Andrea M., Glišić, Biljana, Wadepohl, Hubert, Vojnović, Sandra, Zlatović, Mario, Petković, Milos, Nikodinović-Runić, Jasmina, Opsenica, Igor M., Djuran, Milos, "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles" in Polyhedron, 154 (2018):325-333,
https://doi.org/10.1016/j.poly.2018.08.001 . .
1
18
12
18

Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib

Pavić, Aleksandar; Glišić, Biljana; Vojnović, Sandra; Warzajtis, Beata; Savić, Nada D.; Antić, Marija; Radenković, Slavko; Janjić, Goran V.; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Elsevier Science Inc, New York, 2017)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Warzajtis, Beata
AU  - Savić, Nada D.
AU  - Antić, Marija
AU  - Radenković, Slavko
AU  - Janjić, Goran V.
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1756
AB  - Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib
EP  - 168
SP  - 156
VL  - 174
DO  - 10.1016/j.jinorgbio.2017.06.009
ER  - 
@article{
author = "Pavić, Aleksandar and Glišić, Biljana and Vojnović, Sandra and Warzajtis, Beata and Savić, Nada D. and Antić, Marija and Radenković, Slavko and Janjić, Goran V. and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2017",
abstract = "Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib",
pages = "168-156",
volume = "174",
doi = "10.1016/j.jinorgbio.2017.06.009"
}
Pavić, A., Glišić, B., Vojnović, S., Warzajtis, B., Savić, N. D., Antić, M., Radenković, S., Janjić, G. V., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2017). Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 174, 156-168.
https://doi.org/10.1016/j.jinorgbio.2017.06.009
Pavić A, Glišić B, Vojnović S, Warzajtis B, Savić ND, Antić M, Radenković S, Janjić GV, Nikodinović-Runić J, Rychlewska U, Djuran MI. Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry. 2017;174:156-168.
doi:10.1016/j.jinorgbio.2017.06.009 .
Pavić, Aleksandar, Glišić, Biljana, Vojnović, Sandra, Warzajtis, Beata, Savić, Nada D., Antić, Marija, Radenković, Slavko, Janjić, Goran V., Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib" in Journal of Inorganic Biochemistry, 174 (2017):156-168,
https://doi.org/10.1016/j.jinorgbio.2017.06.009 . .
22
20
24

Copper(II) complexes with different diamines as inhibitors of bacterial quorum sensing activity

Stanojević, Ivana M.; Aleksić, Ivana; Drasković, Nenad S.; Glišić, Biljana; Vojnović, Sandra; Nikodinović-Runić, Jasmina

(Srpsko hemijsko društvo, Beograd, 2017)

TY  - JOUR
AU  - Stanojević, Ivana M.
AU  - Aleksić, Ivana
AU  - Drasković, Nenad S.
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Nikodinović-Runić, Jasmina
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1021
AB  - Three copper(II) complexes, trans-[Cu(1,3-pd)(2)Cl-2]center dot H2O (Cu1; 1,3-pd is 1,3-propanediamine), trans-[Cu(2,2-diMe-1,3-pd)(2)Cl-2] (Cu2; 2,2-diMe-1,3-pd is 2,2-dimethyl-1,3-propanediamine) and trans-[Cu(1,3-pnd)(2)Cl-2]center dot H2O (Cu3; 1,3-pnd is (+/-)-1,3-pentanediamine), were synthesized and structurally characterized by elemental microanalyses, IR, electronic absorption and reflectance spectroscopy and molar conductivity measurements. The antimicrobial efficiency of the complexes against four clinically relevant microorganisms and their antiproliferative effect on the normal human lung fibroblast cell line MRC-5 were evaluated. Since in many bacteria, pathogenicity is regulated by an intercellular communication process called quorum sensing (QS), the effect of the copper(II) complexes Cu1-3 on bacterial QS was examined. The obtained results showed that these complexes inhibited violacein production in Chromobacterium violaceum CV026, indicating their anti-QS activity via the homoserine lactone (HSL) pathway. Two biosensor strains were used to determine which pathway, C4-HSL (N-butanoylhomoserine lactone) or 3OC12-HSL (N-(3-oxododecanoyl) homoserine lactone), was affected by the copper(II) complexes. The biological activities of the copper(II) complexes were compared with those for the nickel(II) complexes of the general formula trans-[Ni(L)(2)(H2O)(2)]Cl-2 (L = 1,3-pd, 2,2-diMe-1,3-pd and 1,3-pnd).
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Copper(II) complexes with different diamines as inhibitors of bacterial quorum sensing activity
EP  - 1367
IS  - 12
SP  - 1357
VL  - 82
DO  - 10.2298/JSC170706087S
ER  - 
@article{
author = "Stanojević, Ivana M. and Aleksić, Ivana and Drasković, Nenad S. and Glišić, Biljana and Vojnović, Sandra and Nikodinović-Runić, Jasmina",
year = "2017",
abstract = "Three copper(II) complexes, trans-[Cu(1,3-pd)(2)Cl-2]center dot H2O (Cu1; 1,3-pd is 1,3-propanediamine), trans-[Cu(2,2-diMe-1,3-pd)(2)Cl-2] (Cu2; 2,2-diMe-1,3-pd is 2,2-dimethyl-1,3-propanediamine) and trans-[Cu(1,3-pnd)(2)Cl-2]center dot H2O (Cu3; 1,3-pnd is (+/-)-1,3-pentanediamine), were synthesized and structurally characterized by elemental microanalyses, IR, electronic absorption and reflectance spectroscopy and molar conductivity measurements. The antimicrobial efficiency of the complexes against four clinically relevant microorganisms and their antiproliferative effect on the normal human lung fibroblast cell line MRC-5 were evaluated. Since in many bacteria, pathogenicity is regulated by an intercellular communication process called quorum sensing (QS), the effect of the copper(II) complexes Cu1-3 on bacterial QS was examined. The obtained results showed that these complexes inhibited violacein production in Chromobacterium violaceum CV026, indicating their anti-QS activity via the homoserine lactone (HSL) pathway. Two biosensor strains were used to determine which pathway, C4-HSL (N-butanoylhomoserine lactone) or 3OC12-HSL (N-(3-oxododecanoyl) homoserine lactone), was affected by the copper(II) complexes. The biological activities of the copper(II) complexes were compared with those for the nickel(II) complexes of the general formula trans-[Ni(L)(2)(H2O)(2)]Cl-2 (L = 1,3-pd, 2,2-diMe-1,3-pd and 1,3-pnd).",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Copper(II) complexes with different diamines as inhibitors of bacterial quorum sensing activity",
pages = "1367-1357",
number = "12",
volume = "82",
doi = "10.2298/JSC170706087S"
}
Stanojević, I. M., Aleksić, I., Drasković, N. S., Glišić, B., Vojnović, S.,& Nikodinović-Runić, J.. (2017). Copper(II) complexes with different diamines as inhibitors of bacterial quorum sensing activity. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 82(12), 1357-1367.
https://doi.org/10.2298/JSC170706087S
Stanojević IM, Aleksić I, Drasković NS, Glišić B, Vojnović S, Nikodinović-Runić J. Copper(II) complexes with different diamines as inhibitors of bacterial quorum sensing activity. in Journal of the Serbian Chemical Society. 2017;82(12):1357-1367.
doi:10.2298/JSC170706087S .
Stanojević, Ivana M., Aleksić, Ivana, Drasković, Nenad S., Glišić, Biljana, Vojnović, Sandra, Nikodinović-Runić, Jasmina, "Copper(II) complexes with different diamines as inhibitors of bacterial quorum sensing activity" in Journal of the Serbian Chemical Society, 82, no. 12 (2017):1357-1367,
https://doi.org/10.2298/JSC170706087S . .
6
2
1
3

Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib

Pavić, Aleksandar; Glišić, Biljana; Vojnović, Sandra; Warzajtis, Beata; Savić, Nada D.; Antić, Marija; Radenković, Slavko; Janjić, Goran V.; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Elsevier Science Inc, New York, 2017)

TY  - JOUR
AU  - Pavić, Aleksandar
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Warzajtis, Beata
AU  - Savić, Nada D.
AU  - Antić, Marija
AU  - Radenković, Slavko
AU  - Janjić, Goran V.
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1011
AB  - Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib
EP  - 168
SP  - 156
VL  - 174
DO  - 10.1016/j.jinorgbio.2017.06.009
ER  - 
@article{
author = "Pavić, Aleksandar and Glišić, Biljana and Vojnović, Sandra and Warzajtis, Beata and Savić, Nada D. and Antić, Marija and Radenković, Slavko and Janjić, Goran V. and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2017",
abstract = "Gold(III) complexes with 1,7- and 4,7-phenanthroline ligands, [AuCl3(1,7-phen-kappa N7)] (1) and [AuCl3(4,7-phen-kappa N4)] (2) were synthesized and structurally characterized by spectroscopic (NMR, IR and UV-vis) and single crystal X-ray diffraction techniques. In these complexes, 1,7- and 4,7-phenanthrolines are monodentatedly coordinated to the Au(III) ion through the N7 and N4 nitrogen atoms, respectively. In comparison to the clinically relevant anti-angiogenic compounds auranofin and sunitinib, gold(III)-phenanthroline complexes showed from 1.5- to 20-fold higher anti-angiogenic potential, and 13- and 118-fold lower toxicity. Among the tested compounds, complex 1 was the most potent and may be an excellent anti-angiogenic drug candidate, since it showed strong anti-angiogenic activity in zebrafish embryos achieving IC50 value (concentration resulting in an anti-angiogenic phenotype at 50% of embryos) of 2.89 mu M, while had low toxicity with LC50 value (the concentration inducing the lethal effect of 50% embryos) of 128 mu M. Molecular docking study revealed that both complexes and ligands could suppress angiogenesis targeting the multiple major regulators of angiogenesis, such as the vascular endothelial growth factor receptor (VEGFR-2), the matrix metalloproteases (MMP-2 and MMP-9), and thioredoxin reductase (TrxR1), where the complexes showed higher binding affinity in comparison to ligands, and particularly to auranofin, but comparable to sunitinib, an anti-angiogenic drug of clinical relevance.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib",
pages = "168-156",
volume = "174",
doi = "10.1016/j.jinorgbio.2017.06.009"
}
Pavić, A., Glišić, B., Vojnović, S., Warzajtis, B., Savić, N. D., Antić, M., Radenković, S., Janjić, G. V., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2017). Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 174, 156-168.
https://doi.org/10.1016/j.jinorgbio.2017.06.009
Pavić A, Glišić B, Vojnović S, Warzajtis B, Savić ND, Antić M, Radenković S, Janjić GV, Nikodinović-Runić J, Rychlewska U, Djuran MI. Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. in Journal of Inorganic Biochemistry. 2017;174:156-168.
doi:10.1016/j.jinorgbio.2017.06.009 .
Pavić, Aleksandar, Glišić, Biljana, Vojnović, Sandra, Warzajtis, Beata, Savić, Nada D., Antić, Marija, Radenković, Slavko, Janjić, Goran V., Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib" in Journal of Inorganic Biochemistry, 174 (2017):156-168,
https://doi.org/10.1016/j.jinorgbio.2017.06.009 . .
22
20
24

Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion

Warzajtis, Beata; Glišić, Biljana; Savić, Nada D.; Pavić, Aleksandar; Vojnović, Sandra; Veselinović, Aleksandar; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos I.

(Royal Soc Chemistry, Cambridge, 2017)

TY  - JOUR
AU  - Warzajtis, Beata
AU  - Glišić, Biljana
AU  - Savić, Nada D.
AU  - Pavić, Aleksandar
AU  - Vojnović, Sandra
AU  - Veselinović, Aleksandar
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos I.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1050
AB  - Gold(III) complexes with different L-histidine-containing dipeptides, [Au(Gly-L-His-N-A,N-P,N3)Cl]Cl center dot 3H(2)O (1a), [Au(Gly-L-His-N-A,N-P,N-3)Cl]NO3 center dot 1.25H(2)O (1b), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (2a), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl]NO3 center dot 2.5H(2)O (2b), [Au(L-Val-L-His-N-A,N-P,N-3)Cl]Cl center dot 2H(2)O (3), [Au(L-Leu-L-His-N-A,N-P,N-3)Cl]Cl (4a) and [Au(L-Leu-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(III) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(III) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(III) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion
EP  - 2608
IS  - 8
SP  - 2594
VL  - 46
DO  - 10.1039/c6dt04862e
ER  - 
@article{
author = "Warzajtis, Beata and Glišić, Biljana and Savić, Nada D. and Pavić, Aleksandar and Vojnović, Sandra and Veselinović, Aleksandar and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos I.",
year = "2017",
abstract = "Gold(III) complexes with different L-histidine-containing dipeptides, [Au(Gly-L-His-N-A,N-P,N3)Cl]Cl center dot 3H(2)O (1a), [Au(Gly-L-His-N-A,N-P,N-3)Cl]NO3 center dot 1.25H(2)O (1b), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (2a), [Au(L-Ala-L-His-N-A,N-P,N-3)Cl]NO3 center dot 2.5H(2)O (2b), [Au(L-Val-L-His-N-A,N-P,N-3)Cl]Cl center dot 2H(2)O (3), [Au(L-Leu-L-His-N-A,N-P,N-3)Cl]Cl (4a) and [Au(L-Leu-L-His-N-A,N-P,N-3)Cl][AuCl4]center dot H2O (4b), have been synthesized and structurally characterized by spectroscopic (1H NMR, IR and UV-vis) and single-crystal X-ray diffraction techniques. The antimicrobial efficiency of these gold(III) complexes, along with K[AuCl4] and the corresponding dipeptides, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their moderate inhibiting activity. Moreover, the cytotoxic properties of the investigated complexes were assessed against the normal human lung fibroblast cell line (MRC5) and two human cancer, cervix (HeLa) and lung (A549) cell lines. None of the complexes exerted significant cytotoxic activity; nevertheless complexes that did show selectivity in terms of cancer vs. normal cell lines (2a/b and 4a/b) have been evaluated using zebrafish (Danio rerio) embryos for toxicity and antiangiogenic potential. Although the gold(III) complexes achieved an antiangiogenic effect comparable to the known angiogenic inhibitors auranofin and sunitinib malate at 30-fold higher concentrations, they had no cardiovascular side effects, which commonly accompany auranofin and sunitinib malate treatment. Finally, binding of the gold(III) complexes to the active sites of both human and bacterial (Escherichia coli) thioredoxin reductases (TrxRs) was demonstrated by conducting a molecular docking study, suggesting that the mechanism of biological action of these complexes can be associated with their interaction with the TrxR active site.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion",
pages = "2608-2594",
number = "8",
volume = "46",
doi = "10.1039/c6dt04862e"
}
Warzajtis, B., Glišić, B., Savić, N. D., Pavić, A., Vojnović, S., Veselinović, A., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M. I.. (2017). Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 46(8), 2594-2608.
https://doi.org/10.1039/c6dt04862e
Warzajtis B, Glišić B, Savić ND, Pavić A, Vojnović S, Veselinović A, Nikodinović-Runić J, Rychlewska U, Djuran MI. Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion. in Dalton Transactions. 2017;46(8):2594-2608.
doi:10.1039/c6dt04862e .
Warzajtis, Beata, Glišić, Biljana, Savić, Nada D., Pavić, Aleksandar, Vojnović, Sandra, Veselinović, Aleksandar, Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos I., "Mononuclear gold(III) complexes with L-histidine-containing dipeptides: tuning the structural and biological properties by variation of the N-terminal amino acid and counter anion" in Dalton Transactions, 46, no. 8 (2017):2594-2608,
https://doi.org/10.1039/c6dt04862e . .
1
22
14
22