European Union's Horizon 2020 Research and Innovation Programme [870292]

Link to this page

European Union's Horizon 2020 Research and Innovation Programme [870292]

Authors

Publications

Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization

Nikolaivits, Efstratios; Pantelić, Brana; Azeem, Muhammad; Taxeidis, George; Babu, Ramesh; Topakas, Evangelos; Fournet, Margaret Brennan; Nikodinović-Runić, Jasmina

(Frontiers Media Sa, Lausanne, 2021)

TY  - JOUR
AU  - Nikolaivits, Efstratios
AU  - Pantelić, Brana
AU  - Azeem, Muhammad
AU  - Taxeidis, George
AU  - Babu, Ramesh
AU  - Topakas, Evangelos
AU  - Fournet, Margaret Brennan
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1479
AB  - Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.
PB  - Frontiers Media Sa, Lausanne
T2  - Frontiers in Bioengineering and Biotechnology
T1  - Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization
VL  - 9
DO  - 10.3389/fbioe.2021.696040
ER  - 
@article{
author = "Nikolaivits, Efstratios and Pantelić, Brana and Azeem, Muhammad and Taxeidis, George and Babu, Ramesh and Topakas, Evangelos and Fournet, Margaret Brennan and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.",
publisher = "Frontiers Media Sa, Lausanne",
journal = "Frontiers in Bioengineering and Biotechnology",
title = "Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization",
volume = "9",
doi = "10.3389/fbioe.2021.696040"
}
Nikolaivits, E., Pantelić, B., Azeem, M., Taxeidis, G., Babu, R., Topakas, E., Fournet, M. B.,& Nikodinović-Runić, J.. (2021). Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. in Frontiers in Bioengineering and Biotechnology
Frontiers Media Sa, Lausanne., 9.
https://doi.org/10.3389/fbioe.2021.696040
Nikolaivits E, Pantelić B, Azeem M, Taxeidis G, Babu R, Topakas E, Fournet MB, Nikodinović-Runić J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. in Frontiers in Bioengineering and Biotechnology. 2021;9.
doi:10.3389/fbioe.2021.696040 .
Nikolaivits, Efstratios, Pantelić, Brana, Azeem, Muhammad, Taxeidis, George, Babu, Ramesh, Topakas, Evangelos, Fournet, Margaret Brennan, Nikodinović-Runić, Jasmina, "Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization" in Frontiers in Bioengineering and Biotechnology, 9 (2021),
https://doi.org/10.3389/fbioe.2021.696040 . .
6
64
3
58

Upcycling Biodegradable PVA/Starch Film to a Bacterial Biopigment and Biopolymer

Pantelić, Brana; Ponjavić, Marijana; Janković, Vukašin; Aleksić, Ivana; Stevanović, Sanja; Murray, James; Fournet, Margaret Brennan; Nikodinović-Runić, Jasmina

(MDPI, Basel, 2021)

TY  - JOUR
AU  - Pantelić, Brana
AU  - Ponjavić, Marijana
AU  - Janković, Vukašin
AU  - Aleksić, Ivana
AU  - Stevanović, Sanja
AU  - Murray, James
AU  - Fournet, Margaret Brennan
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1470
AB  - Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (sigma(u)), 22.2 & PLUSMN; 4.3 MPa; strain at break (epsilon(u)), 325 & PLUSMN; 73%; and Young's modulus (E), 53-250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37 & DEG;C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.
PB  - MDPI, Basel
T2  - Polymers
T1  - Upcycling Biodegradable PVA/Starch Film to a Bacterial Biopigment and Biopolymer
IS  - 21
VL  - 13
DO  - 10.3390/polym13213692
ER  - 
@article{
author = "Pantelić, Brana and Ponjavić, Marijana and Janković, Vukašin and Aleksić, Ivana and Stevanović, Sanja and Murray, James and Fournet, Margaret Brennan and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (sigma(u)), 22.2 & PLUSMN; 4.3 MPa; strain at break (epsilon(u)), 325 & PLUSMN; 73%; and Young's modulus (E), 53-250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37 & DEG;C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.",
publisher = "MDPI, Basel",
journal = "Polymers",
title = "Upcycling Biodegradable PVA/Starch Film to a Bacterial Biopigment and Biopolymer",
number = "21",
volume = "13",
doi = "10.3390/polym13213692"
}
Pantelić, B., Ponjavić, M., Janković, V., Aleksić, I., Stevanović, S., Murray, J., Fournet, M. B.,& Nikodinović-Runić, J.. (2021). Upcycling Biodegradable PVA/Starch Film to a Bacterial Biopigment and Biopolymer. in Polymers
MDPI, Basel., 13(21).
https://doi.org/10.3390/polym13213692
Pantelić B, Ponjavić M, Janković V, Aleksić I, Stevanović S, Murray J, Fournet MB, Nikodinović-Runić J. Upcycling Biodegradable PVA/Starch Film to a Bacterial Biopigment and Biopolymer. in Polymers. 2021;13(21).
doi:10.3390/polym13213692 .
Pantelić, Brana, Ponjavić, Marijana, Janković, Vukašin, Aleksić, Ivana, Stevanović, Sanja, Murray, James, Fournet, Margaret Brennan, Nikodinović-Runić, Jasmina, "Upcycling Biodegradable PVA/Starch Film to a Bacterial Biopigment and Biopolymer" in Polymers, 13, no. 21 (2021),
https://doi.org/10.3390/polym13213692 . .
2
12
14