Magnetic and radionuclide labeled nanostructured materials for medical applications

Link to this page

info:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45015/RS//

Magnetic and radionuclide labeled nanostructured materials for medical applications (en)
Магнетни и радионуклидима обележени наноструктурни материјали за примене у медицини (sr)
Magnetni i radionuklidima obeleženi nanostrukturni materijali za primene u medicini (sr_RS)
Authors

Publications

Hydrothermal synthesis of hematite (alpha-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties

Tadić, Marin; Trpkov, Djordje; Kopanja, Lazar; Vojnović, Sandra; Panjan, Matjaz

(Elsevier Science Sa, Lausanne, 2019)

TY  - JOUR
AU  - Tadić, Marin
AU  - Trpkov, Djordje
AU  - Kopanja, Lazar
AU  - Vojnović, Sandra
AU  - Panjan, Matjaz
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1266
AB  - In this work, we present the magnetic and structural properties of alpha-Fe2O3 nanoparticles synthesized by the hydrothermal synthesis method. XRD, FTIR and Raman spectroscopy indicate that the samples consist of single-phase alpha-Fe2O3 nanoparticles. A microstructural analysis by TEM and SEM shows: (i) irregular nanoparticles (similar to 50 nm), (ii) plate-like nanoparticles (with thickness t similar to 10 nm and diameter d similar to 50 -80 nm) and (iii) microsized ellipsoid 3D superstructures (with length l similar to 3.5 and diameter d similar to 1.5 mu m) composed of nanosized building blocks (similar to 50 nm). We used circularity, elongation and convexity measures to quantitatively analyze the shape of the particles. Irregular hematite nanoparticles were synthesized using a water solution of ferric precursor and sodium acetate during the hydrothermal reaction (reaction conditions: T = 180 degrees C, t = 12 h). The same hydrothermal reaction temperature, reaction duration and ferric precursor (without sodium acetate) were used for synthesizing hematite ellipsoid 3D superstructures. Addition of urea and glycine surfactants in hydrothermal reaction resulted in the formation of nanoplate hematite particles. The role of these surfactants on the structure and morphology of the particles was also investigated. Magnetic measurements at the room temperature displayed a wide range of coercivities, from H-C = 73 Oe for irregular nanoparticles, H-C = 689 Oe for nanoplates to H-C = 2688 Oe for hematite ellipsoid 3D superstructures. The measured coercivity for the ellipsoid superstructure was about 35 times higher than in the case of irregular hematite nanoparticles and about 4 times than the coercivity of hematite nanoplates. Magnetic properties of synthesized samples were related to their structure and morphology. We conclude that shape anisotropy influenced enhancement of the coercivity in hematite nanoplates whereas hematite ellipsoid 3D superstructure (nanoparticle clusters) induced the formation of multidomain magnetic structure and highest coercivity revealing its superior structure for enhanced magnetic properties. The synthesized hematite nanoparticle structures exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating a safe use of these nanoparticles for practical applications.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Alloys and Compounds
T1  - Hydrothermal synthesis of hematite (alpha-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties
EP  - 609
SP  - 599
VL  - 792
DO  - 10.1016/j.jallcom.2019.03.414
ER  - 
@article{
author = "Tadić, Marin and Trpkov, Djordje and Kopanja, Lazar and Vojnović, Sandra and Panjan, Matjaz",
year = "2019",
abstract = "In this work, we present the magnetic and structural properties of alpha-Fe2O3 nanoparticles synthesized by the hydrothermal synthesis method. XRD, FTIR and Raman spectroscopy indicate that the samples consist of single-phase alpha-Fe2O3 nanoparticles. A microstructural analysis by TEM and SEM shows: (i) irregular nanoparticles (similar to 50 nm), (ii) plate-like nanoparticles (with thickness t similar to 10 nm and diameter d similar to 50 -80 nm) and (iii) microsized ellipsoid 3D superstructures (with length l similar to 3.5 and diameter d similar to 1.5 mu m) composed of nanosized building blocks (similar to 50 nm). We used circularity, elongation and convexity measures to quantitatively analyze the shape of the particles. Irregular hematite nanoparticles were synthesized using a water solution of ferric precursor and sodium acetate during the hydrothermal reaction (reaction conditions: T = 180 degrees C, t = 12 h). The same hydrothermal reaction temperature, reaction duration and ferric precursor (without sodium acetate) were used for synthesizing hematite ellipsoid 3D superstructures. Addition of urea and glycine surfactants in hydrothermal reaction resulted in the formation of nanoplate hematite particles. The role of these surfactants on the structure and morphology of the particles was also investigated. Magnetic measurements at the room temperature displayed a wide range of coercivities, from H-C = 73 Oe for irregular nanoparticles, H-C = 689 Oe for nanoplates to H-C = 2688 Oe for hematite ellipsoid 3D superstructures. The measured coercivity for the ellipsoid superstructure was about 35 times higher than in the case of irregular hematite nanoparticles and about 4 times than the coercivity of hematite nanoplates. Magnetic properties of synthesized samples were related to their structure and morphology. We conclude that shape anisotropy influenced enhancement of the coercivity in hematite nanoplates whereas hematite ellipsoid 3D superstructure (nanoparticle clusters) induced the formation of multidomain magnetic structure and highest coercivity revealing its superior structure for enhanced magnetic properties. The synthesized hematite nanoparticle structures exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating a safe use of these nanoparticles for practical applications.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Alloys and Compounds",
title = "Hydrothermal synthesis of hematite (alpha-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties",
pages = "609-599",
volume = "792",
doi = "10.1016/j.jallcom.2019.03.414"
}
Tadić, M., Trpkov, D., Kopanja, L., Vojnović, S.,& Panjan, M.. (2019). Hydrothermal synthesis of hematite (alpha-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. in Journal of Alloys and Compounds
Elsevier Science Sa, Lausanne., 792, 599-609.
https://doi.org/10.1016/j.jallcom.2019.03.414
Tadić M, Trpkov D, Kopanja L, Vojnović S, Panjan M. Hydrothermal synthesis of hematite (alpha-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. in Journal of Alloys and Compounds. 2019;792:599-609.
doi:10.1016/j.jallcom.2019.03.414 .
Tadić, Marin, Trpkov, Djordje, Kopanja, Lazar, Vojnović, Sandra, Panjan, Matjaz, "Hydrothermal synthesis of hematite (alpha-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties" in Journal of Alloys and Compounds, 792 (2019):599-609,
https://doi.org/10.1016/j.jallcom.2019.03.414 . .
159
67
154

Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

Tadić, Mann; Kopanja, Lazar; Panjan, Matjaz; Kralj, Slavko; Nikodinović-Runić, Jasmina; Stojanović, Zoran

(Elsevier Science Bv, Amsterdam, 2017)

TY  - JOUR
AU  - Tadić, Mann
AU  - Kopanja, Lazar
AU  - Panjan, Matjaz
AU  - Kralj, Slavko
AU  - Nikodinović-Runić, Jasmina
AU  - Stojanović, Zoran
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1806
AB  - Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase alpha-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio 5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity H-C = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.
PB  - Elsevier Science Bv, Amsterdam
T2  - Applied Surface Science
T1  - Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity
EP  - 634
SP  - 628
VL  - 403
DO  - 10.1016/j.apsusc.2017.01.115
ER  - 
@article{
author = "Tadić, Mann and Kopanja, Lazar and Panjan, Matjaz and Kralj, Slavko and Nikodinović-Runić, Jasmina and Stojanović, Zoran",
year = "2017",
abstract = "Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase alpha-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio 5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity H-C = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Applied Surface Science",
title = "Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity",
pages = "634-628",
volume = "403",
doi = "10.1016/j.apsusc.2017.01.115"
}
Tadić, M., Kopanja, L., Panjan, M., Kralj, S., Nikodinović-Runić, J.,& Stojanović, Z.. (2017). Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. in Applied Surface Science
Elsevier Science Bv, Amsterdam., 403, 628-634.
https://doi.org/10.1016/j.apsusc.2017.01.115
Tadić M, Kopanja L, Panjan M, Kralj S, Nikodinović-Runić J, Stojanović Z. Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. in Applied Surface Science. 2017;403:628-634.
doi:10.1016/j.apsusc.2017.01.115 .
Tadić, Mann, Kopanja, Lazar, Panjan, Matjaz, Kralj, Slavko, Nikodinović-Runić, Jasmina, Stojanović, Zoran, "Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity" in Applied Surface Science, 403 (2017):628-634,
https://doi.org/10.1016/j.apsusc.2017.01.115 . .
50
38
49

Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles

Antić, Bratislav; Bošković, Marko; Nikodinović-Runić, Jasmina; Ming, Yue; Zhang, Hongguo; Bozin, Emil S.; Janković, Drina; Spasojević, Vojislav; Vranješ-Đurić, Sanja

(Elsevier Science Bv, Amsterdam, 2017)

TY  - JOUR
AU  - Antić, Bratislav
AU  - Bošković, Marko
AU  - Nikodinović-Runić, Jasmina
AU  - Ming, Yue
AU  - Zhang, Hongguo
AU  - Bozin, Emil S.
AU  - Janković, Drina
AU  - Spasojević, Vojislav
AU  - Vranješ-Đurić, Sanja
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1763
AB  - Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric add coated (Fe,Er)(3)O-4 nanopartides and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7 nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90 K. Reduction in saturation magnetization due to incorporation of 1.7% Er3+ into the Fe3O4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er)(3)O-4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that Y-90-labeled MNPs were predominantly found in liver (7533% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric add coated (Fe,Er)(3)O-4 MNPs could be further considered for the potential application as a diagnostic and/or therapeutic agent. This work also demonstrates that combined application of these techniques is a promising tool for studies of pharmacokinetics of the new MNPs in complex biological systems.
PB  - Elsevier Science Bv, Amsterdam
T2  - Materials Science and Engineering C
T1  - Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles
EP  - 164
SP  - 157
VL  - 75
DO  - 10.1016/j.msec.2017.02.023
ER  - 
@article{
author = "Antić, Bratislav and Bošković, Marko and Nikodinović-Runić, Jasmina and Ming, Yue and Zhang, Hongguo and Bozin, Emil S. and Janković, Drina and Spasojević, Vojislav and Vranješ-Đurić, Sanja",
year = "2017",
abstract = "Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric add coated (Fe,Er)(3)O-4 nanopartides and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7 nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90 K. Reduction in saturation magnetization due to incorporation of 1.7% Er3+ into the Fe3O4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er)(3)O-4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that Y-90-labeled MNPs were predominantly found in liver (7533% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric add coated (Fe,Er)(3)O-4 MNPs could be further considered for the potential application as a diagnostic and/or therapeutic agent. This work also demonstrates that combined application of these techniques is a promising tool for studies of pharmacokinetics of the new MNPs in complex biological systems.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Materials Science and Engineering C",
title = "Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles",
pages = "164-157",
volume = "75",
doi = "10.1016/j.msec.2017.02.023"
}
Antić, B., Bošković, M., Nikodinović-Runić, J., Ming, Y., Zhang, H., Bozin, E. S., Janković, D., Spasojević, V.,& Vranješ-Đurić, S.. (2017). Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles. in Materials Science and Engineering C
Elsevier Science Bv, Amsterdam., 75, 157-164.
https://doi.org/10.1016/j.msec.2017.02.023
Antić B, Bošković M, Nikodinović-Runić J, Ming Y, Zhang H, Bozin ES, Janković D, Spasojević V, Vranješ-Đurić S. Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles. in Materials Science and Engineering C. 2017;75:157-164.
doi:10.1016/j.msec.2017.02.023 .
Antić, Bratislav, Bošković, Marko, Nikodinović-Runić, Jasmina, Ming, Yue, Zhang, Hongguo, Bozin, Emil S., Janković, Drina, Spasojević, Vojislav, Vranješ-Đurić, Sanja, "Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles" in Materials Science and Engineering C, 75 (2017):157-164,
https://doi.org/10.1016/j.msec.2017.02.023 . .
4
4
3

Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles

Antić, Bratislav; Bosković, Marko; Nikodinović-Runić, Jasmina; Ming, Yue; Zhang, Hongguo; Bozin, Emil S.; Janković, Drina; Spasojević, Vojislav; Vranjes-Djurić, Sanja

(Elsevier, Amsterdam, 2017)

TY  - JOUR
AU  - Antić, Bratislav
AU  - Bosković, Marko
AU  - Nikodinović-Runić, Jasmina
AU  - Ming, Yue
AU  - Zhang, Hongguo
AU  - Bozin, Emil S.
AU  - Janković, Drina
AU  - Spasojević, Vojislav
AU  - Vranjes-Djurić, Sanja
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1082
AB  - Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric add coated (Fe,Er)(3)O-4 nanopartides and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7 nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90 K. Reduction in saturation magnetization due to incorporation of 1.7% Er3+ into the Fe3O4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er)(3)O-4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that Y-90-labeled MNPs were predominantly found in liver (7533% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric add coated (Fe,Er)(3)O-4 MNPs could be further considered for the potential application as a diagnostic and/or therapeutic agent. This work also demonstrates that combined application of these techniques is a promising tool for studies of pharmacokinetics of the new MNPs in complex biological systems.
PB  - Elsevier, Amsterdam
T2  - Materials Science & Engineering C-Materials For Biological Applications
T1  - Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles
EP  - 164
SP  - 157
VL  - 75
DO  - 10.1016/j.msec.2017.02.023
ER  - 
@article{
author = "Antić, Bratislav and Bosković, Marko and Nikodinović-Runić, Jasmina and Ming, Yue and Zhang, Hongguo and Bozin, Emil S. and Janković, Drina and Spasojević, Vojislav and Vranjes-Djurić, Sanja",
year = "2017",
abstract = "Magnetic nanoparticles (MNPs) are of immense interest for diagnostic and therapeutic applications in medicine. Design and development of new iron oxide-based MNPs for such applications is of rather limited breadth without reliable and sensitive methods to determine their levels in body tissues. Commonly used methods, such as ICP, are quite problematic, due to the inability to decipher the origin of the detected iron, i.e. whether it originates from the MNPs or endogenous from tissues and bodily fluids. One of the approaches to overcome this problem and to increase reliability of tracing MNPs is to partially substitute iron ions in the MNPs with Er. Here, we report on the development of citric add coated (Fe,Er)(3)O-4 nanopartides and characterization of their physico-chemical and biological properties by utilization of various complementary approaches. The synthesized MNPs had a narrow (6-7 nm) size distribution, as consistently seen in atomic pair distribution function, transmission electron microscopy, and DC magnetization measurements. The particles were found to be superparamagnetic, with a pronounced maximum in measured zero-field cooled magnetization at around 90 K. Reduction in saturation magnetization due to incorporation of 1.7% Er3+ into the Fe3O4 matrix was clearly observed. From the biological standpoint, citric acid coated (Fe,Er)(3)O-4 NPs were found to induce low toxicity both in human cell fibroblasts and in zebrafish (Danio rerio) embryos. Biodistribution pattern of the MNPs after intravenous administration in healthy Wistar rats was followed by the radiotracer method, revealing that Y-90-labeled MNPs were predominantly found in liver (7533% ID), followed by lungs (16.70% ID) and spleen (2.83% ID). Quantitative agreement with these observations was obtained by ICP-MS elemental analysis using Er as the detected tracer. Based on the favorable physical, chemical and biological characteristics, citric add coated (Fe,Er)(3)O-4 MNPs could be further considered for the potential application as a diagnostic and/or therapeutic agent. This work also demonstrates that combined application of these techniques is a promising tool for studies of pharmacokinetics of the new MNPs in complex biological systems.",
publisher = "Elsevier, Amsterdam",
journal = "Materials Science & Engineering C-Materials For Biological Applications",
title = "Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles",
pages = "164-157",
volume = "75",
doi = "10.1016/j.msec.2017.02.023"
}
Antić, B., Bosković, M., Nikodinović-Runić, J., Ming, Y., Zhang, H., Bozin, E. S., Janković, D., Spasojević, V.,& Vranjes-Djurić, S.. (2017). Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles. in Materials Science & Engineering C-Materials For Biological Applications
Elsevier, Amsterdam., 75, 157-164.
https://doi.org/10.1016/j.msec.2017.02.023
Antić B, Bosković M, Nikodinović-Runić J, Ming Y, Zhang H, Bozin ES, Janković D, Spasojević V, Vranjes-Djurić S. Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles. in Materials Science & Engineering C-Materials For Biological Applications. 2017;75:157-164.
doi:10.1016/j.msec.2017.02.023 .
Antić, Bratislav, Bosković, Marko, Nikodinović-Runić, Jasmina, Ming, Yue, Zhang, Hongguo, Bozin, Emil S., Janković, Drina, Spasojević, Vojislav, Vranjes-Djurić, Sanja, "Complementary approaches for the evaluation of biocompatibility of Y-90-labeled superparamagnetic citric acid (Fe,Er)(3)O-4 coated nanoparticles" in Materials Science & Engineering C-Materials For Biological Applications, 75 (2017):157-164,
https://doi.org/10.1016/j.msec.2017.02.023 . .
4
4
3

Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

Tadić, Mann; Kopanja, Lazar; Panjan, Matjaz; Kralj, Slavko; Nikodinović-Runić, Jasmina; Stojanović, Zoran

(Elsevier Science Bv, Amsterdam, 2017)

TY  - JOUR
AU  - Tadić, Mann
AU  - Kopanja, Lazar
AU  - Panjan, Matjaz
AU  - Kralj, Slavko
AU  - Nikodinović-Runić, Jasmina
AU  - Stojanović, Zoran
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1049
AB  - Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase alpha-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio 5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity H-C = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.
PB  - Elsevier Science Bv, Amsterdam
T2  - Applied Surface Science
T1  - Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity
EP  - 634
SP  - 628
VL  - 403
DO  - 10.1016/j.apsusc.2017.01.115
ER  - 
@article{
author = "Tadić, Mann and Kopanja, Lazar and Panjan, Matjaz and Kralj, Slavko and Nikodinović-Runić, Jasmina and Stojanović, Zoran",
year = "2017",
abstract = "Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase alpha-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio 5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity H-C = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Applied Surface Science",
title = "Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity",
pages = "634-628",
volume = "403",
doi = "10.1016/j.apsusc.2017.01.115"
}
Tadić, M., Kopanja, L., Panjan, M., Kralj, S., Nikodinović-Runić, J.,& Stojanović, Z.. (2017). Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. in Applied Surface Science
Elsevier Science Bv, Amsterdam., 403, 628-634.
https://doi.org/10.1016/j.apsusc.2017.01.115
Tadić M, Kopanja L, Panjan M, Kralj S, Nikodinović-Runić J, Stojanović Z. Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. in Applied Surface Science. 2017;403:628-634.
doi:10.1016/j.apsusc.2017.01.115 .
Tadić, Mann, Kopanja, Lazar, Panjan, Matjaz, Kralj, Slavko, Nikodinović-Runić, Jasmina, Stojanović, Zoran, "Synthesis of core-shell hematite (α-Fe 2 O 3 ) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity" in Applied Surface Science, 403 (2017):628-634,
https://doi.org/10.1016/j.apsusc.2017.01.115 . .
50
38
49