Serbian Academy of Sciences and Arts (Grant number F-172)

Link to this page

Serbian Academy of Sciences and Arts (Grant number F-172)

Authors

Publications

The Role of SOX Transcription Factors in Ageing and Age-Related Diseases

Stevanović, Milena; Lazić, Andrijana; Schwirtlich, Marija; Stanisavljević Ninković, Danijela

(2023)

TY  - JOUR
AU  - Stevanović, Milena
AU  - Lazić, Andrijana
AU  - Schwirtlich, Marija
AU  - Stanisavljević Ninković, Danijela
PY  - 2023
UR  - https://www.mdpi.com/1422-0067/24/1/851
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1891
AB  - The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.
T2  - International Journal of Molecular Sciences
T2  - International Journal of Molecular Sciences
T1  - The Role of SOX Transcription Factors in Ageing and Age-Related Diseases
IS  - 1
SP  - 851
VL  - 24
DO  - 10.3390/ijms24010851
ER  - 
@article{
author = "Stevanović, Milena and Lazić, Andrijana and Schwirtlich, Marija and Stanisavljević Ninković, Danijela",
year = "2023",
abstract = "The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.",
journal = "International Journal of Molecular Sciences, International Journal of Molecular Sciences",
title = "The Role of SOX Transcription Factors in Ageing and Age-Related Diseases",
number = "1",
pages = "851",
volume = "24",
doi = "10.3390/ijms24010851"
}
Stevanović, M., Lazić, A., Schwirtlich, M.,& Stanisavljević Ninković, D.. (2023). The Role of SOX Transcription Factors in Ageing and Age-Related Diseases. in International Journal of Molecular Sciences, 24(1), 851.
https://doi.org/10.3390/ijms24010851
Stevanović M, Lazić A, Schwirtlich M, Stanisavljević Ninković D. The Role of SOX Transcription Factors in Ageing and Age-Related Diseases. in International Journal of Molecular Sciences. 2023;24(1):851.
doi:10.3390/ijms24010851 .
Stevanović, Milena, Lazić, Andrijana, Schwirtlich, Marija, Stanisavljević Ninković, Danijela, "The Role of SOX Transcription Factors in Ageing and Age-Related Diseases" in International Journal of Molecular Sciences, 24, no. 1 (2023):851,
https://doi.org/10.3390/ijms24010851 . .
5
3
2

Generation of induced pluripotent stem cells derived from patients with 22q11.2 deletion syndrome as a tool for studying neurodevelopmental disorders

Simeunović, Ivana; Čuturilo, Goran; Kovačević-Grujičić, Nataša; Petter, Olena; Perić, Mina; Kostić, Jovana; Harwood J., Adrian; Stevanović, Milena; Drakulić, Danijela

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Simeunović, Ivana
AU  - Čuturilo, Goran
AU  - Kovačević-Grujičić, Nataša
AU  - Petter, Olena
AU  - Perić, Mina
AU  - Kostić, Jovana
AU  - Harwood J., Adrian
AU  - Stevanović, Milena
AU  - Drakulić, Danijela
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2138
AB  - Introduction: Neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD), intellectual disability (ID),schizophrenia, and bipolar disorder, are caused by the alterationsin early brain development. They affect approximately 4% of the European population and represent a high
socio-economic impact and financial burden. Treatments of NDDs are focused on symptoms since molecular mechanisms underlying NDDs are still unknown. One of the syndromes with a high risk for NDDs
is 22q11.2 Deletion Syndrome (22q11.2DS) caused by microdeletion 22q11.2. 22q11.2 microdeletion is
the most common microdeletion in humans; it is one of the strongest known risk factorsfor development
of psychiatric illness and the highest known genetic risk for schizophrenia (approximately, 25% of patients with 22q11.2DS develop schizophrenia compared to 1% in the general population).
Methods: Genomic and clinical findings in 35 patients with 22q11.2DS were analyzed and peripheral
blood mononuclear cells of patients with 22q11.2DS and healthy controls were reprogrammed.
Results: The majority of patients have 3 Mb deletion and nine of them have inherited 22q11.2 microdeletion from parents. Twenty-one different clinical presentations are revealed in the cohort with developmental delay detected in about 50% of patients. iPSCs were generated from four patients with
22q11.2 microdeletion and five healthy controls.
Conclusion: Cohort of patients with 22q11.2DS isform and iPSCs were generated which enable research
of molecular mechanisms underlying NDDs.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - Generation of induced pluripotent stem cells derived from patients with 22q11.2 deletion syndrome as a tool for studying neurodevelopmental disorders
EP  - 84
SP  - 84
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2138
ER  - 
@conference{
author = "Simeunović, Ivana and Čuturilo, Goran and Kovačević-Grujičić, Nataša and Petter, Olena and Perić, Mina and Kostić, Jovana and Harwood J., Adrian and Stevanović, Milena and Drakulić, Danijela",
year = "2023",
abstract = "Introduction: Neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD), intellectual disability (ID),schizophrenia, and bipolar disorder, are caused by the alterationsin early brain development. They affect approximately 4% of the European population and represent a high
socio-economic impact and financial burden. Treatments of NDDs are focused on symptoms since molecular mechanisms underlying NDDs are still unknown. One of the syndromes with a high risk for NDDs
is 22q11.2 Deletion Syndrome (22q11.2DS) caused by microdeletion 22q11.2. 22q11.2 microdeletion is
the most common microdeletion in humans; it is one of the strongest known risk factorsfor development
of psychiatric illness and the highest known genetic risk for schizophrenia (approximately, 25% of patients with 22q11.2DS develop schizophrenia compared to 1% in the general population).
Methods: Genomic and clinical findings in 35 patients with 22q11.2DS were analyzed and peripheral
blood mononuclear cells of patients with 22q11.2DS and healthy controls were reprogrammed.
Results: The majority of patients have 3 Mb deletion and nine of them have inherited 22q11.2 microdeletion from parents. Twenty-one different clinical presentations are revealed in the cohort with developmental delay detected in about 50% of patients. iPSCs were generated from four patients with
22q11.2 microdeletion and five healthy controls.
Conclusion: Cohort of patients with 22q11.2DS isform and iPSCs were generated which enable research
of molecular mechanisms underlying NDDs.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "Generation of induced pluripotent stem cells derived from patients with 22q11.2 deletion syndrome as a tool for studying neurodevelopmental disorders",
pages = "84-84",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2138"
}
Simeunović, I., Čuturilo, G., Kovačević-Grujičić, N., Petter, O., Perić, M., Kostić, J., Harwood J., A., Stevanović, M.,& Drakulić, D.. (2023). Generation of induced pluripotent stem cells derived from patients with 22q11.2 deletion syndrome as a tool for studying neurodevelopmental disorders. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 84-84.
https://hdl.handle.net/21.15107/rcub_imagine_2138
Simeunović I, Čuturilo G, Kovačević-Grujičić N, Petter O, Perić M, Kostić J, Harwood J. A, Stevanović M, Drakulić D. Generation of induced pluripotent stem cells derived from patients with 22q11.2 deletion syndrome as a tool for studying neurodevelopmental disorders. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:84-84.
https://hdl.handle.net/21.15107/rcub_imagine_2138 .
Simeunović, Ivana, Čuturilo, Goran, Kovačević-Grujičić, Nataša, Petter, Olena, Perić, Mina, Kostić, Jovana, Harwood J., Adrian, Stevanović, Milena, Drakulić, Danijela, "Generation of induced pluripotent stem cells derived from patients with 22q11.2 deletion syndrome as a tool for studying neurodevelopmental disorders" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):84-84,
https://hdl.handle.net/21.15107/rcub_imagine_2138 .

Establishment of induced pluripotent stem cells from patients with 22q11.2 duplication syndrome as a model system for studying neurodevelopmental disorders

Kostić, Jovana; Drakulić, Danijela; Čuturilo, Goran; Petter, Olena; Perić, Mina; Simeunović, Ivana; Harwood J., Adrian; Stevanović, Milena; Kovačević-Grujičić, Nataša

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Kostić, Jovana
AU  - Drakulić, Danijela
AU  - Čuturilo, Goran
AU  - Petter, Olena
AU  - Perić, Mina
AU  - Simeunović, Ivana
AU  - Harwood J., Adrian
AU  - Stevanović, Milena
AU  - Kovačević-Grujičić, Nataša
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2122
AB  - Introduction: Neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD), schizophrenia, and intellectual disability, represent important public health challenge in modern societies
with a prevalence of about 10 to 15% of all births and the tendency of increasing worldwide. They are
caused by disruption of early brain development. Treatments of NDDs are focused on symptoms due to
a limited understanding of underlying pathophysiological mechanisms. Individuals with the 22q11.2
Duplication Syndrome (22q11.2dup), caused by heterozygous 22q11.2 microduplication, have an elevated risk of developing NDDs. Literature data revealed that ASD is detected in 14-25% of patients with
22q11.2dup while schizophrenia is less common in these patients than in the general population, suggesting that 22q11.2 duplication might be protective against schizophrenia.
Methods: Genomic and clinical findingsin patients with 22q11.2dup were analyzed and peripheral blood
mononuclear cells of patients with 22q11.2dup were reprogrammed.
Results: We formed a cohort of 8 patients with 22q11.2dup. The majority of patientsin our cohort have
microduplication of approximately 3Mb (80%). Also, the majority of them are familial cases and in 67%
of cases, the 22q11.2 microduplication is inherited from the mother. Congenital heart defects were detected in 25% of our patients, while all tested patients have facial dysmorphism. iPSCs were generated
from three patients with a familial form of 22q11.2dup and their mothers.
Conclusion: A cohort of patients with 22q11.2dup is formed and iPSCs were generated which can be
used as a model system for studying NDDs.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - Establishment of induced pluripotent stem cells from patients with 22q11.2 duplication syndrome as a model system for studying neurodevelopmental disorders
EP  - 66
SP  - 66
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2122
ER  - 
@conference{
author = "Kostić, Jovana and Drakulić, Danijela and Čuturilo, Goran and Petter, Olena and Perić, Mina and Simeunović, Ivana and Harwood J., Adrian and Stevanović, Milena and Kovačević-Grujičić, Nataša",
year = "2023",
abstract = "Introduction: Neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD), schizophrenia, and intellectual disability, represent important public health challenge in modern societies
with a prevalence of about 10 to 15% of all births and the tendency of increasing worldwide. They are
caused by disruption of early brain development. Treatments of NDDs are focused on symptoms due to
a limited understanding of underlying pathophysiological mechanisms. Individuals with the 22q11.2
Duplication Syndrome (22q11.2dup), caused by heterozygous 22q11.2 microduplication, have an elevated risk of developing NDDs. Literature data revealed that ASD is detected in 14-25% of patients with
22q11.2dup while schizophrenia is less common in these patients than in the general population, suggesting that 22q11.2 duplication might be protective against schizophrenia.
Methods: Genomic and clinical findingsin patients with 22q11.2dup were analyzed and peripheral blood
mononuclear cells of patients with 22q11.2dup were reprogrammed.
Results: We formed a cohort of 8 patients with 22q11.2dup. The majority of patientsin our cohort have
microduplication of approximately 3Mb (80%). Also, the majority of them are familial cases and in 67%
of cases, the 22q11.2 microduplication is inherited from the mother. Congenital heart defects were detected in 25% of our patients, while all tested patients have facial dysmorphism. iPSCs were generated
from three patients with a familial form of 22q11.2dup and their mothers.
Conclusion: A cohort of patients with 22q11.2dup is formed and iPSCs were generated which can be
used as a model system for studying NDDs.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "Establishment of induced pluripotent stem cells from patients with 22q11.2 duplication syndrome as a model system for studying neurodevelopmental disorders",
pages = "66-66",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2122"
}
Kostić, J., Drakulić, D., Čuturilo, G., Petter, O., Perić, M., Simeunović, I., Harwood J., A., Stevanović, M.,& Kovačević-Grujičić, N.. (2023). Establishment of induced pluripotent stem cells from patients with 22q11.2 duplication syndrome as a model system for studying neurodevelopmental disorders. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 66-66.
https://hdl.handle.net/21.15107/rcub_imagine_2122
Kostić J, Drakulić D, Čuturilo G, Petter O, Perić M, Simeunović I, Harwood J. A, Stevanović M, Kovačević-Grujičić N. Establishment of induced pluripotent stem cells from patients with 22q11.2 duplication syndrome as a model system for studying neurodevelopmental disorders. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:66-66.
https://hdl.handle.net/21.15107/rcub_imagine_2122 .
Kostić, Jovana, Drakulić, Danijela, Čuturilo, Goran, Petter, Olena, Perić, Mina, Simeunović, Ivana, Harwood J., Adrian, Stevanović, Milena, Kovačević-Grujičić, Nataša, "Establishment of induced pluripotent stem cells from patients with 22q11.2 duplication syndrome as a model system for studying neurodevelopmental disorders" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):66-66,
https://hdl.handle.net/21.15107/rcub_imagine_2122 .

Application of principal component analysis (PCA) and analytical hierarchy process (AHP) in analysis of articulatory characteristics of phonemes of children with 22q11.2 Deletion Syndrome

Drakulić, Danijela; Rakonjac, Marijana; Cuturilo, Goran; Kovačević-Grujičić, Nataša; Kušić-Tišma, Jelena; Morić, Ivana; Zukić, Branka; Stevanović, Milena

(Belgrade : Institute of molecular genetics and genetic engineering, 2023)

TY  - CONF
AU  - Drakulić, Danijela
AU  - Rakonjac, Marijana
AU  - Cuturilo, Goran
AU  - Kovačević-Grujičić, Nataša
AU  - Kušić-Tišma, Jelena
AU  - Morić, Ivana
AU  - Zukić, Branka
AU  - Stevanović, Milena
PY  - 2023
UR  - https://belbi.bg.ac.rs/
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2036
AB  - 22q11.2 deletion syndrome (22q11.2DS is caused by 22q11.2 microdeletion, one of
the strongest known risk factors for development of neurodevelopmental disorders.
About 70% patients with 22q11.2DS have speech and language impairments. In the
literature, there is no data about articulatory characteristics of phonemes of children
with 22q11.2DS, monolingual native speakers of South Slavic languages. Here we, by
applying Global Articulation Test, analyzed articulatory characteristics of phonemes of
children with 22q11.2DS, monolingual native speakers of the Serbian language (group
E1), children with a phenotype resembling 22q11.2DS but without the microdeletion
(group E2), children with non-syndromic congenital heart malformations (since children
with these malformations may exhibit a speech and language impairments) (group
E3) and their peers with typical speech-sound development (group C). Results of PCA
indicated that the groups can be distinguished based on the pronunciation of phonemes,
and that the pronunciation of the phonemes “Č ⟨tʃ⟩”, “Dž ⟨ʤ⟩”, “Š ⟨∫⟩”, “Ž ⟨ʒ⟩”, “R”, and “Lj ⟨ʎ⟩”
contributes the most to the variability between the groups. Results of AHP revealed that
the pronunciation of the phonemes “Č ⟨tʃ⟩”, “Dž ⟨ʤ⟩”, “Š ⟨∫⟩”, “Ž ⟨ʒ⟩”, “R”, and “Lj ⟨ʎ⟩” was
rated the worst in the group E1. In conclusion, obtained results indicate that the presence
of 22q11.2 microdeletion influences articulation skills of carriers.
PB  - Belgrade : Institute of molecular genetics and genetic engineering
C3  - 4th Belgrade Bioinformatics Conference
T1  - Application of principal component analysis (PCA) and analytical hierarchy process (AHP) in analysis of articulatory characteristics of phonemes of children with 22q11.2 Deletion Syndrome
EP  - 91
SP  - 91
VL  - 4
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2036
ER  - 
@conference{
author = "Drakulić, Danijela and Rakonjac, Marijana and Cuturilo, Goran and Kovačević-Grujičić, Nataša and Kušić-Tišma, Jelena and Morić, Ivana and Zukić, Branka and Stevanović, Milena",
year = "2023",
abstract = "22q11.2 deletion syndrome (22q11.2DS is caused by 22q11.2 microdeletion, one of
the strongest known risk factors for development of neurodevelopmental disorders.
About 70% patients with 22q11.2DS have speech and language impairments. In the
literature, there is no data about articulatory characteristics of phonemes of children
with 22q11.2DS, monolingual native speakers of South Slavic languages. Here we, by
applying Global Articulation Test, analyzed articulatory characteristics of phonemes of
children with 22q11.2DS, monolingual native speakers of the Serbian language (group
E1), children with a phenotype resembling 22q11.2DS but without the microdeletion
(group E2), children with non-syndromic congenital heart malformations (since children
with these malformations may exhibit a speech and language impairments) (group
E3) and their peers with typical speech-sound development (group C). Results of PCA
indicated that the groups can be distinguished based on the pronunciation of phonemes,
and that the pronunciation of the phonemes “Č ⟨tʃ⟩”, “Dž ⟨ʤ⟩”, “Š ⟨∫⟩”, “Ž ⟨ʒ⟩”, “R”, and “Lj ⟨ʎ⟩”
contributes the most to the variability between the groups. Results of AHP revealed that
the pronunciation of the phonemes “Č ⟨tʃ⟩”, “Dž ⟨ʤ⟩”, “Š ⟨∫⟩”, “Ž ⟨ʒ⟩”, “R”, and “Lj ⟨ʎ⟩” was
rated the worst in the group E1. In conclusion, obtained results indicate that the presence
of 22q11.2 microdeletion influences articulation skills of carriers.",
publisher = "Belgrade : Institute of molecular genetics and genetic engineering",
journal = "4th Belgrade Bioinformatics Conference",
title = "Application of principal component analysis (PCA) and analytical hierarchy process (AHP) in analysis of articulatory characteristics of phonemes of children with 22q11.2 Deletion Syndrome",
pages = "91-91",
volume = "4",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2036"
}
Drakulić, D., Rakonjac, M., Cuturilo, G., Kovačević-Grujičić, N., Kušić-Tišma, J., Morić, I., Zukić, B.,& Stevanović, M.. (2023). Application of principal component analysis (PCA) and analytical hierarchy process (AHP) in analysis of articulatory characteristics of phonemes of children with 22q11.2 Deletion Syndrome. in 4th Belgrade Bioinformatics Conference
Belgrade : Institute of molecular genetics and genetic engineering., 4, 91-91.
https://hdl.handle.net/21.15107/rcub_imagine_2036
Drakulić D, Rakonjac M, Cuturilo G, Kovačević-Grujičić N, Kušić-Tišma J, Morić I, Zukić B, Stevanović M. Application of principal component analysis (PCA) and analytical hierarchy process (AHP) in analysis of articulatory characteristics of phonemes of children with 22q11.2 Deletion Syndrome. in 4th Belgrade Bioinformatics Conference. 2023;4:91-91.
https://hdl.handle.net/21.15107/rcub_imagine_2036 .
Drakulić, Danijela, Rakonjac, Marijana, Cuturilo, Goran, Kovačević-Grujičić, Nataša, Kušić-Tišma, Jelena, Morić, Ivana, Zukić, Branka, Stevanović, Milena, "Application of principal component analysis (PCA) and analytical hierarchy process (AHP) in analysis of articulatory characteristics of phonemes of children with 22q11.2 Deletion Syndrome" in 4th Belgrade Bioinformatics Conference, 4 (2023):91-91,
https://hdl.handle.net/21.15107/rcub_imagine_2036 .