Environmental Protection Agency (EPA) of Ireland [2005-ET-LS-9-M3]

Link to this page

Environmental Protection Agency (EPA) of Ireland [2005-ET-LS-9-M3]

Authors

Publications

The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate

Nikodinović-Runić, Jasmina; Kenny, Shane T.; Babu, Ramesh; Woods, Trevor; Blau, Werner J.; O'Connor, Kevin

(Springer, New York, 2008)

TY  - JOUR
AU  - Nikodinović-Runić, Jasmina
AU  - Kenny, Shane T.
AU  - Babu, Ramesh
AU  - Woods, Trevor
AU  - Blau, Werner J.
AU  - O'Connor, Kevin 
PY  - 2008
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/327
AB  - Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers-polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.
PB  - Springer, New York
T2  - Applied Microbiology and Biotechnology
T1  - The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate
EP  - 673
IS  - 4
SP  - 665
VL  - 80
DO  - 10.1007/s00253-008-1593-0
ER  - 
@article{
author = "Nikodinović-Runić, Jasmina and Kenny, Shane T. and Babu, Ramesh and Woods, Trevor and Blau, Werner J. and O'Connor, Kevin ",
year = "2008",
abstract = "Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers-polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.",
publisher = "Springer, New York",
journal = "Applied Microbiology and Biotechnology",
title = "The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate",
pages = "673-665",
number = "4",
volume = "80",
doi = "10.1007/s00253-008-1593-0"
}
Nikodinović-Runić, J., Kenny, S. T., Babu, R., Woods, T., Blau, W. J.,& O'Connor, K.. (2008). The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. in Applied Microbiology and Biotechnology
Springer, New York., 80(4), 665-673.
https://doi.org/10.1007/s00253-008-1593-0
Nikodinović-Runić J, Kenny ST, Babu R, Woods T, Blau WJ, O'Connor K. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. in Applied Microbiology and Biotechnology. 2008;80(4):665-673.
doi:10.1007/s00253-008-1593-0 .
Nikodinović-Runić, Jasmina, Kenny, Shane T., Babu, Ramesh, Woods, Trevor, Blau, Werner J., O'Connor, Kevin , "The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate" in Applied Microbiology and Biotechnology, 80, no. 4 (2008):665-673,
https://doi.org/10.1007/s00253-008-1593-0 . .
60
39
53