The synthesis of aminoquinoline-based antimalarials and botulinum neurotoxin A inhibitors

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172008/RS//

The synthesis of aminoquinoline-based antimalarials and botulinum neurotoxin A inhibitors (en)
Синтеза аминохинолина и њихових деривата као антималарика и инхибитора ботулинум неуротоксина А (sr)
Sinteza aminohinolina i njihovih derivata kao antimalarika i inhibitora botulinum neurotoksina A (sr_RS)
Authors

Publications

Bisaurones - enzymatic production and biological evaluation

Novakovi, Miroslav M.; Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Novakovi, Miroslav M.
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1310
AB  - TheTrametes versicolorlaccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e.two regioisomeric pairs of diasteromers,1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3 ',4 ') catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds1,3and4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound2, isolated as a mixture containingca.25% of compound1,was proposed by the comparison of(1)H NMR data to compound1and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers1,3and4,were evaluated for their cytotoxic and antioxidative propertiesin vitrousing a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. TheC. coggygriabark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.
PB  - Royal Soc Chemistry, Cambridge
T2  - New Journal of Chemistry
T1  - Bisaurones - enzymatic production and biological evaluation
EP  - 9655
IS  - 23
SP  - 9647
VL  - 44
DO  - 10.1039/d0nj00758g
ER  - 
@article{
author = "Novakovi, Miroslav M. and Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "TheTrametes versicolorlaccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e.two regioisomeric pairs of diasteromers,1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3 ',4 ') catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds1,3and4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound2, isolated as a mixture containingca.25% of compound1,was proposed by the comparison of(1)H NMR data to compound1and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers1,3and4,were evaluated for their cytotoxic and antioxidative propertiesin vitrousing a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. TheC. coggygriabark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "New Journal of Chemistry",
title = "Bisaurones - enzymatic production and biological evaluation",
pages = "9655-9647",
number = "23",
volume = "44",
doi = "10.1039/d0nj00758g"
}
Novakovi, M. M., Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Bisaurones - enzymatic production and biological evaluation. in New Journal of Chemistry
Royal Soc Chemistry, Cambridge., 44(23), 9647-9655.
https://doi.org/10.1039/d0nj00758g
Novakovi MM, Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Bisaurones - enzymatic production and biological evaluation. in New Journal of Chemistry. 2020;44(23):9647-9655.
doi:10.1039/d0nj00758g .
Novakovi, Miroslav M., Ilić-Tomić, Tatjana, Tešević, Vele, Simić, Katarina, Ivanović, Stefan, Simić, Stefan, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Bisaurones - enzymatic production and biological evaluation" in New Journal of Chemistry, 44, no. 23 (2020):9647-9655,
https://doi.org/10.1039/d0nj00758g . .
1
1

Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives

Novaković, Miroslav; Simić, Stefan; Koracak, Ljiljana; Zlatović, Mario; Ilić-Tomić, Tatjana; Asakawa, Yoshinori; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Novaković, Miroslav
AU  - Simić, Stefan
AU  - Koracak, Ljiljana
AU  - Zlatović, Mario
AU  - Ilić-Tomić, Tatjana
AU  - Asakawa, Yoshinori
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1755
AB  - Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.
PB  - Elsevier, Amsterdam
T2  - Fitoterapia
T1  - Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives
VL  - 142
DO  - 10.1016/j.fitote.2020.104520
ER  - 
@article{
author = "Novaković, Miroslav and Simić, Stefan and Koracak, Ljiljana and Zlatović, Mario and Ilić-Tomić, Tatjana and Asakawa, Yoshinori and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2020",
abstract = "Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.",
publisher = "Elsevier, Amsterdam",
journal = "Fitoterapia",
title = "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives",
volume = "142",
doi = "10.1016/j.fitote.2020.104520"
}
Novaković, M., Simić, S., Koracak, L., Zlatović, M., Ilić-Tomić, T., Asakawa, Y., Nikodinović-Runić, J.,& Opsenica, I.. (2020). Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. in Fitoterapia
Elsevier, Amsterdam., 142.
https://doi.org/10.1016/j.fitote.2020.104520
Novaković M, Simić S, Koracak L, Zlatović M, Ilić-Tomić T, Asakawa Y, Nikodinović-Runić J, Opsenica I. Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. in Fitoterapia. 2020;142.
doi:10.1016/j.fitote.2020.104520 .
Novaković, Miroslav, Simić, Stefan, Koracak, Ljiljana, Zlatović, Mario, Ilić-Tomić, Tatjana, Asakawa, Yoshinori, Nikodinović-Runić, Jasmina, Opsenica, Igor, "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives" in Fitoterapia, 142 (2020),
https://doi.org/10.1016/j.fitote.2020.104520 . .
1
5
1
4

Bisaurones - enzymatic production and biological evaluation

Ilić-Tomić, Tatjana; Tešević, Vele; Simić, Katarina; Ivanović, Stefan; Simić, Stefan; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Ilić-Tomić, Tatjana
AU  - Tešević, Vele
AU  - Simić, Katarina
AU  - Ivanović, Stefan
AU  - Simić, Stefan
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1761
AB  - TheTrametes versicolorlaccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e.two regioisomeric pairs of diasteromers,1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3 ',4 ') catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds1,3and4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound2, isolated as a mixture containingca.25% of compound1,was proposed by the comparison of(1)H NMR data to compound1and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers1,3and4,were evaluated for their cytotoxic and antioxidative propertiesin vitrousing a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. TheC. coggygriabark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.
PB  - Royal Soc Chemistry, Cambridge
T2  - New Journal of Chemistry
T1  - Bisaurones - enzymatic production and biological evaluation
EP  - 9655
IS  - 23
SP  - 9647
VL  - 44
DO  - 10.1039/d0nj00758g
ER  - 
@article{
author = "Ilić-Tomić, Tatjana and Tešević, Vele and Simić, Katarina and Ivanović, Stefan and Simić, Stefan and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "TheTrametes versicolorlaccase catalyzed oxidation of chalcone butein afforded four dimers of aurone sulfuretin (i.e.two regioisomeric pairs of diasteromers,1-4) as the major products. The formation of the dimers was explained by a two step process involving the initial cyclization of butein into aurone sulfuretin, followed by the combination of two molecules of sulfuretin. The coupling process occurred between the 2,10-double bond of one molecule of sulfuretin and the (3 ',4 ') catechol group of the other to yield a dimeric structure. This was confirmed by the experiment involving the laccase catalyzed oxidation of sulfuretin yielding the same dimeric bisaurones. Compounds1,3and4, were isolated using semipreparative HPLC and characterized by the detailed analysis of the NMR, MS, IR, and UV-vis data. The structure of compound2, isolated as a mixture containingca.25% of compound1,was proposed by the comparison of(1)H NMR data to compound1and by using LC-ESIMS analysis. The starting chalcone butein and the products of the biocatalytic transformation, aurone sulfuretin and sulfuretin dimers1,3and4,were evaluated for their cytotoxic and antioxidative propertiesin vitrousing a healthy human fibroblast (MRC5) cell line. The biotransformation products showed lower cytotoxicity but higher antioxidative properties. TheC. coggygriabark methanol extract rich in butein and sulfuretin was also biotransformed by laccase. The transformed extract exhibited significantly improved antioxidative activities.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "New Journal of Chemistry",
title = "Bisaurones - enzymatic production and biological evaluation",
pages = "9655-9647",
number = "23",
volume = "44",
doi = "10.1039/d0nj00758g"
}
Ilić-Tomić, T., Tešević, V., Simić, K., Ivanović, S., Simić, S., Opsenica, I.,& Nikodinović-Runić, J.. (2020). Bisaurones - enzymatic production and biological evaluation. in New Journal of Chemistry
Royal Soc Chemistry, Cambridge., 44(23), 9647-9655.
https://doi.org/10.1039/d0nj00758g
Ilić-Tomić T, Tešević V, Simić K, Ivanović S, Simić S, Opsenica I, Nikodinović-Runić J. Bisaurones - enzymatic production and biological evaluation. in New Journal of Chemistry. 2020;44(23):9647-9655.
doi:10.1039/d0nj00758g .
Ilić-Tomić, Tatjana, Tešević, Vele, Simić, Katarina, Ivanović, Stefan, Simić, Stefan, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Bisaurones - enzymatic production and biological evaluation" in New Journal of Chemistry, 44, no. 23 (2020):9647-9655,
https://doi.org/10.1039/d0nj00758g . .
1
1

Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines

Simić, Stefan; Jeremić, Sanja; Đokić, Lidija; Bozić, Nataša; Vujcić, Zoran; Loncar, Nikola; Senthamaraikannan, Ramsankar; Babu, Ramesh; Opsenica, Igor M.; Nikodinović-Runić, Jasmina

(New York : Elsevier Science Inc, 2020)

TY  - JOUR
AU  - Simić, Stefan
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Bozić, Nataša
AU  - Vujcić, Zoran
AU  - Loncar, Nikola
AU  - Senthamaraikannan, Ramsankar
AU  - Babu, Ramesh
AU  - Opsenica, Igor M.
AU  - Nikodinović-Runić, Jasmina
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1406
AB  - Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7-24 h with good yields (70-99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 degrees C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.
PB  - New York : Elsevier Science Inc
T2  - Enzyme and Microbial Technology
T1  - Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines
VL  - 132
DO  - 10.1016/j.enzmictec.2019.109411
ER  - 
@article{
author = "Simić, Stefan and Jeremić, Sanja and Đokić, Lidija and Bozić, Nataša and Vujcić, Zoran and Loncar, Nikola and Senthamaraikannan, Ramsankar and Babu, Ramesh and Opsenica, Igor M. and Nikodinović-Runić, Jasmina",
year = "2020",
abstract = "Biocatalytic oxidations mediated by laccases are gaining importance due to their versatility and beneficial environmental effects. In this study, the oxidation of 1,4-dihydropyridines has been performed using three different types of bacterial laccase-based catalysts: purified laccase from Bacillus licheniformis ATCC 9945a (BliLacc), Escherichia coli whole cells expressing this laccase, and bacterial nanocellulose (BNC) supported BliLacc catalysts. The catalysts based on bacterial laccase were compared to the commercially available Trametes versicolor laccase (TvLacc). The oxidation product of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate was obtained within 7-24 h with good yields (70-99%) with all three biocatalysts. The substrate scope was examined with five additional 1,4-dihydropyridines, one of which was oxidized in high yield. Whole-cell biocatalyst was stable when stored for up to 1-month at 4 degrees C. In addition, evidence has been provided that multicopper oxidase CueO from the E. coli expression host contributed to the oxidation efficiency of the whole-cell biocatalyst. The immobilized whole-cell biocatalyst showed satisfactory activity and retained 37% of its original activity after three biotransformation cycles.",
publisher = "New York : Elsevier Science Inc",
journal = "Enzyme and Microbial Technology",
title = "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines",
volume = "132",
doi = "10.1016/j.enzmictec.2019.109411"
}
Simić, S., Jeremić, S., Đokić, L., Bozić, N., Vujcić, Z., Loncar, N., Senthamaraikannan, R., Babu, R., Opsenica, I. M.,& Nikodinović-Runić, J.. (2020). Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology
New York : Elsevier Science Inc., 132.
https://doi.org/10.1016/j.enzmictec.2019.109411
Simić S, Jeremić S, Đokić L, Bozić N, Vujcić Z, Loncar N, Senthamaraikannan R, Babu R, Opsenica IM, Nikodinović-Runić J. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. in Enzyme and Microbial Technology. 2020;132.
doi:10.1016/j.enzmictec.2019.109411 .
Simić, Stefan, Jeremić, Sanja, Đokić, Lidija, Bozić, Nataša, Vujcić, Zoran, Loncar, Nikola, Senthamaraikannan, Ramsankar, Babu, Ramesh, Opsenica, Igor M., Nikodinović-Runić, Jasmina, "Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines" in Enzyme and Microbial Technology, 132 (2020),
https://doi.org/10.1016/j.enzmictec.2019.109411 . .
19
6
17

Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents

Šenerović, Lidija; Opsenica, Dejan; Morić, Ivana; Aleksić, Ivana; Spasić, M.; Vasiljević, Branka

(Springer, 2020)

TY  - CHAP
AU  - Šenerović, Lidija
AU  - Opsenica, Dejan
AU  - Morić, Ivana
AU  - Aleksić, Ivana
AU  - Spasić, M.
AU  - Vasiljević, Branka
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1348
AB  - Infective diseases have become health threat of a global proportion due to appearance and spread of microorganisms resistant to majority of therapeutics currently used for their treatment. Therefore, there is a constant need for development of new antimicrobial agents, as well as novel therapeutic strategies. Quinolines and quinolones, isolated from plants, animals, and microorganisms, have demonstrated numerous biological activities such as antimicrobial, insecticidal, anti-inflammatory, antiplatelet, and antitumor. For more than two centuries quinoline/quinolone moiety has been used as a scaffold for drug development and even today it represents an inexhaustible inspiration for design and development of novel semi-synthetic or synthetic agents exhibiting broad spectrum of bioactivities. The structural diversity of synthetized compounds provides high and selective activity attained through different mechanisms of action, as well as low toxicity on human cells. This review describes quinoline and quinolone derivatives with antibacterial, antifungal, anti-virulent, antiviral, and anti-parasitic activities with the focus on the last 10 years literature.
PB  - Springer
T2  - Biophysics of Infection
T1  - Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents
EP  - 69
SP  - 37
VL  - 1282
DO  - 10.1007/5584_2019_428
ER  - 
@inbook{
author = "Šenerović, Lidija and Opsenica, Dejan and Morić, Ivana and Aleksić, Ivana and Spasić, M. and Vasiljević, Branka",
year = "2020",
abstract = "Infective diseases have become health threat of a global proportion due to appearance and spread of microorganisms resistant to majority of therapeutics currently used for their treatment. Therefore, there is a constant need for development of new antimicrobial agents, as well as novel therapeutic strategies. Quinolines and quinolones, isolated from plants, animals, and microorganisms, have demonstrated numerous biological activities such as antimicrobial, insecticidal, anti-inflammatory, antiplatelet, and antitumor. For more than two centuries quinoline/quinolone moiety has been used as a scaffold for drug development and even today it represents an inexhaustible inspiration for design and development of novel semi-synthetic or synthetic agents exhibiting broad spectrum of bioactivities. The structural diversity of synthetized compounds provides high and selective activity attained through different mechanisms of action, as well as low toxicity on human cells. This review describes quinoline and quinolone derivatives with antibacterial, antifungal, anti-virulent, antiviral, and anti-parasitic activities with the focus on the last 10 years literature.",
publisher = "Springer",
journal = "Biophysics of Infection",
booktitle = "Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents",
pages = "69-37",
volume = "1282",
doi = "10.1007/5584_2019_428"
}
Šenerović, L., Opsenica, D., Morić, I., Aleksić, I., Spasić, M.,& Vasiljević, B.. (2020). Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. in Biophysics of Infection
Springer., 1282, 37-69.
https://doi.org/10.1007/5584_2019_428
Šenerović L, Opsenica D, Morić I, Aleksić I, Spasić M, Vasiljević B. Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. in Biophysics of Infection. 2020;1282:37-69.
doi:10.1007/5584_2019_428 .
Šenerović, Lidija, Opsenica, Dejan, Morić, Ivana, Aleksić, Ivana, Spasić, M., Vasiljević, Branka, "Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents" in Biophysics of Infection, 1282 (2020):37-69,
https://doi.org/10.1007/5584_2019_428 . .
68
60

Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives

Novaković, Miroslav; Simić, Stefan; Koracak, Ljiljana; Zlatović, Mario; Ilić-Tomić, Tatjana; Asakawa, Yoshinori; Nikodinović-Runić, Jasmina; Opsenica, Igor

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Novaković, Miroslav
AU  - Simić, Stefan
AU  - Koracak, Ljiljana
AU  - Zlatović, Mario
AU  - Ilić-Tomić, Tatjana
AU  - Asakawa, Yoshinori
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1367
AB  - Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.
PB  - Elsevier, Amsterdam
T2  - Fitoterapia
T1  - Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives
VL  - 142
DO  - 10.1016/j.fitote.2020.104520
ER  - 
@article{
author = "Novaković, Miroslav and Simić, Stefan and Koracak, Ljiljana and Zlatović, Mario and Ilić-Tomić, Tatjana and Asakawa, Yoshinori and Nikodinović-Runić, Jasmina and Opsenica, Igor",
year = "2020",
abstract = "Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.",
publisher = "Elsevier, Amsterdam",
journal = "Fitoterapia",
title = "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives",
volume = "142",
doi = "10.1016/j.fitote.2020.104520"
}
Novaković, M., Simić, S., Koracak, L., Zlatović, M., Ilić-Tomić, T., Asakawa, Y., Nikodinović-Runić, J.,& Opsenica, I.. (2020). Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. in Fitoterapia
Elsevier, Amsterdam., 142.
https://doi.org/10.1016/j.fitote.2020.104520
Novaković M, Simić S, Koracak L, Zlatović M, Ilić-Tomić T, Asakawa Y, Nikodinović-Runić J, Opsenica I. Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives. in Fitoterapia. 2020;142.
doi:10.1016/j.fitote.2020.104520 .
Novaković, Miroslav, Simić, Stefan, Koracak, Ljiljana, Zlatović, Mario, Ilić-Tomić, Tatjana, Asakawa, Yoshinori, Nikodinović-Runić, Jasmina, Opsenica, Igor, "Chemo- and biocatalytic esterification of marchantin A and cytotoxic activity of ester derivatives" in Fitoterapia, 142 (2020),
https://doi.org/10.1016/j.fitote.2020.104520 . .
1
5
1
4

Second generation of diazachrysenes: Protection of Ebola virus infected mice and mechanism of action

Selaković, Zivota; Tran, Julie P.; Kota, Krishna P.; Lazić, Marija; Retterer, Cary; Besh, Robert; Panchal, Rekha G.; Soloveva, Veronica; Sean, Vantongreen A.; Jay, Wells B.; Pavić, Aleksandar; Verbić, Tatjana; Vasiljević, Branka; Kuehl, Kathleen; Duplantier, Allen J.; Bavari, Sina; Mudhasani, Rajini; Solaja, Bogdan A.

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2019)

TY  - JOUR
AU  - Selaković, Zivota
AU  - Tran, Julie P.
AU  - Kota, Krishna P.
AU  - Lazić, Marija
AU  - Retterer, Cary
AU  - Besh, Robert
AU  - Panchal, Rekha G.
AU  - Soloveva, Veronica
AU  - Sean, Vantongreen A.
AU  - Jay, Wells B.
AU  - Pavić, Aleksandar
AU  - Verbić, Tatjana
AU  - Vasiljević, Branka
AU  - Kuehl, Kathleen
AU  - Duplantier, Allen J.
AU  - Bavari, Sina
AU  - Mudhasani, Rajini
AU  - Solaja, Bogdan A.
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1293
AB  - Ebola virus (EBOV) causes a deadly hemorrhagic fever in humans and non-human primates. There is currently no FDA-approved vaccine or medication to counter this disease. Here, we report on the design, synthesis and anti-viral activities of two classes of compounds which show high potency against EBOV in both in vitro cell culture assays and in vivo mouse models Ebola viral disease. These compounds incorporate the structural features of cationic amphiphilic drugs (CAD), i.e they possess both a hydrophobic domain and a hydrophilic domain consisting of an ionizable amine functional group. These structural features enable easily diffusion into cells but once inside an acidic compartment their amine groups became protonated, ionized and remain trapped inside the acidic compartments such as late endosomes and lysosomes. These compounds, by virtue of their lysomotrophic functions, blocked EBOV entry. However, unlike other drugs containing a CAD moiety including chloroquine and amodiaquine, compounds reported in this study display faster kinetics of accumulation in the lysosomes, robust expansion of late endosome/lysosomes, relatively more potent suppression of lysosome fusion with other vesicular compartments and inhibition of cathepsins activities, all of which play a vital role in anti-EBOV activity. Furthermore, the diazachrysene 2 (ZSML08) that showed most potent activity against EBOV in in vitro cell culture assays also showed significant survival benefit with 100% protection in mouse models of Ebola virus disease, at a low dose of 10 mg/kg/day. Lastly, toxicity studies in vivo using zebrafish models suggest no developmental defects or toxicity associated with these compounds. Overall, these studies describe two new pharmacophores that by virtue of being potent lysosomotrophs, display potent anti-EBOV activities both in vitro and in vivo animal models of EBOV disease.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - Second generation of diazachrysenes: Protection of Ebola virus infected mice and mechanism of action
EP  - 50
SP  - 32
VL  - 162
DO  - 10.1016/j.ejmech.2018.10.061
ER  - 
@article{
author = "Selaković, Zivota and Tran, Julie P. and Kota, Krishna P. and Lazić, Marija and Retterer, Cary and Besh, Robert and Panchal, Rekha G. and Soloveva, Veronica and Sean, Vantongreen A. and Jay, Wells B. and Pavić, Aleksandar and Verbić, Tatjana and Vasiljević, Branka and Kuehl, Kathleen and Duplantier, Allen J. and Bavari, Sina and Mudhasani, Rajini and Solaja, Bogdan A.",
year = "2019",
abstract = "Ebola virus (EBOV) causes a deadly hemorrhagic fever in humans and non-human primates. There is currently no FDA-approved vaccine or medication to counter this disease. Here, we report on the design, synthesis and anti-viral activities of two classes of compounds which show high potency against EBOV in both in vitro cell culture assays and in vivo mouse models Ebola viral disease. These compounds incorporate the structural features of cationic amphiphilic drugs (CAD), i.e they possess both a hydrophobic domain and a hydrophilic domain consisting of an ionizable amine functional group. These structural features enable easily diffusion into cells but once inside an acidic compartment their amine groups became protonated, ionized and remain trapped inside the acidic compartments such as late endosomes and lysosomes. These compounds, by virtue of their lysomotrophic functions, blocked EBOV entry. However, unlike other drugs containing a CAD moiety including chloroquine and amodiaquine, compounds reported in this study display faster kinetics of accumulation in the lysosomes, robust expansion of late endosome/lysosomes, relatively more potent suppression of lysosome fusion with other vesicular compartments and inhibition of cathepsins activities, all of which play a vital role in anti-EBOV activity. Furthermore, the diazachrysene 2 (ZSML08) that showed most potent activity against EBOV in in vitro cell culture assays also showed significant survival benefit with 100% protection in mouse models of Ebola virus disease, at a low dose of 10 mg/kg/day. Lastly, toxicity studies in vivo using zebrafish models suggest no developmental defects or toxicity associated with these compounds. Overall, these studies describe two new pharmacophores that by virtue of being potent lysosomotrophs, display potent anti-EBOV activities both in vitro and in vivo animal models of EBOV disease.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "Second generation of diazachrysenes: Protection of Ebola virus infected mice and mechanism of action",
pages = "50-32",
volume = "162",
doi = "10.1016/j.ejmech.2018.10.061"
}
Selaković, Z., Tran, J. P., Kota, K. P., Lazić, M., Retterer, C., Besh, R., Panchal, R. G., Soloveva, V., Sean, V. A., Jay, W. B., Pavić, A., Verbić, T., Vasiljević, B., Kuehl, K., Duplantier, A. J., Bavari, S., Mudhasani, R.,& Solaja, B. A.. (2019). Second generation of diazachrysenes: Protection of Ebola virus infected mice and mechanism of action. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux., 162, 32-50.
https://doi.org/10.1016/j.ejmech.2018.10.061
Selaković Z, Tran JP, Kota KP, Lazić M, Retterer C, Besh R, Panchal RG, Soloveva V, Sean VA, Jay WB, Pavić A, Verbić T, Vasiljević B, Kuehl K, Duplantier AJ, Bavari S, Mudhasani R, Solaja BA. Second generation of diazachrysenes: Protection of Ebola virus infected mice and mechanism of action. in European Journal of Medicinal Chemistry. 2019;162:32-50.
doi:10.1016/j.ejmech.2018.10.061 .
Selaković, Zivota, Tran, Julie P., Kota, Krishna P., Lazić, Marija, Retterer, Cary, Besh, Robert, Panchal, Rekha G., Soloveva, Veronica, Sean, Vantongreen A., Jay, Wells B., Pavić, Aleksandar, Verbić, Tatjana, Vasiljević, Branka, Kuehl, Kathleen, Duplantier, Allen J., Bavari, Sina, Mudhasani, Rajini, Solaja, Bogdan A., "Second generation of diazachrysenes: Protection of Ebola virus infected mice and mechanism of action" in European Journal of Medicinal Chemistry, 162 (2019):32-50,
https://doi.org/10.1016/j.ejmech.2018.10.061 . .
6
15
10
13

Aromatic Guanylhydrazones for the Control of Heme-Induced Antibody Polyreactivity

Bozinovi, Nina; Ajdačić, Vladimir; Lazić, Jelena; Lecerf, Maxime; Daventure, Victoria; Nikodinović-Runić, Jasmina; Opsenica, Igor M.; Dimitrov, Jordan D.

(Amer Chemical Soc, Washington, 2019)

TY  - JOUR
AU  - Bozinovi, Nina
AU  - Ajdačić, Vladimir
AU  - Lazić, Jelena
AU  - Lecerf, Maxime
AU  - Daventure, Victoria
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
AU  - Dimitrov, Jordan D.
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1223
AB  - In a healthy immune repertoire, there exists a fraction of polyreactive antibodies that can bind to a variety of unrelated self- and foreign antigens. Apart from naturally polyreactive antibodies, in every healthy individual, there is a fraction of antibody that can gain polyreactivity upon exposure to porphyrin cofactor heme. Molecular mechanisms and biological significance of the appearance of cryptic polyreactivity are not well understood. It is believed that heme acts as an interfacial cofactor between the antibody and the newly recognized antigens. To further test this claim and gain insight into the types of interactions involved in heme binding, we herein investigated the influence of a group of aromatic guanylhydrazone molecules on the heme-induced antibody polyreactivity. From the analysis of SAR and the results of UV-vis absorbance spectroscopy, it was concluded that the most probable mechanism by which the studied molecules inhibit heme-mediated polyreactivity of the antibody is the direct binding to heme, thus preventing heme from binding to antibody and/or antigen. The inhibitory capacity of the most potent compounds was substantially higher than that of chloroquine, a well-known heme binder. Some of the guanylhydrazone molecules were able to induce polyreactivity of the studied antibody themselves, possibly by a mechanism similar to heme. Results described here point to the conclusion that heme indeed must bind to an antibody to induce its polyreactivity, and that both pi-stacking interactions and iron coordination contribute to the binding affinity, while certain structures, such as guanylhydrazones, can interfere with these processes.
PB  - Amer Chemical Soc, Washington
T2  - Acs Omega
T1  - Aromatic Guanylhydrazones for the Control of Heme-Induced Antibody Polyreactivity
EP  - 20458
IS  - 24
SP  - 20450
VL  - 4
DO  - 10.1021/acsomega.9b01548
ER  - 
@article{
author = "Bozinovi, Nina and Ajdačić, Vladimir and Lazić, Jelena and Lecerf, Maxime and Daventure, Victoria and Nikodinović-Runić, Jasmina and Opsenica, Igor M. and Dimitrov, Jordan D.",
year = "2019",
abstract = "In a healthy immune repertoire, there exists a fraction of polyreactive antibodies that can bind to a variety of unrelated self- and foreign antigens. Apart from naturally polyreactive antibodies, in every healthy individual, there is a fraction of antibody that can gain polyreactivity upon exposure to porphyrin cofactor heme. Molecular mechanisms and biological significance of the appearance of cryptic polyreactivity are not well understood. It is believed that heme acts as an interfacial cofactor between the antibody and the newly recognized antigens. To further test this claim and gain insight into the types of interactions involved in heme binding, we herein investigated the influence of a group of aromatic guanylhydrazone molecules on the heme-induced antibody polyreactivity. From the analysis of SAR and the results of UV-vis absorbance spectroscopy, it was concluded that the most probable mechanism by which the studied molecules inhibit heme-mediated polyreactivity of the antibody is the direct binding to heme, thus preventing heme from binding to antibody and/or antigen. The inhibitory capacity of the most potent compounds was substantially higher than that of chloroquine, a well-known heme binder. Some of the guanylhydrazone molecules were able to induce polyreactivity of the studied antibody themselves, possibly by a mechanism similar to heme. Results described here point to the conclusion that heme indeed must bind to an antibody to induce its polyreactivity, and that both pi-stacking interactions and iron coordination contribute to the binding affinity, while certain structures, such as guanylhydrazones, can interfere with these processes.",
publisher = "Amer Chemical Soc, Washington",
journal = "Acs Omega",
title = "Aromatic Guanylhydrazones for the Control of Heme-Induced Antibody Polyreactivity",
pages = "20458-20450",
number = "24",
volume = "4",
doi = "10.1021/acsomega.9b01548"
}
Bozinovi, N., Ajdačić, V., Lazić, J., Lecerf, M., Daventure, V., Nikodinović-Runić, J., Opsenica, I. M.,& Dimitrov, J. D.. (2019). Aromatic Guanylhydrazones for the Control of Heme-Induced Antibody Polyreactivity. in Acs Omega
Amer Chemical Soc, Washington., 4(24), 20450-20458.
https://doi.org/10.1021/acsomega.9b01548
Bozinovi N, Ajdačić V, Lazić J, Lecerf M, Daventure V, Nikodinović-Runić J, Opsenica IM, Dimitrov JD. Aromatic Guanylhydrazones for the Control of Heme-Induced Antibody Polyreactivity. in Acs Omega. 2019;4(24):20450-20458.
doi:10.1021/acsomega.9b01548 .
Bozinovi, Nina, Ajdačić, Vladimir, Lazić, Jelena, Lecerf, Maxime, Daventure, Victoria, Nikodinović-Runić, Jasmina, Opsenica, Igor M., Dimitrov, Jordan D., "Aromatic Guanylhydrazones for the Control of Heme-Induced Antibody Polyreactivity" in Acs Omega, 4, no. 24 (2019):20450-20458,
https://doi.org/10.1021/acsomega.9b01548 . .
1
1
1
1

Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions

Jeremić, Sanja; Đokić, Lidija; Ajdačić, Vladimir; Bozinović, Nina; Pavlović, Vladimir; Manojlović, Dragan D.; Babu, Ramesh; Senthamaraikannan, Ramsankar; Rojas, Orlando; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Elsevier, Amsterdam, 2019)

TY  - JOUR
AU  - Jeremić, Sanja
AU  - Đokić, Lidija
AU  - Ajdačić, Vladimir
AU  - Bozinović, Nina
AU  - Pavlović, Vladimir
AU  - Manojlović, Dragan D.
AU  - Babu, Ramesh
AU  - Senthamaraikannan, Ramsankar
AU  - Rojas, Orlando
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1267
AB  - Bacterial nanocellulose (BNC) emerged as an attractive advanced biomaterial that provides desirable properties such as high strength, lightweight, tailorable surface chemistry, hydrophilicity, and biodegradability. BNC was successfully obtained from a wide range of carbon sources including sugars derived from grass biomass using Komagataeibacter medellinensis ID13488 strain with yields up to 6 g L-1 in static fermentation. Produced BNC was utilized in straightforward catalyst preparation as a solid support for two different transition metals, palladium and copper with metal loading of 20 and 3 wt%, respectively. Sustainable catalysts were applied in the synthesis of valuable fine chemicals, such as biphenyl-4-amine and 4'-fluorobiphenyl-4-amine, used in drug discovery, perfumes and dye industries with excellent product yields of up to 99%. Pd/BNC catalyst was reused 4 times and applied in two consecutive reactions, Suzuki-Miyaura cross-coupling reaction followed by hydrogenation of nitro to amino group while Cu/BNC catalyst was examined in Chan-Lam coupling reaction. Overall, the environmentally benign process of obtaining nanocellulose from biomass, followed by its utilisation as a solid support in metal-catalysed reactions and its recovery has been described. These findings reveal that BNC is a good support material, and it can be used as a support for different catalytic systems.
PB  - Elsevier, Amsterdam
T2  - International Journal of Biological Macromolecules
T1  - Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions
EP  - 360
SP  - 351
VL  - 129
DO  - 10.1016/j.ijbiomac.2019.01.154
ER  - 
@article{
author = "Jeremić, Sanja and Đokić, Lidija and Ajdačić, Vladimir and Bozinović, Nina and Pavlović, Vladimir and Manojlović, Dragan D. and Babu, Ramesh and Senthamaraikannan, Ramsankar and Rojas, Orlando and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2019",
abstract = "Bacterial nanocellulose (BNC) emerged as an attractive advanced biomaterial that provides desirable properties such as high strength, lightweight, tailorable surface chemistry, hydrophilicity, and biodegradability. BNC was successfully obtained from a wide range of carbon sources including sugars derived from grass biomass using Komagataeibacter medellinensis ID13488 strain with yields up to 6 g L-1 in static fermentation. Produced BNC was utilized in straightforward catalyst preparation as a solid support for two different transition metals, palladium and copper with metal loading of 20 and 3 wt%, respectively. Sustainable catalysts were applied in the synthesis of valuable fine chemicals, such as biphenyl-4-amine and 4'-fluorobiphenyl-4-amine, used in drug discovery, perfumes and dye industries with excellent product yields of up to 99%. Pd/BNC catalyst was reused 4 times and applied in two consecutive reactions, Suzuki-Miyaura cross-coupling reaction followed by hydrogenation of nitro to amino group while Cu/BNC catalyst was examined in Chan-Lam coupling reaction. Overall, the environmentally benign process of obtaining nanocellulose from biomass, followed by its utilisation as a solid support in metal-catalysed reactions and its recovery has been described. These findings reveal that BNC is a good support material, and it can be used as a support for different catalytic systems.",
publisher = "Elsevier, Amsterdam",
journal = "International Journal of Biological Macromolecules",
title = "Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions",
pages = "360-351",
volume = "129",
doi = "10.1016/j.ijbiomac.2019.01.154"
}
Jeremić, S., Đokić, L., Ajdačić, V., Bozinović, N., Pavlović, V., Manojlović, D. D., Babu, R., Senthamaraikannan, R., Rojas, O., Opsenica, I.,& Nikodinović-Runić, J.. (2019). Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. in International Journal of Biological Macromolecules
Elsevier, Amsterdam., 129, 351-360.
https://doi.org/10.1016/j.ijbiomac.2019.01.154
Jeremić S, Đokić L, Ajdačić V, Bozinović N, Pavlović V, Manojlović DD, Babu R, Senthamaraikannan R, Rojas O, Opsenica I, Nikodinović-Runić J. Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. in International Journal of Biological Macromolecules. 2019;129:351-360.
doi:10.1016/j.ijbiomac.2019.01.154 .
Jeremić, Sanja, Đokić, Lidija, Ajdačić, Vladimir, Bozinović, Nina, Pavlović, Vladimir, Manojlović, Dragan D., Babu, Ramesh, Senthamaraikannan, Ramsankar, Rojas, Orlando, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions" in International Journal of Biological Macromolecules, 129 (2019):351-360,
https://doi.org/10.1016/j.ijbiomac.2019.01.154 . .
33
15
34

N-Benzyl Derivatives of Long-Chained 4-Amino-7-chloro-quionolines as Inhibitors of Pyocyanin Production in Pseudomonas aeruginosa

Aleksić, Ivana; Jeremić, Jelena; Milivojević, Dušan; Ilić-Tomić, Tatjana; Segan, Sandra; Zlatović, Mario; Opsenica, Dejan M.; Šenerović, Lidija

(Amer Chemical Soc, Washington, 2019)

TY  - JOUR
AU  - Aleksić, Ivana
AU  - Jeremić, Jelena
AU  - Milivojević, Dušan
AU  - Ilić-Tomić, Tatjana
AU  - Segan, Sandra
AU  - Zlatović, Mario
AU  - Opsenica, Dejan M.
AU  - Šenerović, Lidija
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1225
AB  - Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype's antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 mu M), biofilm formation (BFIC50 = 50 mu M), and motility. Experimentally, the compound's activity is achieved through competitive inhibition of PqsR, and structure-activity data were rationalized using molecular docking studies.
PB  - Amer Chemical Soc, Washington
T2  - Acs Chemical Biology
T1  - N-Benzyl Derivatives of Long-Chained 4-Amino-7-chloro-quionolines as Inhibitors of Pyocyanin Production in Pseudomonas aeruginosa
EP  - 2809
IS  - 12
SP  - 2800
VL  - 14
DO  - 10.1021/acschembio.9b00682
ER  - 
@article{
author = "Aleksić, Ivana and Jeremić, Jelena and Milivojević, Dušan and Ilić-Tomić, Tatjana and Segan, Sandra and Zlatović, Mario and Opsenica, Dejan M. and Šenerović, Lidija",
year = "2019",
abstract = "Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype's antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 mu M), biofilm formation (BFIC50 = 50 mu M), and motility. Experimentally, the compound's activity is achieved through competitive inhibition of PqsR, and structure-activity data were rationalized using molecular docking studies.",
publisher = "Amer Chemical Soc, Washington",
journal = "Acs Chemical Biology",
title = "N-Benzyl Derivatives of Long-Chained 4-Amino-7-chloro-quionolines as Inhibitors of Pyocyanin Production in Pseudomonas aeruginosa",
pages = "2809-2800",
number = "12",
volume = "14",
doi = "10.1021/acschembio.9b00682"
}
Aleksić, I., Jeremić, J., Milivojević, D., Ilić-Tomić, T., Segan, S., Zlatović, M., Opsenica, D. M.,& Šenerović, L.. (2019). N-Benzyl Derivatives of Long-Chained 4-Amino-7-chloro-quionolines as Inhibitors of Pyocyanin Production in Pseudomonas aeruginosa. in Acs Chemical Biology
Amer Chemical Soc, Washington., 14(12), 2800-2809.
https://doi.org/10.1021/acschembio.9b00682
Aleksić I, Jeremić J, Milivojević D, Ilić-Tomić T, Segan S, Zlatović M, Opsenica DM, Šenerović L. N-Benzyl Derivatives of Long-Chained 4-Amino-7-chloro-quionolines as Inhibitors of Pyocyanin Production in Pseudomonas aeruginosa. in Acs Chemical Biology. 2019;14(12):2800-2809.
doi:10.1021/acschembio.9b00682 .
Aleksić, Ivana, Jeremić, Jelena, Milivojević, Dušan, Ilić-Tomić, Tatjana, Segan, Sandra, Zlatović, Mario, Opsenica, Dejan M., Šenerović, Lidija, "N-Benzyl Derivatives of Long-Chained 4-Amino-7-chloro-quionolines as Inhibitors of Pyocyanin Production in Pseudomonas aeruginosa" in Acs Chemical Biology, 14, no. 12 (2019):2800-2809,
https://doi.org/10.1021/acschembio.9b00682 . .
1
20
9
21

4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania

Manzano, Jose Ignacio; Konstantinović, Jelena; Scaccabarozzi, Diletta; Perea, Ana; Pavić, Aleksandar; Cavicchini, Loredana; Basilico, Nicoletta; Gamarro, Francisco; Solaja, Bogdan A.

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2019)

TY  - JOUR
AU  - Manzano, Jose Ignacio
AU  - Konstantinović, Jelena
AU  - Scaccabarozzi, Diletta
AU  - Perea, Ana
AU  - Pavić, Aleksandar
AU  - Cavicchini, Loredana
AU  - Basilico, Nicoletta
AU  - Gamarro, Francisco
AU  - Solaja, Bogdan A.
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1198
AB  - Among neglected tropical diseases, leishmaniasis is one of the most relevant with an estimated 30,000 deaths annually. Existing therapies have serious drawbacks in safety, drug resistance, field-adapted application and cost; therefore, new safer and shorter treatments are needed for this disease. Here we report on the synthesis of novel 4-amino-7-chloroquinoline-based compounds with leishmanicidal activity, together with deeper insight into the mechanism of action of our previously published hit compound 1. New derivatives showed comparable activity to 1 against both promastigote and intracellular amastigote forms of Leishmania infantum, with IC50  lt  1 mu M. Furthermore, we have determined that compound 1 induced a decrease of intracellular ATP levels, as well as a mitochondrial depolarization, together with an alteration of plasma membrane permeability and a significant ROS production. The inhibition of the energy metabolism of Leishmania plays an important role in the leishmanicidal mechanism of this compound. In all, these results support the consideration of compound 1 for the future development of new leishmanicidal drugs.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - 4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania
EP  - 40
SP  - 28
VL  - 180
DO  - 10.1016/j.ejmech.2019.07.010
ER  - 
@article{
author = "Manzano, Jose Ignacio and Konstantinović, Jelena and Scaccabarozzi, Diletta and Perea, Ana and Pavić, Aleksandar and Cavicchini, Loredana and Basilico, Nicoletta and Gamarro, Francisco and Solaja, Bogdan A.",
year = "2019",
abstract = "Among neglected tropical diseases, leishmaniasis is one of the most relevant with an estimated 30,000 deaths annually. Existing therapies have serious drawbacks in safety, drug resistance, field-adapted application and cost; therefore, new safer and shorter treatments are needed for this disease. Here we report on the synthesis of novel 4-amino-7-chloroquinoline-based compounds with leishmanicidal activity, together with deeper insight into the mechanism of action of our previously published hit compound 1. New derivatives showed comparable activity to 1 against both promastigote and intracellular amastigote forms of Leishmania infantum, with IC50  lt  1 mu M. Furthermore, we have determined that compound 1 induced a decrease of intracellular ATP levels, as well as a mitochondrial depolarization, together with an alteration of plasma membrane permeability and a significant ROS production. The inhibition of the energy metabolism of Leishmania plays an important role in the leishmanicidal mechanism of this compound. In all, these results support the consideration of compound 1 for the future development of new leishmanicidal drugs.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania",
pages = "40-28",
volume = "180",
doi = "10.1016/j.ejmech.2019.07.010"
}
Manzano, J. I., Konstantinović, J., Scaccabarozzi, D., Perea, A., Pavić, A., Cavicchini, L., Basilico, N., Gamarro, F.,& Solaja, B. A.. (2019). 4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux., 180, 28-40.
https://doi.org/10.1016/j.ejmech.2019.07.010
Manzano JI, Konstantinović J, Scaccabarozzi D, Perea A, Pavić A, Cavicchini L, Basilico N, Gamarro F, Solaja BA. 4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania. in European Journal of Medicinal Chemistry. 2019;180:28-40.
doi:10.1016/j.ejmech.2019.07.010 .
Manzano, Jose Ignacio, Konstantinović, Jelena, Scaccabarozzi, Diletta, Perea, Ana, Pavić, Aleksandar, Cavicchini, Loredana, Basilico, Nicoletta, Gamarro, Francisco, Solaja, Bogdan A., "4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania" in European Journal of Medicinal Chemistry, 180 (2019):28-40,
https://doi.org/10.1016/j.ejmech.2019.07.010 . .
1
10
7
10

Supplementary data for the article: Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Comić, L. R., Vasiljević, B., Opsenica, D., Milojkovic-Opsenica, D., & Šenerović, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005

Aleksić, Ivana; Ristivojević, Petar; Pavić, Aleksandar; Radojević, Ivana; Comić, Ljiljana R.; Vasiljević, Branka; Opsenica, Dejan; Milojkovic-Opsenica, Dusanka; Šenerović, Lidija

(Elsevier Ireland Ltd, Clare, 2018)

TY  - DATA
AU  - Aleksić, Ivana
AU  - Ristivojević, Petar
AU  - Pavić, Aleksandar
AU  - Radojević, Ivana
AU  - Comić, Ljiljana R.
AU  - Vasiljević, Branka
AU  - Opsenica, Dejan
AU  - Milojkovic-Opsenica, Dusanka
AU  - Šenerović, Lidija
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1768
PB  - Elsevier Ireland Ltd, Clare
T2  - Journal of Ethnopharmacology
T1  - Supplementary data for the article: Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Comić, L. R., Vasiljević, B., Opsenica, D., Milojkovic-Opsenica, D., & Šenerović, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005
VL  - 222
UR  - https://hdl.handle.net/21.15107/rcub_imagine_1768
ER  - 
@misc{
author = "Aleksić, Ivana and Ristivojević, Petar and Pavić, Aleksandar and Radojević, Ivana and Comić, Ljiljana R. and Vasiljević, Branka and Opsenica, Dejan and Milojkovic-Opsenica, Dusanka and Šenerović, Lidija",
year = "2018",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Journal of Ethnopharmacology",
title = "Supplementary data for the article: Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Comić, L. R., Vasiljević, B., Opsenica, D., Milojkovic-Opsenica, D., & Šenerović, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005",
volume = "222",
url = "https://hdl.handle.net/21.15107/rcub_imagine_1768"
}
Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Comić, L. R., Vasiljević, B., Opsenica, D., Milojkovic-Opsenica, D.,& Šenerović, L.. (2018). Supplementary data for the article: Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Comić, L. R., Vasiljević, B., Opsenica, D., Milojkovic-Opsenica, D., & Šenerović, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005. in Journal of Ethnopharmacology
Elsevier Ireland Ltd, Clare., 222.
https://hdl.handle.net/21.15107/rcub_imagine_1768
Aleksić I, Ristivojević P, Pavić A, Radojević I, Comić LR, Vasiljević B, Opsenica D, Milojkovic-Opsenica D, Šenerović L. Supplementary data for the article: Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Comić, L. R., Vasiljević, B., Opsenica, D., Milojkovic-Opsenica, D., & Šenerović, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005. in Journal of Ethnopharmacology. 2018;222.
https://hdl.handle.net/21.15107/rcub_imagine_1768 .
Aleksić, Ivana, Ristivojević, Petar, Pavić, Aleksandar, Radojević, Ivana, Comić, Ljiljana R., Vasiljević, Branka, Opsenica, Dejan, Milojkovic-Opsenica, Dusanka, Šenerović, Lidija, "Supplementary data for the article: Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Comić, L. R., Vasiljević, B., Opsenica, D., Milojkovic-Opsenica, D., & Šenerović, L. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. Journal of Ethnopharmacology, 222, 148–158. https://doi.org/10.1016/j.jep.2018.05.005" in Journal of Ethnopharmacology, 222 (2018),
https://hdl.handle.net/21.15107/rcub_imagine_1768 .

Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles

Andrejević, Tina P.; Nikolić, Andrea M.; Glišić, Biljana; Wadepohl, Hubert; Vojnović, Sandra; Zlatović, Mario; Petković, Milos; Nikodinović-Runić, Jasmina; Opsenica, Igor M.; Djuran, Milos

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Nikolić, Andrea M.
AU  - Glišić, Biljana
AU  - Wadepohl, Hubert
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Petković, Milos
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
AU  - Djuran, Milos
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1144
AB  - Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles
EP  - 333
SP  - 325
VL  - 154
DO  - 10.1016/j.poly.2018.08.001
ER  - 
@article{
author = "Andrejević, Tina P. and Nikolić, Andrea M. and Glišić, Biljana and Wadepohl, Hubert and Vojnović, Sandra and Zlatović, Mario and Petković, Milos and Nikodinović-Runić, Jasmina and Opsenica, Igor M. and Djuran, Milos",
year = "2018",
abstract = "Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles",
pages = "333-325",
volume = "154",
doi = "10.1016/j.poly.2018.08.001"
}
Andrejević, T. P., Nikolić, A. M., Glišić, B., Wadepohl, H., Vojnović, S., Zlatović, M., Petković, M., Nikodinović-Runić, J., Opsenica, I. M.,& Djuran, M.. (2018). Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 154, 325-333.
https://doi.org/10.1016/j.poly.2018.08.001
Andrejević TP, Nikolić AM, Glišić B, Wadepohl H, Vojnović S, Zlatović M, Petković M, Nikodinović-Runić J, Opsenica IM, Djuran M. Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron. 2018;154:325-333.
doi:10.1016/j.poly.2018.08.001 .
Andrejević, Tina P., Nikolić, Andrea M., Glišić, Biljana, Wadepohl, Hubert, Vojnović, Sandra, Zlatović, Mario, Petković, Milos, Nikodinović-Runić, Jasmina, Opsenica, Igor M., Djuran, Milos, "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles" in Polyhedron, 154 (2018):325-333,
https://doi.org/10.1016/j.poly.2018.08.001 . .
1
18
12
18

Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts

Aleksić, Ivana; Ristivojević, Petar; Pavić, Aleksandar; Radojević, Ivana; Comić, Ljiljana R.; Vasiljević, Branka; Opsenica, Dejan; Milojkovic-Opsenica, Dusanka; Šenerović, Lidija

(Elsevier Ireland Ltd, Clare, 2018)

TY  - JOUR
AU  - Aleksić, Ivana
AU  - Ristivojević, Petar
AU  - Pavić, Aleksandar
AU  - Radojević, Ivana
AU  - Comić, Ljiljana R.
AU  - Vasiljević, Branka
AU  - Opsenica, Dejan
AU  - Milojkovic-Opsenica, Dusanka
AU  - Šenerović, Lidija
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1762
AB  - Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.
PB  - Elsevier Ireland Ltd, Clare
T2  - Journal of Ethnopharmacology
T1  - Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts
EP  - 158
SP  - 148
VL  - 222
DO  - 10.1016/j.jep.2018.05.005
ER  - 
@article{
author = "Aleksić, Ivana and Ristivojević, Petar and Pavić, Aleksandar and Radojević, Ivana and Comić, Ljiljana R. and Vasiljević, Branka and Opsenica, Dejan and Milojkovic-Opsenica, Dusanka and Šenerović, Lidija",
year = "2018",
abstract = "Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Journal of Ethnopharmacology",
title = "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts",
pages = "158-148",
volume = "222",
doi = "10.1016/j.jep.2018.05.005"
}
Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Comić, L. R., Vasiljević, B., Opsenica, D., Milojkovic-Opsenica, D.,& Šenerović, L.. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. in Journal of Ethnopharmacology
Elsevier Ireland Ltd, Clare., 222, 148-158.
https://doi.org/10.1016/j.jep.2018.05.005
Aleksić I, Ristivojević P, Pavić A, Radojević I, Comić LR, Vasiljević B, Opsenica D, Milojkovic-Opsenica D, Šenerović L. Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. in Journal of Ethnopharmacology. 2018;222:148-158.
doi:10.1016/j.jep.2018.05.005 .
Aleksić, Ivana, Ristivojević, Petar, Pavić, Aleksandar, Radojević, Ivana, Comić, Ljiljana R., Vasiljević, Branka, Opsenica, Dejan, Milojkovic-Opsenica, Dusanka, Šenerović, Lidija, "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts" in Journal of Ethnopharmacology, 222 (2018):148-158,
https://doi.org/10.1016/j.jep.2018.05.005 . .
1
18
7
14

Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles

Andrejević, Tina P.; Nikolić, Andrea M.; Glišić, Biljana; Wadepohl, Hubert; Vojnović, Sandra; Zlatović, Mario; Petković, Milos; Nikodinović-Runić, Jasmina; Opsenica, Igor M.; Djuran, Milos

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Nikolić, Andrea M.
AU  - Glišić, Biljana
AU  - Wadepohl, Hubert
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Petković, Milos
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
AU  - Djuran, Milos
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1759
AB  - Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles
EP  - 333
SP  - 325
VL  - 154
DO  - 10.1016/j.poly.2018.08.001
ER  - 
@article{
author = "Andrejević, Tina P. and Nikolić, Andrea M. and Glišić, Biljana and Wadepohl, Hubert and Vojnović, Sandra and Zlatović, Mario and Petković, Milos and Nikodinović-Runić, Jasmina and Opsenica, Igor M. and Djuran, Milos",
year = "2018",
abstract = "Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles",
pages = "333-325",
volume = "154",
doi = "10.1016/j.poly.2018.08.001"
}
Andrejević, T. P., Nikolić, A. M., Glišić, B., Wadepohl, H., Vojnović, S., Zlatović, M., Petković, M., Nikodinović-Runić, J., Opsenica, I. M.,& Djuran, M.. (2018). Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 154, 325-333.
https://doi.org/10.1016/j.poly.2018.08.001
Andrejević TP, Nikolić AM, Glišić B, Wadepohl H, Vojnović S, Zlatović M, Petković M, Nikodinović-Runić J, Opsenica IM, Djuran M. Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. in Polyhedron. 2018;154:325-333.
doi:10.1016/j.poly.2018.08.001 .
Andrejević, Tina P., Nikolić, Andrea M., Glišić, Biljana, Wadepohl, Hubert, Vojnović, Sandra, Zlatović, Mario, Petković, Milos, Nikodinović-Runić, Jasmina, Opsenica, Igor M., Djuran, Milos, "Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles" in Polyhedron, 154 (2018):325-333,
https://doi.org/10.1016/j.poly.2018.08.001 . .
1
18
12
18

Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction

Lazić, Jelena; Ajdačić, Vladimir; Vojnović, Sandra; Zlatović, Mario; Pekmezović, Marina; Mogavero, Selene; Opsenica, Igor; Nikodinović-Runić, Jasmina

(Springer, New York, 2018)

TY  - JOUR
AU  - Lazić, Jelena
AU  - Ajdačić, Vladimir
AU  - Vojnović, Sandra
AU  - Zlatović, Mario
AU  - Pekmezović, Marina
AU  - Mogavero, Selene
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1195
AB  - Candida spp. are leading causes of opportunistic mycoses, including life-threatening hospital-borne infections, and novel antifungals, preferably aiming targets that have not been used before, are constantly needed. Hydrazone-and guanidinecontaining molecules have shown a wide range of biological activities, including recently described excellent antifungal properties. In this study, four bis-guanylhydrazone derivatives (BG1-4) were generated following a previously developed synthetic route. Anti-Candida (two C. albicans, C. glabrata, and C. parapsilosis) minimal inhibitory concentrations (MICs) of bisguanylhydrazones were between 2 and 15.6 mu g/mL. They were also effective against preformed 48-h-old C. albicans biofilms. In vitroDNA interaction, circular dichroism, and molecular docking analysis showed the great ability of these compounds to bind fungal DNA. Competition with DNA-binding stain, exposure of phosphatidylserine at the outer layer of the cytoplasmic membrane, and activation of metacaspases were shown for BG3. This pro-apoptotic effect of BG3 was only partially due to the accumulation of reactive oxygen species in C. albicans, as only twofold MIC and higher concentrations of BG3 caused depolarization of mitochondrial membrane which was accompanied by the decrease of the activity of fungal mitochondrial dehydrogenases, while the activity of oxidative stress response enzymes glutathione reductase and catalase was not significantly affected. BG3 showed synergistic activity with amphotericin B with a fractional inhibitory concentration index of 0.5. It also exerted low cytotoxicity and the ability to inhibit epithelial cell (TR146) invasion and damage by virulent C. albicans SC5314. With further developments, BG3 may further progress in the antifungal pipeline as a DNA-targeting agent.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction
EP  - 1901
IS  - 4
SP  - 1889
VL  - 102
DO  - 10.1007/s00253-018-8749-3
ER  - 
@article{
author = "Lazić, Jelena and Ajdačić, Vladimir and Vojnović, Sandra and Zlatović, Mario and Pekmezović, Marina and Mogavero, Selene and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2018",
abstract = "Candida spp. are leading causes of opportunistic mycoses, including life-threatening hospital-borne infections, and novel antifungals, preferably aiming targets that have not been used before, are constantly needed. Hydrazone-and guanidinecontaining molecules have shown a wide range of biological activities, including recently described excellent antifungal properties. In this study, four bis-guanylhydrazone derivatives (BG1-4) were generated following a previously developed synthetic route. Anti-Candida (two C. albicans, C. glabrata, and C. parapsilosis) minimal inhibitory concentrations (MICs) of bisguanylhydrazones were between 2 and 15.6 mu g/mL. They were also effective against preformed 48-h-old C. albicans biofilms. In vitroDNA interaction, circular dichroism, and molecular docking analysis showed the great ability of these compounds to bind fungal DNA. Competition with DNA-binding stain, exposure of phosphatidylserine at the outer layer of the cytoplasmic membrane, and activation of metacaspases were shown for BG3. This pro-apoptotic effect of BG3 was only partially due to the accumulation of reactive oxygen species in C. albicans, as only twofold MIC and higher concentrations of BG3 caused depolarization of mitochondrial membrane which was accompanied by the decrease of the activity of fungal mitochondrial dehydrogenases, while the activity of oxidative stress response enzymes glutathione reductase and catalase was not significantly affected. BG3 showed synergistic activity with amphotericin B with a fractional inhibitory concentration index of 0.5. It also exerted low cytotoxicity and the ability to inhibit epithelial cell (TR146) invasion and damage by virulent C. albicans SC5314. With further developments, BG3 may further progress in the antifungal pipeline as a DNA-targeting agent.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction",
pages = "1901-1889",
number = "4",
volume = "102",
doi = "10.1007/s00253-018-8749-3"
}
Lazić, J., Ajdačić, V., Vojnović, S., Zlatović, M., Pekmezović, M., Mogavero, S., Opsenica, I.,& Nikodinović-Runić, J.. (2018). Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction. in Applied Microbiology and Biotechnology
Springer, New York., 102(4), 1889-1901.
https://doi.org/10.1007/s00253-018-8749-3
Lazić J, Ajdačić V, Vojnović S, Zlatović M, Pekmezović M, Mogavero S, Opsenica I, Nikodinović-Runić J. Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction. in Applied Microbiology and Biotechnology. 2018;102(4):1889-1901.
doi:10.1007/s00253-018-8749-3 .
Lazić, Jelena, Ajdačić, Vladimir, Vojnović, Sandra, Zlatović, Mario, Pekmezović, Marina, Mogavero, Selene, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction" in Applied Microbiology and Biotechnology, 102, no. 4 (2018):1889-1901,
https://doi.org/10.1007/s00253-018-8749-3 . .
1
13
7
14

Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts

Aleksić, Ivana; Ristivojević, Petar; Pavić, Aleksandar; Radojević, Ivana; Comić, Ljiljana R.; Vasiljević, Branka; Opsenica, Dejan; Milojkovic-Opsenica, Dusanka; Šenerović, Lidija

(Elsevier Ireland Ltd, Clare, 2018)

TY  - JOUR
AU  - Aleksić, Ivana
AU  - Ristivojević, Petar
AU  - Pavić, Aleksandar
AU  - Radojević, Ivana
AU  - Comić, Ljiljana R.
AU  - Vasiljević, Branka
AU  - Opsenica, Dejan
AU  - Milojkovic-Opsenica, Dusanka
AU  - Šenerović, Lidija
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1111
AB  - Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.
PB  - Elsevier Ireland Ltd, Clare
T2  - Journal of Ethnopharmacology
T1  - Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts
EP  - 158
SP  - 148
VL  - 222
DO  - 10.1016/j.jep.2018.05.005
ER  - 
@article{
author = "Aleksić, Ivana and Ristivojević, Petar and Pavić, Aleksandar and Radojević, Ivana and Comić, Ljiljana R. and Vasiljević, Branka and Opsenica, Dejan and Milojkovic-Opsenica, Dusanka and Šenerović, Lidija",
year = "2018",
abstract = "Ethnopharmacological relevance: Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Aim of the study: Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. Materials and methods: The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Results: Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. Conclusions: This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P. aeruginosa and confirms the ethnopharmacological application of this plant against microbial infections.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Journal of Ethnopharmacology",
title = "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts",
pages = "158-148",
volume = "222",
doi = "10.1016/j.jep.2018.05.005"
}
Aleksić, I., Ristivojević, P., Pavić, A., Radojević, I., Comić, L. R., Vasiljević, B., Opsenica, D., Milojkovic-Opsenica, D.,& Šenerović, L.. (2018). Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. in Journal of Ethnopharmacology
Elsevier Ireland Ltd, Clare., 222, 148-158.
https://doi.org/10.1016/j.jep.2018.05.005
Aleksić I, Ristivojević P, Pavić A, Radojević I, Comić LR, Vasiljević B, Opsenica D, Milojkovic-Opsenica D, Šenerović L. Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. in Journal of Ethnopharmacology. 2018;222:148-158.
doi:10.1016/j.jep.2018.05.005 .
Aleksić, Ivana, Ristivojević, Petar, Pavić, Aleksandar, Radojević, Ivana, Comić, Ljiljana R., Vasiljević, Branka, Opsenica, Dejan, Milojkovic-Opsenica, Dusanka, Šenerović, Lidija, "Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts" in Journal of Ethnopharmacology, 222 (2018):148-158,
https://doi.org/10.1016/j.jep.2018.05.005 . .
1
18
7
14

Benzothiazole carbamates and amides as antiproliferative species

Videnović, Milica; Mojsin, Marija; Stevanović, Milena; Opsenica, Igor; Srdić-Rajić, Tatjana; Solaja, Bogdan

(Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux, 2018)

TY  - JOUR
AU  - Videnović, Milica
AU  - Mojsin, Marija
AU  - Stevanović, Milena
AU  - Opsenica, Igor
AU  - Srdić-Rajić, Tatjana
AU  - Solaja, Bogdan
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1148
AB  - A series of new benzothiazole-based carbamates and amides were synthesized and their antiproliferative activity was determined. Derivatives with profound activity were identified and further investigated for their possible mechanism of action. It was found that these compounds induce specific apoptosis, G2/M cell cycle arrest and decrease ROS level in MCF-7 human breast cancer cell line. Moreover, sub-micromolar antiproliferative activity of examined carbamates against NT2/D1 testicular embryonal carcinoma was shown. The most potent derivatives strongly inhibited NT2/D1 cell migration and invasiveness.
PB  - Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux
T2  - European Journal of Medicinal Chemistry
T1  - Benzothiazole carbamates and amides as antiproliferative species
EP  - 1114
SP  - 1096
VL  - 157
DO  - 10.1016/j.ejmech.2018.08.067
ER  - 
@article{
author = "Videnović, Milica and Mojsin, Marija and Stevanović, Milena and Opsenica, Igor and Srdić-Rajić, Tatjana and Solaja, Bogdan",
year = "2018",
abstract = "A series of new benzothiazole-based carbamates and amides were synthesized and their antiproliferative activity was determined. Derivatives with profound activity were identified and further investigated for their possible mechanism of action. It was found that these compounds induce specific apoptosis, G2/M cell cycle arrest and decrease ROS level in MCF-7 human breast cancer cell line. Moreover, sub-micromolar antiproliferative activity of examined carbamates against NT2/D1 testicular embryonal carcinoma was shown. The most potent derivatives strongly inhibited NT2/D1 cell migration and invasiveness.",
publisher = "Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux",
journal = "European Journal of Medicinal Chemistry",
title = "Benzothiazole carbamates and amides as antiproliferative species",
pages = "1114-1096",
volume = "157",
doi = "10.1016/j.ejmech.2018.08.067"
}
Videnović, M., Mojsin, M., Stevanović, M., Opsenica, I., Srdić-Rajić, T.,& Solaja, B.. (2018). Benzothiazole carbamates and amides as antiproliferative species. in European Journal of Medicinal Chemistry
Elsevier France-Editions Scientifiques Medicales Elsevier, Issy-Les-Moulineaux., 157, 1096-1114.
https://doi.org/10.1016/j.ejmech.2018.08.067
Videnović M, Mojsin M, Stevanović M, Opsenica I, Srdić-Rajić T, Solaja B. Benzothiazole carbamates and amides as antiproliferative species. in European Journal of Medicinal Chemistry. 2018;157:1096-1114.
doi:10.1016/j.ejmech.2018.08.067 .
Videnović, Milica, Mojsin, Marija, Stevanović, Milena, Opsenica, Igor, Srdić-Rajić, Tatjana, Solaja, Bogdan, "Benzothiazole carbamates and amides as antiproliferative species" in European Journal of Medicinal Chemistry, 157 (2018):1096-1114,
https://doi.org/10.1016/j.ejmech.2018.08.067 . .
1
12
6
13

Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst

Ajdačić, Vladimir; Nikolić, Andrea; Simić, Stefan; Manojlović, Dragan; Stojanović, Zoran; Nikodinović-Runić, Jasmina; Opsenica, Igor M.

(Georg Thieme Verlag Kg, Stuttgart, 2018)

TY  - JOUR
AU  - Ajdačić, Vladimir
AU  - Nikolić, Andrea
AU  - Simić, Stefan
AU  - Manojlović, Dragan
AU  - Stojanović, Zoran
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1171
AB  - A facile decarbonylation reaction of a variety of aromatic and heteroaromatic aldehydes using maghemite-supported palladium catalyst has been developed. The magnetic properties of catalyst facilitated an easy and efficient recovery of the catalyst from the reaction mixture using an external magnet. It was found that the catalyst could be reused up to four consecutive catalytic runs without a significant change in activity. In addition, the catalyst was also very effective in the dehalogenation of aryl halides. This is the first report on efficient utilization of directly immobilized Pd on maghemite in decarbonylation and dehalogenation reactions.
PB  - Georg Thieme Verlag Kg, Stuttgart
T2  - Synthesis-Stuttgart
T1  - Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst
EP  - 126
IS  - 1
SP  - 119
VL  - 50
DO  - 10.1055/s-0036-1590892
ER  - 
@article{
author = "Ajdačić, Vladimir and Nikolić, Andrea and Simić, Stefan and Manojlović, Dragan and Stojanović, Zoran and Nikodinović-Runić, Jasmina and Opsenica, Igor M.",
year = "2018",
abstract = "A facile decarbonylation reaction of a variety of aromatic and heteroaromatic aldehydes using maghemite-supported palladium catalyst has been developed. The magnetic properties of catalyst facilitated an easy and efficient recovery of the catalyst from the reaction mixture using an external magnet. It was found that the catalyst could be reused up to four consecutive catalytic runs without a significant change in activity. In addition, the catalyst was also very effective in the dehalogenation of aryl halides. This is the first report on efficient utilization of directly immobilized Pd on maghemite in decarbonylation and dehalogenation reactions.",
publisher = "Georg Thieme Verlag Kg, Stuttgart",
journal = "Synthesis-Stuttgart",
title = "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst",
pages = "126-119",
number = "1",
volume = "50",
doi = "10.1055/s-0036-1590892"
}
Ajdačić, V., Nikolić, A., Simić, S., Manojlović, D., Stojanović, Z., Nikodinović-Runić, J.,& Opsenica, I. M.. (2018). Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. in Synthesis-Stuttgart
Georg Thieme Verlag Kg, Stuttgart., 50(1), 119-126.
https://doi.org/10.1055/s-0036-1590892
Ajdačić V, Nikolić A, Simić S, Manojlović D, Stojanović Z, Nikodinović-Runić J, Opsenica IM. Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. in Synthesis-Stuttgart. 2018;50(1):119-126.
doi:10.1055/s-0036-1590892 .
Ajdačić, Vladimir, Nikolić, Andrea, Simić, Stefan, Manojlović, Dragan, Stojanović, Zoran, Nikodinović-Runić, Jasmina, Opsenica, Igor M., "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst" in Synthesis-Stuttgart, 50, no. 1 (2018):119-126,
https://doi.org/10.1055/s-0036-1590892 . .
11
6
11

Antibacterial and antifungal properties of guanylhydrazones

Ajdačić, Vladimir; Lazić, Jelena; Mojicević, Marija; Segan, Sandra; Nikodinović-Runić, Jasmina; Opsenica, Igor M.

(Srpsko hemijsko društvo, Beograd, 2017)

TY  - JOUR
AU  - Ajdačić, Vladimir
AU  - Lazić, Jelena
AU  - Mojicević, Marija
AU  - Segan, Sandra
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1010
AB  - A series of novel guanylhydrazones were designed, synthesized and characterized. All the compounds were screened for their antibacterial and antifungal activity. Compounds 26 and 27 showed excellent antibacterial activities against Staphylococcus aureus ATCC 25923 and Micrococcus luteus ATCC 379 with minimal inhibitory concentrations of 4 ae g mL(-1), and good antifungal activity against Candida parapsilosis ATCC 22019. These results suggested that the selected guanylhydrazones could serve as promising leads for improved antimicrobial development.
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Antibacterial and antifungal properties of guanylhydrazones
EP  - 649
IS  - 6
SP  - 641
VL  - 82
DO  - 10.2298/JSC170213033A
ER  - 
@article{
author = "Ajdačić, Vladimir and Lazić, Jelena and Mojicević, Marija and Segan, Sandra and Nikodinović-Runić, Jasmina and Opsenica, Igor M.",
year = "2017",
abstract = "A series of novel guanylhydrazones were designed, synthesized and characterized. All the compounds were screened for their antibacterial and antifungal activity. Compounds 26 and 27 showed excellent antibacterial activities against Staphylococcus aureus ATCC 25923 and Micrococcus luteus ATCC 379 with minimal inhibitory concentrations of 4 ae g mL(-1), and good antifungal activity against Candida parapsilosis ATCC 22019. These results suggested that the selected guanylhydrazones could serve as promising leads for improved antimicrobial development.",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Antibacterial and antifungal properties of guanylhydrazones",
pages = "649-641",
number = "6",
volume = "82",
doi = "10.2298/JSC170213033A"
}
Ajdačić, V., Lazić, J., Mojicević, M., Segan, S., Nikodinović-Runić, J.,& Opsenica, I. M.. (2017). Antibacterial and antifungal properties of guanylhydrazones. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 82(6), 641-649.
https://doi.org/10.2298/JSC170213033A
Ajdačić V, Lazić J, Mojicević M, Segan S, Nikodinović-Runić J, Opsenica IM. Antibacterial and antifungal properties of guanylhydrazones. in Journal of the Serbian Chemical Society. 2017;82(6):641-649.
doi:10.2298/JSC170213033A .
Ajdačić, Vladimir, Lazić, Jelena, Mojicević, Marija, Segan, Sandra, Nikodinović-Runić, Jasmina, Opsenica, Igor M., "Antibacterial and antifungal properties of guanylhydrazones" in Journal of the Serbian Chemical Society, 82, no. 6 (2017):641-649,
https://doi.org/10.2298/JSC170213033A . .
3
3
3

Supplementary data for article: Aleksić, I.; Šegan, S.; Andrić, F.; Zlatović, M.; Moric, I.; Opsenica, D. M.; Senerovic, L. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia Marcescens and Pseudomonas Aeruginosa. ACS Chemical Biology 2017, 12 (5), 1425–1434. https://doi.org/10.1021/acschembio.6b01149

Aleksić, Ivana; Šegan, Sandra B.; Andrić, Filip; Zlatović, Mario; Morić, Ivana; Opsenica, Dejan M.; Šenerović, Lidija

(Amer Chemical Soc, Washington, 2017)

TY  - DATA
AU  - Aleksić, Ivana
AU  - Šegan, Sandra B.
AU  - Andrić, Filip
AU  - Zlatović, Mario
AU  - Morić, Ivana
AU  - Opsenica, Dejan M.
AU  - Šenerović, Lidija
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2227
PB  - Amer Chemical Soc, Washington
T2  - ACS Chemical Biology
T1  - Supplementary data for article: Aleksić, I.; Šegan, S.; Andrić, F.; Zlatović, M.; Moric, I.; Opsenica, D. M.; Senerovic, L. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia Marcescens and Pseudomonas Aeruginosa. ACS Chemical Biology 2017, 12 (5), 1425–1434. https://doi.org/10.1021/acschembio.6b01149
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2227
ER  - 
@misc{
author = "Aleksić, Ivana and Šegan, Sandra B. and Andrić, Filip and Zlatović, Mario and Morić, Ivana and Opsenica, Dejan M. and Šenerović, Lidija",
year = "2017",
publisher = "Amer Chemical Soc, Washington",
journal = "ACS Chemical Biology",
title = "Supplementary data for article: Aleksić, I.; Šegan, S.; Andrić, F.; Zlatović, M.; Moric, I.; Opsenica, D. M.; Senerovic, L. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia Marcescens and Pseudomonas Aeruginosa. ACS Chemical Biology 2017, 12 (5), 1425–1434. https://doi.org/10.1021/acschembio.6b01149",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2227"
}
Aleksić, I., Šegan, S. B., Andrić, F., Zlatović, M., Morić, I., Opsenica, D. M.,& Šenerović, L.. (2017). Supplementary data for article: Aleksić, I.; Šegan, S.; Andrić, F.; Zlatović, M.; Moric, I.; Opsenica, D. M.; Senerovic, L. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia Marcescens and Pseudomonas Aeruginosa. ACS Chemical Biology 2017, 12 (5), 1425–1434. https://doi.org/10.1021/acschembio.6b01149. in ACS Chemical Biology
Amer Chemical Soc, Washington..
https://hdl.handle.net/21.15107/rcub_imagine_2227
Aleksić I, Šegan SB, Andrić F, Zlatović M, Morić I, Opsenica DM, Šenerović L. Supplementary data for article: Aleksić, I.; Šegan, S.; Andrić, F.; Zlatović, M.; Moric, I.; Opsenica, D. M.; Senerovic, L. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia Marcescens and Pseudomonas Aeruginosa. ACS Chemical Biology 2017, 12 (5), 1425–1434. https://doi.org/10.1021/acschembio.6b01149. in ACS Chemical Biology. 2017;.
https://hdl.handle.net/21.15107/rcub_imagine_2227 .
Aleksić, Ivana, Šegan, Sandra B., Andrić, Filip, Zlatović, Mario, Morić, Ivana, Opsenica, Dejan M., Šenerović, Lidija, "Supplementary data for article: Aleksić, I.; Šegan, S.; Andrić, F.; Zlatović, M.; Moric, I.; Opsenica, D. M.; Senerovic, L. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia Marcescens and Pseudomonas Aeruginosa. ACS Chemical Biology 2017, 12 (5), 1425–1434. https://doi.org/10.1021/acschembio.6b01149" in ACS Chemical Biology (2017),
https://hdl.handle.net/21.15107/rcub_imagine_2227 .

Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa

Aleksić, Ivana; Šegan, Sandra B.; Andrić, Filip; Zlatović, Mario; Morić, Ivana; Opsenica, Dejan M.; Šenerović, Lidija

(Amer Chemical Soc, Washington, 2017)

TY  - JOUR
AU  - Aleksić, Ivana
AU  - Šegan, Sandra B.
AU  - Andrić, Filip
AU  - Zlatović, Mario
AU  - Morić, Ivana
AU  - Opsenica, Dejan M.
AU  - Šenerović, Lidija
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2226
AB  - Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC)  gt  400 mu M). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 mu M and 63 mu M in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 mu M). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.
PB  - Amer Chemical Soc, Washington
T2  - ACS Chemical Biology
T1  - Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa
EP  - 1434
IS  - 5
SP  - 1425
VL  - 12
DO  - 10.1021/acschembio.6b01149
ER  - 
@article{
author = "Aleksić, Ivana and Šegan, Sandra B. and Andrić, Filip and Zlatović, Mario and Morić, Ivana and Opsenica, Dejan M. and Šenerović, Lidija",
year = "2017",
abstract = "Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC)  gt  400 mu M). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 mu M and 63 mu M in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 mu M). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.",
publisher = "Amer Chemical Soc, Washington",
journal = "ACS Chemical Biology",
title = "Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa",
pages = "1434-1425",
number = "5",
volume = "12",
doi = "10.1021/acschembio.6b01149"
}
Aleksić, I., Šegan, S. B., Andrić, F., Zlatović, M., Morić, I., Opsenica, D. M.,& Šenerović, L.. (2017). Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa. in ACS Chemical Biology
Amer Chemical Soc, Washington., 12(5), 1425-1434.
https://doi.org/10.1021/acschembio.6b01149
Aleksić I, Šegan SB, Andrić F, Zlatović M, Morić I, Opsenica DM, Šenerović L. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa. in ACS Chemical Biology. 2017;12(5):1425-1434.
doi:10.1021/acschembio.6b01149 .
Aleksić, Ivana, Šegan, Sandra B., Andrić, Filip, Zlatović, Mario, Morić, Ivana, Opsenica, Dejan M., Šenerović, Lidija, "Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa" in ACS Chemical Biology, 12, no. 5 (2017):1425-1434,
https://doi.org/10.1021/acschembio.6b01149 . .
9
45
27
45

Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa

Aleksić, Ivana; Segan, Sandra; Andrić, Filip; Zlatović, Mario; Morić, Ivana; Opsenica, Dejan M.; Šenerović, Lidija

(Amer Chemical Soc, Washington, 2017)

TY  - JOUR
AU  - Aleksić, Ivana
AU  - Segan, Sandra
AU  - Andrić, Filip
AU  - Zlatović, Mario
AU  - Morić, Ivana
AU  - Opsenica, Dejan M.
AU  - Šenerović, Lidija
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1092
AB  - Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC)  gt  400 mu M). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 mu M and 63 mu M in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 mu M). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.
PB  - Amer Chemical Soc, Washington
T2  - Acs Chemical Biology
T1  - Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa
EP  - 1434
IS  - 5
SP  - 1425
VL  - 12
DO  - 10.1021/acschembio.6b01149
ER  - 
@article{
author = "Aleksić, Ivana and Segan, Sandra and Andrić, Filip and Zlatović, Mario and Morić, Ivana and Opsenica, Dejan M. and Šenerović, Lidija",
year = "2017",
abstract = "Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC)  gt  400 mu M). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 mu M and 63 mu M in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 mu M). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.",
publisher = "Amer Chemical Soc, Washington",
journal = "Acs Chemical Biology",
title = "Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa",
pages = "1434-1425",
number = "5",
volume = "12",
doi = "10.1021/acschembio.6b01149"
}
Aleksić, I., Segan, S., Andrić, F., Zlatović, M., Morić, I., Opsenica, D. M.,& Šenerović, L.. (2017). Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa. in Acs Chemical Biology
Amer Chemical Soc, Washington., 12(5), 1425-1434.
https://doi.org/10.1021/acschembio.6b01149
Aleksić I, Segan S, Andrić F, Zlatović M, Morić I, Opsenica DM, Šenerović L. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa. in Acs Chemical Biology. 2017;12(5):1425-1434.
doi:10.1021/acschembio.6b01149 .
Aleksić, Ivana, Segan, Sandra, Andrić, Filip, Zlatović, Mario, Morić, Ivana, Opsenica, Dejan M., Šenerović, Lidija, "Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa" in Acs Chemical Biology, 12, no. 5 (2017):1425-1434,
https://doi.org/10.1021/acschembio.6b01149 . .
9
45
27
45

Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates

Ajdačić, Vladimir; Šenerović, Lidija; Vranić, Marija; Pekmezović, Marina; Arsić-Arsenijević, Valentina; Veselinović, Aleksandar; Veselinović, Jovana; Solaja, Bogdan A.; Nikodinović-Runić, Jasmina; Opsenica, Igor M.

(Pergamon-Elsevier Science Ltd, Oxford, 2016)

TY  - JOUR
AU  - Ajdačić, Vladimir
AU  - Šenerović, Lidija
AU  - Vranić, Marija
AU  - Pekmezović, Marina
AU  - Arsić-Arsenijević, Valentina
AU  - Veselinović, Aleksandar
AU  - Veselinović, Jovana
AU  - Solaja, Bogdan A.
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
PY  - 2016
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/991
AB  - A series of new thiophene-based guanylhydrazones (iminoguanidines) were synthesized in high yields using a straightforward two-step procedure. The antifungal activity of compounds was evaluated against a wide range of medicaly important fungal strains including yeasts, molds, and dermatophytes in comparison to clinically used drug voriconazole. Cytotoxic properties of compounds were also determined using human lung fibroblast cell line and hemolysis assay. All guanylhydrazones showed significant activity against broad spectrum of clinically important species of Candida spp., Aspergillus fumigatus, Fusarium oxysporum, Microsporum canis and Trichophyton mentagrophytes, which was in some cases comparable or better than activity of voriconazole. More importantly, compounds 10, 11, 13, 14, 18 and 21 exhibited excellent activity against voriconazole-resistant Candida albicans CA5 with very low minimal inhibitory concentration (MIC) values  lt 2 mu g mL(-1). Derivative 14, bearing bromine on the phenyl ring, was the most effective compound with MICs ranging from 0.25 to 6.25 g mL(-1). However, bis-guanylhydrazone 18 showed better selectivity in terms of therapeutic index values. In vivo embryotoxicity on zebrafish (Danio rerio) showed improved toxicity profile of 11, 14 and 18 in comparison to that of voriconazole. Most guanylhydrazones also inhibited C albicans yeast to hyphal transition, essential for its biofilm formation, while 11 and 18 were able to disperse preformed Candida biofilms. All guanylhydrazones showed the equal potential to interact with genomic DNA of C albicans in vitro, thus indicating a possible mechanism of their action, as well as possible mechanism of observed cytotoxic effects. Tested compounds did not have significant hemolytic effect and caused low liposome leakage, which excluded the cell membrane as a primary target. On the basis of computational docking experiments using both human and cytochrome P450 from Candida it was concluded that the most active guanylhydrazones had minimal structural prerequisites to interact with the cytochrome P450 14a-demethylase (CYP51). Promising guanylhydrazone derivatives also showed satisfactory pharmacokinetic profile based on molecular calculations.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Bioorganic & Medicinal Chemistry
T1  - Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates
EP  - 1291
IS  - 6
SP  - 1277
VL  - 24
DO  - 10.1016/j.bmc.2016.01.058
ER  - 
@article{
author = "Ajdačić, Vladimir and Šenerović, Lidija and Vranić, Marija and Pekmezović, Marina and Arsić-Arsenijević, Valentina and Veselinović, Aleksandar and Veselinović, Jovana and Solaja, Bogdan A. and Nikodinović-Runić, Jasmina and Opsenica, Igor M.",
year = "2016",
abstract = "A series of new thiophene-based guanylhydrazones (iminoguanidines) were synthesized in high yields using a straightforward two-step procedure. The antifungal activity of compounds was evaluated against a wide range of medicaly important fungal strains including yeasts, molds, and dermatophytes in comparison to clinically used drug voriconazole. Cytotoxic properties of compounds were also determined using human lung fibroblast cell line and hemolysis assay. All guanylhydrazones showed significant activity against broad spectrum of clinically important species of Candida spp., Aspergillus fumigatus, Fusarium oxysporum, Microsporum canis and Trichophyton mentagrophytes, which was in some cases comparable or better than activity of voriconazole. More importantly, compounds 10, 11, 13, 14, 18 and 21 exhibited excellent activity against voriconazole-resistant Candida albicans CA5 with very low minimal inhibitory concentration (MIC) values  lt 2 mu g mL(-1). Derivative 14, bearing bromine on the phenyl ring, was the most effective compound with MICs ranging from 0.25 to 6.25 g mL(-1). However, bis-guanylhydrazone 18 showed better selectivity in terms of therapeutic index values. In vivo embryotoxicity on zebrafish (Danio rerio) showed improved toxicity profile of 11, 14 and 18 in comparison to that of voriconazole. Most guanylhydrazones also inhibited C albicans yeast to hyphal transition, essential for its biofilm formation, while 11 and 18 were able to disperse preformed Candida biofilms. All guanylhydrazones showed the equal potential to interact with genomic DNA of C albicans in vitro, thus indicating a possible mechanism of their action, as well as possible mechanism of observed cytotoxic effects. Tested compounds did not have significant hemolytic effect and caused low liposome leakage, which excluded the cell membrane as a primary target. On the basis of computational docking experiments using both human and cytochrome P450 from Candida it was concluded that the most active guanylhydrazones had minimal structural prerequisites to interact with the cytochrome P450 14a-demethylase (CYP51). Promising guanylhydrazone derivatives also showed satisfactory pharmacokinetic profile based on molecular calculations.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Bioorganic & Medicinal Chemistry",
title = "Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates",
pages = "1291-1277",
number = "6",
volume = "24",
doi = "10.1016/j.bmc.2016.01.058"
}
Ajdačić, V., Šenerović, L., Vranić, M., Pekmezović, M., Arsić-Arsenijević, V., Veselinović, A., Veselinović, J., Solaja, B. A., Nikodinović-Runić, J.,& Opsenica, I. M.. (2016). Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates. in Bioorganic & Medicinal Chemistry
Pergamon-Elsevier Science Ltd, Oxford., 24(6), 1277-1291.
https://doi.org/10.1016/j.bmc.2016.01.058
Ajdačić V, Šenerović L, Vranić M, Pekmezović M, Arsić-Arsenijević V, Veselinović A, Veselinović J, Solaja BA, Nikodinović-Runić J, Opsenica IM. Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates. in Bioorganic & Medicinal Chemistry. 2016;24(6):1277-1291.
doi:10.1016/j.bmc.2016.01.058 .
Ajdačić, Vladimir, Šenerović, Lidija, Vranić, Marija, Pekmezović, Marina, Arsić-Arsenijević, Valentina, Veselinović, Aleksandar, Veselinović, Jovana, Solaja, Bogdan A., Nikodinović-Runić, Jasmina, Opsenica, Igor M., "Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates" in Bioorganic & Medicinal Chemistry, 24, no. 6 (2016):1277-1291,
https://doi.org/10.1016/j.bmc.2016.01.058 . .
1
35
27
34

Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives

Bozinović, Nina; Segan, Sandra; Vojnović, Sandra; Pavić, Aleksandar; Solaja, Bogdan A.; Nikodinović-Runić, Jasmina; Opsenica, Igor M.

(Wiley, Hoboken, 2016)

TY  - JOUR
AU  - Bozinović, Nina
AU  - Segan, Sandra
AU  - Vojnović, Sandra
AU  - Pavić, Aleksandar
AU  - Solaja, Bogdan A.
AU  - Nikodinović-Runić, Jasmina
AU  - Opsenica, Igor M.
PY  - 2016
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/919
AB  - A novel series of thiepine derivatives were synthesized and evaluated as potential antimicrobials. All the synthesized compounds were evaluated for their antimicrobial activities in vitro against the fungi Candida albicans (ATCC 10231), C.parapsilosis (clinical isolate), Gram-negative bacterium Pseudomonas aeruginosa (ATCC 44752), and Gram-positive bacterium Staphylococcus aureus (ATCC 25923). Synthesized compounds showed higher antifungal activity than antibacterial activity, indicating that they could be used as selective antimicrobials. Selected thiepines efficiently inhibited Candida hyphae formation, a trait necessary for their pathogenicity. Thiepine 8-phenyl[1]benzothiepino[3,2-c]pyridine (16) efficiently killed Candida albicans at 15.6g/mL and showed no embryotoxicity at 75g/mL. Derivative 8-[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl][1]benzothiepino[3,2-c]pyridine (23) caused significant hemolysis and in vitro DNA interaction. The position of the phenyl ring was essential for the antifungal activity, while the electronic effects of the substituents did not significantly influence activity. Results obtained from in vivo embryotoxicity on zebrafish (Danio rerio) encourage further structure optimizations.
PB  - Wiley, Hoboken
T2  - Chemical Biology & Drug Design
T1  - Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives
EP  - 806
IS  - 6
SP  - 795
VL  - 88
DO  - 10.1111/cbdd.12809
ER  - 
@article{
author = "Bozinović, Nina and Segan, Sandra and Vojnović, Sandra and Pavić, Aleksandar and Solaja, Bogdan A. and Nikodinović-Runić, Jasmina and Opsenica, Igor M.",
year = "2016",
abstract = "A novel series of thiepine derivatives were synthesized and evaluated as potential antimicrobials. All the synthesized compounds were evaluated for their antimicrobial activities in vitro against the fungi Candida albicans (ATCC 10231), C.parapsilosis (clinical isolate), Gram-negative bacterium Pseudomonas aeruginosa (ATCC 44752), and Gram-positive bacterium Staphylococcus aureus (ATCC 25923). Synthesized compounds showed higher antifungal activity than antibacterial activity, indicating that they could be used as selective antimicrobials. Selected thiepines efficiently inhibited Candida hyphae formation, a trait necessary for their pathogenicity. Thiepine 8-phenyl[1]benzothiepino[3,2-c]pyridine (16) efficiently killed Candida albicans at 15.6g/mL and showed no embryotoxicity at 75g/mL. Derivative 8-[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl][1]benzothiepino[3,2-c]pyridine (23) caused significant hemolysis and in vitro DNA interaction. The position of the phenyl ring was essential for the antifungal activity, while the electronic effects of the substituents did not significantly influence activity. Results obtained from in vivo embryotoxicity on zebrafish (Danio rerio) encourage further structure optimizations.",
publisher = "Wiley, Hoboken",
journal = "Chemical Biology & Drug Design",
title = "Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives",
pages = "806-795",
number = "6",
volume = "88",
doi = "10.1111/cbdd.12809"
}
Bozinović, N., Segan, S., Vojnović, S., Pavić, A., Solaja, B. A., Nikodinović-Runić, J.,& Opsenica, I. M.. (2016). Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives. in Chemical Biology & Drug Design
Wiley, Hoboken., 88(6), 795-806.
https://doi.org/10.1111/cbdd.12809
Bozinović N, Segan S, Vojnović S, Pavić A, Solaja BA, Nikodinović-Runić J, Opsenica IM. Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives. in Chemical Biology & Drug Design. 2016;88(6):795-806.
doi:10.1111/cbdd.12809 .
Bozinović, Nina, Segan, Sandra, Vojnović, Sandra, Pavić, Aleksandar, Solaja, Bogdan A., Nikodinović-Runić, Jasmina, Opsenica, Igor M., "Synthesis and anti-Candida activity of novel benzothiepino[3,2-c]pyridine derivatives" in Chemical Biology & Drug Design, 88, no. 6 (2016):795-806,
https://doi.org/10.1111/cbdd.12809 . .
10
8
7
10