Strategic project of Serbian Academy of Arts and Sciences, 2021-2023 (Grant number F-172)

Link to this page

Strategic project of Serbian Academy of Arts and Sciences, 2021-2023 (Grant number F-172)

Authors

Publications

The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells

Balint, Vanda; Stanisavljević-Ninković, Danijela; Lazić, Stefan; Kovačević-Grujičić, Nataša; Perić, Mina; Pejić, Jelena; Mojsin, Marija; Stevanović, Milena; Lazić, Andrijana

(Belgrade : Serbian Neuroscience Society, 2023)

TY  - CONF
AU  - Balint, Vanda
AU  - Stanisavljević-Ninković, Danijela
AU  - Lazić, Stefan
AU  - Kovačević-Grujičić, Nataša
AU  - Perić, Mina
AU  - Pejić, Jelena
AU  - Mojsin, Marija
AU  - Stevanović, Milena
AU  - Lazić, Andrijana
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2185
AB  - Astrocytes are the main homeostatic cells in the brain with important roles both in
physiological and pathological conditions. They have a unique ability to become
reactivated in response to different types of brain pathologies, which serves as a
compensatory response that modulates tissue damage and recovery. Also, senescent
astrocytes have profound implications in age-related neurodegenerative disorders. The
molecular mechanisms underlying astrocyte reactivation and senescence are still not
well understood. To investigate the roles of SOX2 and SOX9 transcription factors and
miR-21 in these phenotypic alternations of astroglia, astrocytes derived from NT2/D1
cell line (NT2/A) were used as a model system. Western blot analyses showed that the
expression of both SOX2 and SOX9 decreases during the maturation of NT2/A and
they are re-expressed upon in vitro induced injury. Further modulation of the SOX2
and SOX9 expression will reveal their roles in the regulation of astrocytes
reactivation. Down-regulation of mir-21 in both immature and mature NT2/A by
using the antisense technology, induced the decline in cell proliferation revealed by
Ki67 proliferation marker. Also the premature cellular senescence was induced as
indicated by increase in SA-ß-gal activity and the expression of p21 and p53.
Additionally, in silico analysis predicted many of the genes, previously shown to be
upregulated in senescent astrocytes, as miR-21 targets.
Clarifying the roles of SOX genes and miRNAs in astrocyte reactivation and
senescence would contribute to better understanding of the functions of these cells at
the molecular level, which holds promise for development of new therapeutic
strategies.
PB  - Belgrade : Serbian Neuroscience Society
C3  - 8th Congress of the Serbian Neuroscience Society
T1  - The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells
EP  - 99
SP  - 99
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2185
ER  - 
@conference{
author = "Balint, Vanda and Stanisavljević-Ninković, Danijela and Lazić, Stefan and Kovačević-Grujičić, Nataša and Perić, Mina and Pejić, Jelena and Mojsin, Marija and Stevanović, Milena and Lazić, Andrijana",
year = "2023",
abstract = "Astrocytes are the main homeostatic cells in the brain with important roles both in
physiological and pathological conditions. They have a unique ability to become
reactivated in response to different types of brain pathologies, which serves as a
compensatory response that modulates tissue damage and recovery. Also, senescent
astrocytes have profound implications in age-related neurodegenerative disorders. The
molecular mechanisms underlying astrocyte reactivation and senescence are still not
well understood. To investigate the roles of SOX2 and SOX9 transcription factors and
miR-21 in these phenotypic alternations of astroglia, astrocytes derived from NT2/D1
cell line (NT2/A) were used as a model system. Western blot analyses showed that the
expression of both SOX2 and SOX9 decreases during the maturation of NT2/A and
they are re-expressed upon in vitro induced injury. Further modulation of the SOX2
and SOX9 expression will reveal their roles in the regulation of astrocytes
reactivation. Down-regulation of mir-21 in both immature and mature NT2/A by
using the antisense technology, induced the decline in cell proliferation revealed by
Ki67 proliferation marker. Also the premature cellular senescence was induced as
indicated by increase in SA-ß-gal activity and the expression of p21 and p53.
Additionally, in silico analysis predicted many of the genes, previously shown to be
upregulated in senescent astrocytes, as miR-21 targets.
Clarifying the roles of SOX genes and miRNAs in astrocyte reactivation and
senescence would contribute to better understanding of the functions of these cells at
the molecular level, which holds promise for development of new therapeutic
strategies.",
publisher = "Belgrade : Serbian Neuroscience Society",
journal = "8th Congress of the Serbian Neuroscience Society",
title = "The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells",
pages = "99-99",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2185"
}
Balint, V., Stanisavljević-Ninković, D., Lazić, S., Kovačević-Grujičić, N., Perić, M., Pejić, J., Mojsin, M., Stevanović, M.,& Lazić, A.. (2023). The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells. in 8th Congress of the Serbian Neuroscience Society
Belgrade : Serbian Neuroscience Society., 99-99.
https://hdl.handle.net/21.15107/rcub_imagine_2185
Balint V, Stanisavljević-Ninković D, Lazić S, Kovačević-Grujičić N, Perić M, Pejić J, Mojsin M, Stevanović M, Lazić A. The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells. in 8th Congress of the Serbian Neuroscience Society. 2023;:99-99.
https://hdl.handle.net/21.15107/rcub_imagine_2185 .
Balint, Vanda, Stanisavljević-Ninković, Danijela, Lazić, Stefan, Kovačević-Grujičić, Nataša, Perić, Mina, Pejić, Jelena, Mojsin, Marija, Stevanović, Milena, Lazić, Andrijana, "The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells" in 8th Congress of the Serbian Neuroscience Society (2023):99-99,
https://hdl.handle.net/21.15107/rcub_imagine_2185 .