
Accepted Manuscript

In vitro digestion of meat- and cereal-based food matrix enriched with grape
extracts: How are polyphenol composition, bioaccessibility and antioxidant ac-
tivity affected?

Mirjana B. Pešić, Danijel D. Milinčić, Aleksandar Ž. Kostić, Nemanja S.
Stanisavljević, Goran N. Vukotić, Milan O. Kojić, Uroš M. Gašić, Miroljub B.
Barać, Slađana P. Stanojević, Dušanka A. Popović, Nebojša R. Banjac, Živoslav
Lj. Tešić

PII: S0308-8146(19)30175-X
DOI: https://doi.org/10.1016/j.foodchem.2019.01.107
Reference: FOCH 24202

To appear in: Food Chemistry

Received Date: 2 August 2018
Revised Date: 13 January 2019
Accepted Date: 16 January 2019

Please cite this article as: Pešić, M.B., Milinčić, D.D., Kostić, A.Z., Stanisavljević, N.S., Vukotić, G.N., Kojić, M.O.,
Gašić, U.M., Barać, M.B., Stanojević, S.P., Popović, D.A., Banjac, N.R., Tešić, Z.L., In vitro digestion of meat-
and cereal-based food matrix enriched with grape extracts: How are polyphenol composition, bioaccessibility and
antioxidant activity affected?, Food Chemistry (2019), doi: https://doi.org/10.1016/j.foodchem.2019.01.107

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.foodchem.2019.01.107
https://doi.org/10.1016/j.foodchem.2019.01.107


  

1

1 In vitro digestion of meat- and cereal-based food matrix enriched with grape extracts: How 

2 are polyphenol composition, bioaccessibility and antioxidant activity affected? 

3

4 Mirjana B. Pešić1*, Danijel D. Milinčić1, Aleksandar Ž. Kostić1, Nemanja S. Stanisavljević2, 

5 Goran N. Vukotić2, Milan O. Kojić2, Uroš M. Gašić3, Miroljub B. Barać1, Slađana P. 

6 Stanojević1, Dušanka A. Popović1, Nebojša R. Banjac1, Živoslav Lj. Tešić3

7

8 1University of Belgrade, Faculty of Agriculture, Department of Food Technology and 

9 Biochemistry, Nemanjina 6, 11081 Belgrade, Serbia

10 2 University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, P.O. Box 23, 

11 11 010 Belgrade, Serbia.

12 3 University of Belgrade, Faculty of Chemistry, P.O. Box 51, 11158, Belgrade, Serbia

13

14 *Corresponding author: Tel./Fax: +381 11 21 99 711

15 E-mail address: mpesic@agrif.bg.ac.rs (M. Pešić)

16

17

18 Running title: In vitro digestion of complex food matrix with grape extracts

19

20

21

22

23

mailto:mpesic@agrif.bg.ac.rs


  

2

24 Abstract

25 The aim of this study was to evaluate the effect of enriching a complex food matrix (FM) with 

26 grape extracts on polyphenol content, composition, bioaccessibility and antioxidant activity 

27 during digestion. The grape extracts and FM were separately tested under the same conditions as 

28 controls. The FM by itself contains a significant amount of phenolic acids and flavonols, 

29 influencing the final recovery of polyphenols from grape extracts. The FM significantly 

30 increased the total recovery of polyphenols after digestion of grape seed extracts compared to 

31 those digested without the FM; however, a low recovery of proantocyanidins and total flavonoids 

32 was observed. Digestive fluids and FM compounds significantly increased the total polyphenol 

33 content of grape digests and significantly contributed to their ABTS•+ scavenging activity and 

34 ferrous-ion-chelating capacity. The present study suggested that enrichment of meat- and cereal-

35 based products with grape polyphenol extracts could be a good strategy to formulate a healthier 

36 diet.  

37

38 Keywords: in vitro digestion, grape extracts, bioaccessibility, polyphenols, food matrix, 

39 antioxidant activity
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47 1. Introduction

48 The wine-making process generates considerable quantities of by-products that can be used as 

49 rich sources of phenolic compounds that possess a broad range of biological activities such as 

50 antioxidant, antibacterial, anticancer, anti-inflammatory and antidiabetic activities, as well as 

51 hepatoprotective, cardioprotective and neuroprotective effects (Gülçin, 2010; Nassiri-Asl & 

52 Hosseinzadeh, 2016). Grape skin and seed extracts are very promising food ingredients that have 

53 drawn the attention of food scientists in the past decade. Grape seeds contain a considerable 

54 amount of flavan-3-ols and phenolic acids, whereas flavonols and anthocyanins are dominant in 

55 grape skin (Pantelić, et al., 2016). 

56 An essential parameter that limits the biological activity of polyphenols is their bioaccessibility, 

57 which determines the proportion of polyphenols released from the food matrix during digestion. 

58 Polyphenols are further solubilized in digestive fluids and can be subsequently, absorbed and 

59 metabolized; thus, the bioaccessibility of polyphenols is a key factor for the expression of their 

60 health-promoting features. The importance of the interaction between the food matrix and 

61 phenolic compounds during digestion has been extensively studied in the past decade and has 

62 been well-reviewed (Jakobek, 2015). The majority of polyphenols (with a few exceptions) are 

63 considered as moderately to highly soluble in water. This property indicates that their 

64 bioaccessibility does not rely on micellization but rather on release from the matrix and their 

65 solubilization in the aqueous phase, because certain polyphenols may be complexed with food 

66 proteins or digestion enzymes and minerals. The recovery of polyphenols can be affected by 

67 almost all major food components such as proteins, carbohydrates, lipids (Jakobek, 2015; Ozdal, 

68 Capanoglu, & Altay, 2013) or fibres (González-Aguilar, Blancas-Benítez, & Sáyago-Ayerdi, 

69 2017). It has been determined that the structure, composition of food matrix and the effect of co-
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70 digestion of polyphenols with different food components may affect their bioaccessibility, 

71 digestibility or antioxidant activity (Pineda-Vadillo, et al., 2016; Wang, Amigo-Benavent, 

72 Mateos, Bravo, & Sarriá, 2017). 

73 Investigations on in vitro digestion of polyphenols have been mainly performed in naturally 

74 enriched food matrices such as fruits and vegetables (Dufour, et al., 2018) or powdered 

75 polyphenol-rich extracts (Wang, Amigo-Benavent, Mateos, Bravo, & Sarriá, 2017). Only few 

76 studies address non-naturally enriched food matrices such as dairy, egg products and bakery 

77 products (Karakaya, et al., 2016; Pineda-Vadillo, et al., 2016). Interestingly, according to our 

78 knowledge, the fortification of complex food matrices including meat and carbohydrates has 

79 been scarcely studied till date (Stanisavljević, et al., 2015). However, it has been documented 

80 that meat lipids are very susceptible to peroxidation during meat cooking and gastrointestinal 

81 digestion; this results in the formation of lipid oxidation products, which could be toxic to the 

82 human body (Vieira, Zhang, & Decker, 2017). It has been proposed that the incidence of cancer 

83 and vascular diseases associated with high meat consumption may be reduced by the addition of 

84 antioxidants in the diet, especially, at the same time as meat preparation or meat consumption or 

85 by modification of food preparation methods (Vieira, Zhang, & Decker, 2017). Thus, the 

86 fortification of meat-based meals with plant polyphenols can be a good strategy to mitigate this 

87 health risk. 

88 A healthy diet is very important in infants and young children to prevent infection and chronic 

89 diseases in the short term and during the life time (Jackson, 2015); taking this into account, the 

90 aim of the present study was to examine the effect of a complex food matrix on grape-

91 polyphenol bioaccessibility and antioxidant activity during in vitro digestion. For this purpose, 

92 an infant puree composed of turkey meat, potato, corn and rice was enriched with grape skin and 
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93 seed extracts and was subjected to standardized static in vitro digestion using previously 

94 accepted methods (Minekus et al. 2014). In many in vitro studies, the bioaccessibility of phenolic 

95 compounds during digestion has been assessed by determining the total phenolic content and the 

96 content of major classes of polyphenols, which does not yield information on the recovery of 

97 specific phenolic compounds; considering this limitation, structural analysis of polyphenol 

98 profiles during digestion was performed. The obtained results could be helpful to estimate the 

99 bioactive potential of grape skin and seed extracts in the fortification of complex food matrices 

100 that are based on meat and carbohydrates such as food products for infants and young children.

101

102 2. Material and methods

103 2.1. Grape extracts and food matrix

104 The indigenous red grape variety “Prokupac”, was obtained from a vinery located in 

105 Aleksandrovac, which is at the centre of the Župa district of Serbia. The grapes were pressed, 

106 and the residual grapes, skin and seeds were immediately dried in a drying oven (Thermo 

107 Scientific Haraeus, MA, USA) at 60 °C for 72 h. Next, the skin was manually separated from the 

108 seed, and both were ground in a coffee grinder (Bosch MKM 6003 UC, BSH Hausgeräte GmbH, 

109 Munich, Germany). The obtained powder was sieved (model Analysette 3 pro, Fritsch, Idar-

110 Oberstein, Germany), selecting a particle size between 0.6 mm and 1.12 mm. The material was 

111 maintained at -20 °C in vacuum-packed plastic containers until further analysis. Aqueous 

112 extracts of the grape skin and seeds were prepared according to the method described by 

113 Pantelić, et al. (2016). Briefly, the skin (about 2 g) and the seed (about 1 g) were extracted three 

114 times with 20 mL of methanol containing 0.1% HCl (skin) or 10 mL methanol/water (80/20) 

115 containing 0.1% HCl (seed). The acidified methanol was used to prevent oxidation of the 
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116 phenolics and to increase the efficiency of the phenolic extractions since the phenol-phenolate 

117 equilibrium shift towards the less polar phenol form (Acosta-Estrada, Gutiérrez-Uribe, & Serna-

118 Saldívar, 2014). Furthermore, the acidic solvents denature the membranes od cell tissue and 

119 simultaneously dissolve and stabilize pigments such as anthocyanins (Rodriguez-Saona & 

120 Wrolstad, 2001). It is known that phenolics present in the grape by-products can be found in the 

121 soluble (free and esterified) and insoluble-bound forms. Depending on the extraction procedures, 

122 analytical methods, grape variety and selected by-products, the different amount of phenolics in 

123 the insoluble form was found: 19.88-56.75% (Lutterodt, Slavin, Whent, Turner, & Yu, 2011) and 

124 63-79% of the total amount (de Camargo, Regitano-D'Arce, Biasoto, & Shahidi, 2014) 

125 contributing to the antioxidative properties of total phenolics in different extent: from negligible 

126 (Tang, et al., 2018) to significant (de Camargo, Regitano-D'Arce, Biasoto, & Shahidi, 2014). 

127 The extractions were carried out by stirring mixtures for 1 h at room temperature on a 

128 mechanical shaker (Thys 2, MLW Labortechnik GmbH, Seelbach, Germany). After shaking, the 

129 extracts were placed in the fridge at 5 °C for 22 h. Thereafter, the extracts were filtered through 

130 Whatman No.42 filter paper and were collected. The extracts obtained after repeated extractions 

131 were combined and were evaporated to dryness by rotary evaporator (Heidolph, Laborota 4000, 

132 Schwabach, Germany) under reduced pressure at 40 °C. The residues after evaporation were 

133 dissolved in 15 mL of milliQ water and these solutions were used for further analysis. The 

134 extracts were filtered with 0.45 µm filters (Syringe Filter, PTFE, Supelco) before further 

135 analysis. Infant puree (Juvitana, Swisslion Product d.o.o. Indjija, Serbia) was prepared from 

136 boiled turkey meat (20%), boiled potato paste (10%), boiled corn paste (25%), rice flour (5%), 

137 0.1% NaCl and water (39.9%). The mixture contained 3% protein, 10% carbohydrate and 1% of 

138 total fat.  
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139 2.2. Simulated in vitro gastrointestinal digestion (GID)

140 In vitro GID was conducted following the standardized static in vitro digestion protocol 

141 (Minekus, et al., 2014). Briefly, 2 mL of aqueous grape extract was mixed with 3 g of infant 

142 puree and was digested according to the standardized static digestion protocol (Minekus, et al., 

143 2014). These samples were labelled as DSK/FM (digested grape skin extract with food matrix) 

144 and DSE/FM (digested grape seed extract with food matrix). To examine the digestion products 

145 of the matrix under the same conditions, 3 g of infant formula was mixed with 2 mL of distilled 

146 water, and this sample was labelled as DFM (digested food matrix). To establish the effect of 

147 digestion without the food matrix, an additional control was performed by mixing 2 mL of 

148 extract with 3 mL of distilled water, which was labelled as DSK (digested grape skin extract) or 

149 DSE (digested grape seed extract). The samples were subjected to the oral phase of digestion by 

150 addition of 3.5 mL of the simulated salivary fluid (SSF), 0.5 mL of salivary α-amylase solution 

151 (1500 U/mL), 25 µL of 0.3 M CaCl2 and 975 µL of water, shaken vigorously and incubated 2 

152 min at 37 °C. During the following gastric phase of digestion the whole amount of oral bolus 

153 (~10 mL) was mixed with 7.5 mL of simulated gastric fluid (SGF), 1.6 mL of pepsin solution 

154 (25000 U/mL), prepared in SGF, 5 µL of 0.3 M CaCl2 and pH was adjusted to 3.0 using 1M 

155 HCl. The volume of the mixture was then adjusted to 20 mL using distilled water and incubated 

156 at 37 °C for 2 h, using orbital shaker (Lab-Shaker SMX 1300, Adolf Kühner, Basel, 

157 Switzerland), adjusted to 300 rpm. For the final intestinal phase, 20 mL of obtained gastric 

158 chyme was mixed with 11 mL of simulated intestinal fluid (SIF), 5 mL of pancreatin solution 

159 800 U/mL (trypsin activity) prepared in SIF, 2.5 mL of 160 mM bile salt solution and 40 µL of 

160 0.3 M CaCl2. The pH value of 7.0 was adjusted using 1M NaOH and the mixture was 

161 supplemented with distilled water to reach final volume of 40 mL. Additional incubation was 
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162 performed with constant shaking at 300 rpm during 2 h at 37 °C. After completed digestion 

163 supernatants were separated by centrifugation at 4500g (Centrifuge 5804R, Eppendorf, 

164 Hamburg, Germany) for 10 min at 4°C, filtrated through 45 µm syringe filters (Filtropur S 0.45, 

165 83.1826, Sarstedt, Germany) then immediately frozen in liquid nitrogen and kept at -80 °C for 

166 further analysis in the next few days. To prepare controls that represent the contribution of 

167 digestive fluids, the extract of grape skin and seeds with and without the food matrix and the 

168 food matrix alone were immediately mixed on ice with all the components and enzymes in the 

169 same ratio as during the simulated digestion; the pH value was adjusted to a final value of 7.0. 

170 These samples were labelled SK/FMC, SE/FMC, SKC, SEC, and FMC, respectively. To allow 

171 the comparison of the digested specimens with the initial extracts and food matrix, adequate 

172 amounts of grape skin and seed extracts, as well as infant puree, were diluted with distilled water 

173 to achieve the total volume of 40 mL that was obtained after complete digestion of the analysed 

174 samples. These samples were labelled as SK, SE and FM, respectively. 

175 2.3. Total phenolic, total flavonoid and proanthocyanidin content

176 The total phenolic content (TPC) in the samples was determined using Folin-Ciocalteu’s reagent, 

177 following the method described by Singleton, Orthofer, and Lamuela-Raventós (1998). Briefly, 

178 an aliquot of sample (70 µL) was mixed with 300 µL of Folin-Ciocalteu reagent and 230 µL of 

179 7.5% Na2CO3, followed by incubation for 1 h 30 min at room temperature. The total flavonoid 

180 content (TFC) was determined using a colorimetric assay with aluminium chloride, as previously 

181 described by Ribeiro, Ribani, Francisco, Soares, Pontarolo, and Haminiuk (2015). Briefly, an 

182 aliquot of sample (125 µL) was mixed with 625 µL of milliQ water and 37.5 µL of 5% NaNO2. 

183 After 6 min, 75 µL of 10% AlCl3 was added to form a flavonoid-aluminium complex. An aliquot 

184 of 1 M NaOH (250 µL) was added in the mixture 5 min later. The content of extractable 
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185 proantocyanidins (PC) in the samples were determined using the butanol-HCl assay, as described 

186 by Deng, Penner, and Zhao (2011). Briefly, an aliquot of sample (0.5 mL) was mixed with 3 mL 

187 of buthanol-HCl (95:5) and 0.1 mL of iron reagent (2% FeNH4(SO4)2 in 2 M HCl) and 

188 vigorously vortexed. After that, the mixture was incubated at 95 °C for 40 min. All three methods 

189 are based on spectrophotometric measurements (765 nm for TPC, 510 nm for TFC and 540 nm 

190 for PC) which were performed using a Shimadzu spectrophotometer (UV-1800, Shimadzu USA 

191 Manufacturing Inc, UR, USA). TPC was expressed as milligrams of gallic acid equivalents per 

192 100 ml of sample (mg GAE/100 ml), while TFC was expressed as milligrams of catechin 

193 equivalents per 100 ml of sample (mg CE/100 ml). The proanthocyanidin content was expressed 

194 as milligrams per 100 ml and was calculated using 0.1736 (mg/ml) as the conversion factor 

195 (Lavelli, Sri Harsha, Torri, & Zeppa, 2014) with the following equation:

196 𝑃𝐴𝐶 =  (𝐴𝑠 ‒ 𝐴𝑐) × 0.1736 × 𝐷𝐹

197 where Ac represents the absorbance of blank, As is the absorbance of samples, and DF is the 

198 dilution factor.

199 2.4. UHPLC–DAD MS/MS analysis of non-flavan-3-ols 

200 The separation, determination, and quantification of the components of interest were performed 

201 using a Dionex Ultimate 3000 UHPLC system equipped with a diode array detector (DAD) and 

202 TSQ Quantum Access Max triple-quadrupole mass spectrometer (ThermoFisher Scientific, 

203 Basel, Switzerland) according to the method previously described by Gašić, et al. (2015). The 

204 elution was performed at 40 ºC on a Syncronis C18 column (100 × 2.1 mm, 1.7 µm particle size). 

205 The mobile phase consisted of (A) water + 0.1% formic acid (v/v), and (B) 100% acetonitrile 

206 (MS grade), which were applied in the following gradient elution: 5% B in the first 2.0 min, 2.0–

207 14.0 min 5–95% B, 14.0–14.2 min from 95% to 5% B, and 5% B until the 20 min. The flow rate 
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208 was set to 0.3 mL/min and the detection wavelengths to 254 and 280 nm. The injection volume 

209 was 5 μL.

210 A TSQ Quantum Access Max triple-quadrupole mass spectrometer equipped with an heated 

211 electrospray ionization (HESI) source was used with the vaporizer temperature kept at 200 °C, 

212 and the ion source settings as follows: spray voltage 5000 V, sheet gas (N2) pressure 40 AU, ion 

213 sweep gas pressure 1 AU and auxiliary gas (N2) pressure 8 AU, capillary temperature 300 °C, 

214 and skimmer offset 0 V. The mass spectrometry data was acquired in the negative mode, in the 

215 m/z range from 100 to 1000. Multiple mass spectrometric scanning modes, including full 

216 scanning (FS), and product ion scanning (PIS), were conducted for the qualitative analysis of the 

217 targeted compounds. The collision-induced fragmentation experiments were performed using 

218 argon as the collision gas, and the collision energy was varied depending on the compound. The 

219 time-selected reaction monitoring (tSRM) experiments for quantitative analysis were performed 

220 using two MS2 fragments for each compound that were previously defined as dominant in the 

221 PIS experiments. Xcalibur software (version 2.2) was used for instrument control. The phenolics 

222 were identified via direct comparison with commercial standards. The total amounts of each 

223 compound were evaluated via calculation of the peak areas, and they are expressed as µg/L. 

224 2.5. Bioaccessibility 

225 To analyse the effect of in vitro GID on TPC, TFC, PC and phenolic compounds, the 

226 bioaccessibility of polyphenols was presented as the percent recovery (R). This percent recovery 

227 allows calculation of the amount of total phenolics, flavonoids, proantocyanidins and each 

228 phenolic compound recuperated after GID treatment, through comparison with the total amount 

229 in the initial samples. 

230 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =
𝑃𝐶𝐷𝑆

𝑃𝐶𝐼𝑆
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231 where PCDS is the TPC, TFC, PC, the content of each polyphenols and total phenolics in the 

232 digested samples and PCIS is the TPC, TFC, PC the content of each polyphenols and total 

233 phenolics in the initial samples (SK, SE and FM).

234 Further, the total percent recovery (TR) of the total phenolic acids, flavonols and phenolics in the 

235 digested samples with the food matrix were calculated because the food matrix polyphenols 

236 contributed to the initial amount of polyphenols that were subjected to digestion with grape 

237 extracts. This value was calculated through comparison of the amount of the specific group of 

238 phenolic compounds in the digested samples with the sum of the amount of the specific group of 

239 phenolic compounds in the initial grape extracts and initial food matrix.

240 𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =
𝑇𝑃𝐶𝐷𝑆

𝑇𝑃𝐶𝐼𝑆 + 𝑇𝑃𝐶𝐹𝑀

241 where TPCDS is the total phenolic acids, total flavonols and total phenolics in the digested 

242 samples; TPCIS is the total phenolic acids, total flavonols and total phenolics in the initial 

243 samples (SK, SE); and TPCFM is their amount in the initial food matrix (FM).

244 2.6. UHPLC-MS/MS Orbitrap qualitative analysis of flavan-3-ols and anthocyanins

245 Separation of anthocyanins, as well as flavan-3-ols, were performed using an ultrahigh-

246 performance liquid chromatography (UHPLC) system that consisted of a quaternary Accela 600 

247 pump and Accela autosampler (ThermoFisher Scientific, Bremen, Germany). The UHPLC 

248 system was coupled to a linear ion trap - Orbitrap mass spectrometer (LTQ OrbiTrap MS) that 

249 was equipped with a heated electrospray ionization probe (HESI-II, ThermoFisher Scientific, 

250 Bremen, Germany) in negative mode for flavan-3-ol analysis and in the positive mode for 

251 anthocyanin analysis. The protocol used for anthocyanin analysis has been previously described 

252 (Pantelić, et al., 2016). A Syncronis C18 column (100 × 2.1 mm, 1.7 µm particle size) at 40°C 
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253 was used for flavan-3-ol separation, the flow rate was set at 0.250 mL/min, and the mobile phase 

254 consisted of (A) water + 0.1% formic acid and (B) acetonitrile. The injection volumes were 5 µl, 

255 and the linear gradient program was as follows: 0.0-1.0 min 5% B, 1.0-14.0 min from 5% to 95% 

256 (B), 14.0-14.1 min from 95% to 5% (B), and 5% (B) for 6 min.

257 Parameters of the ion source were as previously described in the literature (Božunović, et al., 

258 2018). The MS spectra were acquired through full-range acquisition covering 100-1000 m/z. The 

259 resolution was set to 30,000 for full-scan analysis. The data-dependent MS/MS events were 

260 always performed on the most intense ions detected in the full-scan MS. The ions of interest 

261 were isolated in the ion trap with an isolation width of 5 ppm and were activated with 35% 

262 collision energy levels. The settings for dynamic exclusion were as previously described in 

263 Pantelić, et al. (2016). The Xcalibur software (version 2.1) was used for the instrument control, 

264 data acquisition and data analysis. Flavan-3-ol derivatives were identified on the basis of their 

265 monoisotopic mass and MS4 fragmentation, and confirmed using previously reported MS 

266 fragmentation data found in literature (Rockenbach, et al., 2012).

267 Due to the lack of specific standards, the quantities of the individual flavan-3-ols were expressed 

268 as micrograms of catechin equivalents per liter of sample (µg CE/L). The bioaccessibility of 

269 flavan-3-ols was presented as the percent recovery as already described, whereas the total flavan-

270 3-ols recovery in samples was calculated as a present of total detected flavan-3-ols in the 

271 digested sample to their content in the initial grape seed sample. 

272

273 2.7. Antioxidant properties 

274 To assess antioxidant activity, three methods were used:
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275 Ferric reducing power assay (FRP): This assay was conducted using the method described by 

276 Medouni-Adrar, et al. (2015). Briefly, an aliquot of diluted samples (250 µL) was mixed with 

277 250 µL of 0.2 M phosphate buffer, pH 6.6 and 250 µL of 1% potassium ferricyanide solution and 

278 incubated for 20 min at 50 °C. After that, 250 µL of 10% TCA was added, and the mixture was 

279 centrifuged at 17000g (Sigma 201M Centrifuge, Osterode am Harz, Germany) for 5 min. Then, 

280 500 µL of supernatant were combined with 500 µL of milliQ water and 100 µL of 0.1% ferric 

281 chloride. After 10 min, absorbance at 700 nm was measured. Higher absorbance of the reaction 

282 mixture indicates a stronger reducing power (Gülçin, Güngör Şat, Beydemir, Elmastaş, & İrfan 

283 Küfrevioǧlu, 2004).

284  Ferrous-ion-chelating capacity assay (FCC): The ferrous-ion-chelating capacity was 

285 determined according to a previously described method by Stanisavljević, et al. (2015). Briefly, 

286 an aliquot of sample (200 µL) was mixed with 740 µL of milliQ water and 20 µL of 2 mM 

287 FeSO4. After standing for 30 min at room temperature, 200 µL of 5 mM ferrozine was added in 

288 the reaction mixture and 10 min later absorbance was recorded at 562 nm against blank 

289 containing milliQ water instead of sample aliquot. The FCC was calculated as follows:

290 𝐹𝑒2 + 𝑐ℎ𝑒𝑙𝑎𝑡𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (%) = {(𝐴𝑐 ‒ 𝐴𝑠) 𝐴𝑐} × 100

291 where Ac represents the absorbance of the blank, and As is absorbance of samples.

292  ABTS radical scavenging activity assay: Evaluation of free-radical scavenging activity was 

293 analysed using a previously published method (Arnao, Cano, & Acosta, 2001). The stock 

294 solution (7 mM aqueous solution of ABTS (2,2-azino-bis/3-ethil-benothiazoline-6-sulphonic 

295 acid) with 2.45 mM potassium persulfate) was allowed to stand in a dark place for 16 h. The 

296 working solution of ABTS·+ was prepared by diluting the stock solution with methanol to obtain 

297 an absorbance between 0.7-0.8 at 734 nm. Thereafter, 10 µL of sample was mixed with 1 mL of 
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298 ABTS•+ working solution. After 7 min the absorbance measurement was performed at 734 nm. 

299 Percentage of quenched radicals for standard and samples were calculated as: 

300 𝐴𝐵𝑇𝑆· +  𝑠𝑐𝑎𝑣𝑒𝑛𝑔𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) = (𝐴𝑐 ‒ 𝐴𝑠) 𝐴𝑐 × 100

301 where Ac is the absorbance of ABTS•+ working solution, As is the absorbance of sample or 

302 standard solution mixed with ABTS•+ working solution. 

303 Ascorbic acid solutions ranging from 10 to 100 µg/mL were used to create a calibration curve. 

304 The free-radical scavenging activity was expressed as the ascorbic-acid equivalent in 

305 micrograms of ascorbic acid per mL of sample (µg AAE/ mL).

306 2.8. Statistical analysis

307 Statistical analysis was performed using the Statistica software ver 8.0 (StatSoft Co., Tulsa, OK, 

308 USA). All experiments were performed at least in duplicate. The results were presented as the 

309 mean values ± standard deviation (SD). Student's t-test was used to determine the significance of 

310 differences between the means at p < 0.05. The correlation analysis between the various 

311 antioxidant assays and the phenolic composition and content were performed by calculating 

312 Pearson’s correlation coefficient (r). Correlations at p < 0.05 were considered significant.

313 The limits of detection (LOD) and quantification (LOQ), for LC/MS analysis of non-flavan-3-ols 

314 and anthocyanins, were calculated using standard deviations of the responses (SD) and the slopes 

315 of the calibration curves (S) according to the formulas: LOD = 3(SD/S) and LOQ = 10(SD/S). 

316 The values of standard deviations and slopes were obtained from the calibration curves created in 

317 MS Excel. The LOD and LOQ, together with correlation coefficients are presented in 

318 Supplementary material (Table S1).

319

320 3. Results and Discussion
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321 3.1. Polyphenol composition of the initial grape skin and seed extracts

322 The major polyphenols in the initial grape skin extract were phenolic acids (24.4%) and 

323 flavonols (65.9%), composing 90.3% of the total polyphenol content (Table 1). A low quantity of 

324 anthocyanins (approximately 6%) in SK was not surprising considering that the Prokupac grape 

325 variety contains moderate amounts of anthocyanins compared to other red grape varieties (Mitić, 

326 Souquet, Obradović, & Mitić, 2012), which is further reduced due to degradation during the 

327 drying process (Karasu, et al., 2016). Malvidin-3-O-glucoside was the most abundant 

328 anthocyanin in grape skin extracts, followed by peonidin-3-O-glucoside, which is consistent with 

329 previous results (Pantelić, et al., 2016).

330 In grape seed extract, the dominant non-flavan-3-ol class of polyphenols was phenolic acids 

331 (93%), among which ellagic acid was the most abundant, followed by gallic acid (Table 2). The 

332 high content of ellagic and gallic acids in the grape seed extract of the Prokupac variety 

333 compared to the grape seed extract of other grape varieties was previously observed (Pantelić, et 

334 al., 2016). Ellagic acid was also the major phenolic acid in the extract of grape skin, whereas 

335 gallic acid was not detected. Among flavonols, quercetin and isorhamnetin were the most 

336 abundant in both grape extracts, whereas in the grape skin extract, glycosides of quercetin and 

337 isorhamnetin were also detected in significant amount. This is in agreement with published data 

338 for several other grape by-product extracts (Pantelić, et al., 2016; Wang, Amigo-Benavent, 

339 Mateos, Bravo, & Sarriá, 2017). 

340 UHPLC-Orbitrap MS characterization of flavan-3-ols and masses of the molecular ions ([M-H]-) 

341 and MS2, MS3 and MS4 fragment ions of each detected compound are listed in Table 3, together 

342 with their retention times. The identified compounds represented four structurally distinct 

343 groups: 1) monomeric flavan-3-ols (3 compounds), 2) procyanidin isomers A type (2 
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344 compounds), 3) procyanidin isomers B type (17 compounds) and 4) procyanidin gallate isomers 

345 (11 compounds). The content of each detected flavan-3-ol expressed as µg CE/L is presented in 

346 Table 4. The procyanidin oligomers, dimers to tetramers, showed higher relative amount 

347 (approximately 70%) than the monomers. The most abundant oligomers were procyanidin 

348 isomers B type (approximately 50%). The domination of procyanidin isomers B type and 

349 oligomers in grape seed extracts was previously observed (Ivanova, Stefova, et al., 2011; Pineda-

350 Vadillo, et al., 2016; Serra, et al., 2009). Although flavan-3-ols have been reported in grape skin 

351 extracts (Pantelić, et al., 2016), their presence in the extract of grape skin, as analysed in this 

352 study, has not been observed. 

353 It is important to note that the food matrix contains a significant amount of phenolic acid and 

354 flavonols, which originated from the constituents of the analysed infant puree: potato, maize and 

355 rice (Blessington, Nzaramba, Scheuring, Hale, Reddivari, & Miller Jr, 2010; Thakur, Singh, 

356 Kaur, & Singh, 2017; Zaupa, Calani, Del Rio, Brighenti, & Pellegrini, 2015). The most abundant 

357 phenolic acids were ellagic, 5-O-caffeoylquinic and caffeic acids, whereas quercetin and 

358 isorhamnetin were the dominant flavonols (Table 1 and 2). The total relative content of phenolic 

359 acids and flavonols was approximately 76% and 9%, respectively, compared to those detected in 

360 grape skin and seed extracts. The presence of procyanidin gallate isomers was also registered; 

361 however, their relative amount compared to the total amount of flavan-3-ols observed in the 

362 grape seed extract was negligible, 0.04% (Table 4). 

363 3.2. Polyphenol composition of digested grape skin and seed extracts without food matrix

364 Mixing the extracts with digestive fluids and digestion itself differently affected the 

365 concentration of major phenolics. Their content in the skin extract increased (protocatehuic acid), 

366 decreased (quercetin, quercetin-3-O-galactoside, isorhamnetin, malvidin-3-O-glucoside and 
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367 taxifolin) or remained unchanged (5-O-caffeoylquinic acid, ellagic acid, ferulic acid, rutin and 

368 isorhamnetin-3-O-glucoside). Similar changes were observed in the content of polyphenols 

369 extracted from grape seed; however, recovery of the major class of polyphenols significantly 

370 differs compared to grape skin extract, especially for phenolic acids (133.5% against 43.5% 

371 recovery from grape skin and seed, respectively). This resulted in almost two times lower 

372 recovery of all detected non-flavan-3-ol polyphenols that were extracted from grape seed 

373 compared to that for grape skin (44.7% against 84.6%, respectively). The main reason was the 

374 liberation of significant amount of p-coumaric and caffeic acids upon the mixture and digestion 

375 of grape skin polyphenol extract with digestive cocktails. It is known that these two acids are the 

376 most abundant phenolic acids, which form anthocyanin derivatives in grapes (Ivanova, Stefova, 

377 et al., 2011; Mitić, Souquet, Obradović, & Mitić, 2012; Pantelić, et al., 2016) from which the 

378 liberation of phenolic acid probably occurs. It was found that peonidin-3-p-

379 coumaroylmonoglucoside and malvidin-3-p-coumaroylmonoglucoside were the most abundant 

380 among p-coumaroylmonoglucosides in the wine grape variety Prokupac (Mitić, Souquet, 

381 Obradović, & Mitić, 2012). The malvidin-3-O-caffeoylhexoside was also found in Prokupac 

382 (Pantelić, et al., 2016), whereas peonidin-3-O-caffeoylglucoside and malvidin-3-O-

383 coumaroylglucoside-5-O-glucoside were registered in grapes (He, et al., 2010). These acylated 

384 anthocyanins were not detected in the initial grape skin polyphenol extract probably due to their 

385 reduced polarity compared to monoglucosides (Ivanova, Dörnyei, et al., 2011). Namely, due to 

386 the weaker solubility in milliQ water, these compounds were removed from the initial skin 

387 polyphenol extract by the filtration through 0.45µm filter before UHPLC-MS/MS analysis. On 

388 the other hand, in digestion study, the whole extract was used for the experiment, thus the 

389 acylated anthocyanins were present in the reaction mixture. After the addition of digestive 
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390 cocktails, composed of different substances (digestive enzymes, salts, HCl), to the skin 

391 polyphenol extract, the deacylation of anthocyanidin mono- and diglucosides occurred resulting 

392 in the appearance of p-coumaric and caffeic acids as well as malvidin-3,5-di-O-glucoside in the 

393 DSKC and DSK samples. It was reported that the acetylated anthocyanins is more prone to 

394 degradation than anthocyanidin glycosides (Howard, Brownmiller, Mauromoustakos, & Prior, 

395 2016). However, the amount of monoglucosides was not increased in these samples due to their 

396 instability in such environment (Sharma, Gupta, Singh, Bansal, & Singh, 2016). The liberation of 

397 minor phenolics: luteolin, genistein and pterostilben upon the mixture and digestion of grape skin 

398 polyphenol extract with digestive cocktails was also observed. Cyanidin-3-O-glucoside, 

399 delphinidin-3-O-glucoside, and cyanidin-3,5-di-O-glucoside were not detected in the initial 

400 grape skin extract. Digestion significantly reduced the content of total anthocyanins to 

401 approximately 29% recovery. Low anthocyanin stability after in vitro digestion was also 

402 observed by other researchers (Pineda-Vadillo, et al., 2016; Wang, Amigo-Benavent, Mateos, 

403 Bravo, & Sarriá, 2017). Digestion of the food matrix resulted in 73.2% recovery of phenolic 

404 acids, following a similar behaviour as during the digestion of phenolic acids from grape skin 

405 extracts. 

406 It was found that flavonols, rutin and quercetin were stable, while isorhamnetin was not 

407 recovered after in vitro digestion of grape extracts and food matrix; however, it is known that the 

408 digestive stability of isorhamnetin-3-O-glucoside and quercetin-3-O-galactoside was dependent 

409 on origin. Recovery from grape skin extract was 100.1% and 79.7%, respectively, whereas 

410 recovery of those flavonols from grape seed extract was not observed (Table 2). Antunes-

411 Ricardo, Rodríguez-Rodríguez, Gutiérrez-Uribe, Cepeda-Cañedo, and Serna-Saldívar (2017) 

412 have previously reported that the recoveries of isorhamnetin after oral and gastric digestion of 
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413 Opuntia ficus-indica extract, was lower compared with that for its glycosides. However, Wang, 

414 Amigo-Benavent, Mateos, Bravo, and Sarriá (2017) obtained similar recoveries for isorhamnetin 

415 aglycone and isorhamnetin-3-O-glucoside after digestion of grape pomace extract. It appears that 

416 the recovery of flavonoid glycosides after digestion depends on other polyphenols present in the 

417 analysed extracts, which could have protective effects on them. The total flavonol recovery from 

418 grape skin extract after GID was 69%, which is in accordance with the results obtained by Wang, 

419 Amigo-Benavent, Mateos, Bravo, and Sarriá (2017) who estimated 65% flavonol recovery from 

420 red grape pomace after GID.

421 The addition of digestive fluids exhibited the most significant effect on total flavan-3-ol recovery 

422 of grape seed extract. Only 0.31% of the total detected flavan-3-ols were recovered after addition 

423 of digestive fluids, and digestion further decreased their recovery to 0.23% (Table 4). It is 

424 obvious that the strong binding capacity of flavan-3-ols to digestive enzymes has been 

425 established. A considerable loss of flavan-3-ols was also observed by other authors due to their 

426 interaction with proteins/enzymes (Pineda-Vadillo, et al., 2016; Serra, et al., 2009).

427 3.3. Polyphenol composition of digested grape skin and seed extracts with food matrix

428 The addition of the food matrix to the grape skin extract did not significantly affect the recovery 

429 of the major grape skin polyphenols, compared to their digestion without food matrix (Table 1). 

430 However, recovery was calculated as the ratio of their content in DSK/FM to their content in SK, 

431 without taking into account the amount of polyphenols added by the food matrix. In that case, the 

432 total recovery of the major classes was significantly lower (68.1% instead of 125.2% for 

433 phenolic acids and 36.7% instead of 62.9% for flavonols). A significant effect of FM was also 

434 observed on anthocyanin recovery. FM additionally decreased the stability of anthocyanins, 

435 which resulted in the disappearance of malvidin-3-O-glucoside and the release of malvidin-3,5-
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436 di-O-glucoside to a lower extent in the final digest compared to that in DSK, implicated to be 

437 10.2% recovery of anthocyanins. Similar results have been reported upon addition of complex 

438 FM consisting of meat proteins, carbohydrates and lipids to chokeberry juice, in which reduction 

439 of the anthocyanin content was up to 91% (Stanisavljević, et al., 2015). According to the 

440 investigation performed by Pineda-Vadillo, et al. (2016) and Karakaya, et al. (2016) 

441 bioaccessibility of anthocyanins was significantly influenced by the FM type (39-60%); 

442 however, in all formulations (which does not contain meat) the presence of the food matrix had a 

443 protective effect on anthocyanin degradation, especially in egg-based products. These results 

444 suggested that the significant decrease of anthocyanin content in grape skin extract upon addition 

445 of the food matrix in this study was probably a result of interactions with meat proteins or other 

446 meat constituents. It has been previously described that polyphenols interact with milk and meat 

447 proteins, modulating their content, bioaccessibility and functional properties (Jakobek, 2015; 

448 Ozdal, Capanoglu, & Altay, 2013). The final polyphenol recovery of the grape skin extract was 

449 44.1% instead of 74.8%, as calculated without FM polyphenols. These data highlighted the 

450 importance of determining the polyphenol composition of non-naturally polyphenol-rich food 

451 matrices, which could significantly influence the calculation of the bioaccessibility of 

452 polyphenols that are present in the samples before digestion. 

453 The influence of food matrix on the recovery of phenolic acids present in grape seed extract was 

454 less pronounced than that for grape skin extract due to the significantly lower total phenolic-acid 

455 content in the FM than in the SE; however, in relation to specific phenolic acids, the FM 

456 increased the recovery of gallic acid. The flavonols almost disappeared after addition of the FM, 

457 and recovery was reduced to less than 1% in DSE/FM due to the total reduction of quercetin in 

458 the final digest, which is completely different from DSK/FM (quercetin total recovery was 
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459 49.5%) or its recovery after digestion without the FM (DSE, 99.7%). Interestingly, the 

460 disappearance of quercetin occurred before digestion after addition of the FM and digestive 

461 fluids. These facts indicated that the difference in stability of quercetin in the presence of a 

462 complex food matrix depended on the other polyphenol compounds present in the extracts. The 

463 major difference between grape seed and skin extracts was in the content of flavan-3-ol and 

464 ellagic acid. The flavan-3-ol content was reduced significantly after addition of digestive fluids 

465 in both cases with or without the FM; however, the reduction in ellagic acid content in the 

466 presence of the FM was approximately ten folds of the initial content in SE, whereas without the 

467 FM it was 1.4-fold. A possible reason could be that ellagic acid probably interacted with FM 

468 compounds under this condition; thus, the capability of ellagic acid or/and FM compounds to 

469 protect quercetin during digestion was reduced. It has been demonstrated that quercetin is less 

470 stable at a higher pH, and its recovery depended on the food matrix: onion, 52.5% (Boyer, 

471 Brown, & Liu, 2005), persimmon flours, 0% (Lucas-González, Viuda-Martos, Pérez Álvarez, & 

472 Fernández-López, 2018), red grape pomace, 54.5% (Wang, Amigo-Benavent, Mateos, Bravo, & 

473 Sarriá, 2017). The final non-flavan-3-ol recovery was 50.9% (calculated with FM polyphenols) 

474 or 55.5% (calculated without FM polyphenols). 

475 On other hand, the FM protected flavan-3-ols during digestion and increased their recovery 

476 approximately twenty times compared to DSE, which increased the recovery from 0.23% to 

477 4.71%. Poor bioaccesibility of flavan-3-ols is expected because it is known that 

478 proanthocyanidins strongly interact with digestive enzymes and food components (protein, 

479 carbohydrates and lipids), and the interactions enhanced the increased degree of polymerization 

480 (Jakobek, 2015; Sugiyama, et al., 2007). According to Pineda-Vadillo, et al. (2016), their 

481 bioaccessibility could increase with digestion depending on the food matrix; however, in most 
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482 cases, most proanthocyanidins remained insoluble at the end of digestion. Similar results were 

483 obtained by Serra, et al. (2009), who found that less than 1% of soluble proantocyanidins were 

484 present after digestion of grape seed procyanidin extract without and with carbohydrate-rich 

485 food.

486 3.4 Total polyphenol content

487 Some of the previous in vitro studies have investigated the total polyphenol recovery following 

488 in vitro digestion of grapes and grape extracts using the Folin-Ciocalteu method (Wang, Amigo-

489 Benavent, Mateos, Bravo, & Sarriá, 2017). Keeping in mind the limitations of the Folin-

490 Ciocalteu (FC) assay, the obtained data should be always interpreted with great caution, 

491 especially in situations where aside from the studied extract or compound, the system contains a 

492 complex food matrix. It has been determined previously that the FC reagent can be non-

493 specifically reduced by ascorbate, reducing sugars, aromatic amines, organic acids, fatty acids 

494 and Fe2+ ions, as well as by proteins and small peptides that are formed during digestion of food 

495 proteins (Prior, Wu, & Schaich, 2005). Comparing the results of TPC obtained in the present 

496 study (Fig. 1a) for SK, 131.7 mg GAE/100 mL, with SKC (contains grape skin extract and whole 

497 digestive cocktail at zero time of digestion), 230.8 mg GAE/100 ml, it can be concluded that 

498 digestive enzymes and fluids contribute to the total polyphenol content with approximately 100 

499 mg GAE/100 mL. A similar situation was observed in the case of the food matrix (FM/FMC), 

500 where the joint contribution of the digestive cocktail was even more pronounced (approximately 

501 150 mg GAE/100 mL). It is evident that the digestive cocktail itself contained a considerable 

502 amount of the FC reagent reactive substance, which resulted in the elevation of TPC. On the 

503 other hand, a totally opposite behaviour was recorded upon mixing the grape seed extract with 

504 digestive fluids, where a 40% decrease in TPC was observed, reaching the similar value of TPC 
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505 that was obtained for the control sample for the grape skin extract (SKC). This could be 

506 explained by the difference in composition of the grape seed extract, which contains a 

507 considerable amount of flavan-3-ols that are at the same time strongly reactive towards the 

508 components in the digestive cocktail; thus, the flavan-3-ols and the FC reagent reactive 

509 substances of the digestive cocktails could not be oxidized by a mixture of tungstate and 

510 molybdate, which resulted in decreased TPC. The TPC values of grape skin and seed extracts 

511 remained unchanged after digestion. On the other hand, digestion of the food matrix alone 

512 resulted in an increase of TPC by almost 35% (FMC compared to DFM); however, the phenolic 

513 composition did not significantly change. This indicated that FC reactive substances were 

514 released during digestion of the food matrix such as small peptides, amino acids, reducing sugars 

515 and fatty acids. 

516 The addition of the FM in the digestive cocktail at zero time together with grape extract did not 

517 change the TPC values, indicating far lower contribution of food matrix than the digestive 

518 cocktail to the overall phenolic content; this effect might potentially be of great importance, 

519 because the contribution of digestive fluids to TPC in these types of studies is usually 

520 overlooked. However, combined digestions of the matrix and extracts have led to 39% and 30% 

521 increase of TPC in the grape skin and seed samples, respectively, compared to that in the control 

522 samples and digested samples of skin, seed and FM alone. A major consequence of polyphenol-

523 digestive enzyme interactions is the inhibition of their activity (Cirkovic Velickovic & Stanic-

524 Vucinic, 2018); considering this, it could be expected that digested grape skin/seed extracts with 

525 FM samples contained, besides amino acids, reducing sugars and fatty acids, the products of 

526 partial hydrolysis of macromolecules such as peptides and oligosaccharides, which could act as 

527 reducing agents. Furthermore, liberation of polyphenols that were naturally present in the food 
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528 matrix and grape samples after digestion, as well as grape seed polyphenols that were initially 

529 captured by macromolecules of the FM and digestive enzymes, released and additionally 

530 contributed to the increase of TPC. These phenomena implied a 275% and 75% recovery of the 

531 initial TPC in SK and SE, respectively. Numerous studies performed on the effect of protein-

532 polyphenol interactions on the total polyphenol content of foods outlined the significantly 

533 reduced recovery of polyphenols (Ozdal, Capanoglu, & Altay, 2013), especially, when the main 

534 polyphenols are flavan-3-ols, for which the TPC recovery observed was 25% in the soluble 

535 phase or even less (Pineda-Vadillo, et al., 2016). Higher polyphenol recovery from grape skin 

536 and seed extracts after digestion with FM in this study, compared to the literature data, could be 

537 attributed to the significant reducing properties of food matrix constituents, probably meat 

538 proteins and their hydrolysates, which have been previously estimated to possess reductive 

539 power (Elias, Kellerby, & Decker, 2008; Serpen, Gökmen, & Fogliano, 2012). These data 

540 suggested that TPC reflected rather total reducing activity of analysed samples, which is 

541 frequently considered as antioxidant activity, than the total polyphenol content. 

542 3.5. Total flavonoid content

543 The spectrophotometric assay based on aluminium-chloride complex formation is one of the 

544 most commonly applied analytical procedures for determination of the total flavonoid content in 

545 food and medical plant samples, which is well reviewed by Pękal and Pyrzynska (2014). There 

546 are two commonly applied procedures (with or without NaNO2); however, both procedures are 

547 dependent on the type of flavonoid present in the sample and are specific only for a limited 

548 number of flavonoid compounds (Pękal & Pyrzynska, 2014). The procedure in the presence of 

549 NaNO2 in alkaline medium is widely used for the estimation of total flavonoid content in grape 

550 and grape by-products (Ivanova, Stefova, et al., 2011; Ribeiro, Ribani, Francisco, Soares, 
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551 Pontarolo, & Haminiuk, 2015) using catechin as standard. Considering that this procedure is 

552 specific for catechins, rutin and luteolin among flavonoids and that the phenolic acids can also 

553 exhibit considerable absorbance at 510 nm (Pękal & Pyrzynska, 2014), the obtained results 

554 should be commented from this point of view. 

555 For the food matrix and grape skin extract the total flavonoids were detected in a low quantity in 

556 all analysed samples (Fig. 1b). The main reason was that the most abundant flavonoid quercetin 

557 did not contribute to the total absorbance at 510 nm. Rutin and phenolic acids probably mostly 

558 participated in the determination of TFC, which showed good stability during digestion 

559 experiments, but significant correlations were not found among them at p < 0.05. 

560 On the other hand, the TFC of the grape seed extract was detected in a high amount (121.8 ± 

561 0.71 mg/100 ml), indicating the presence of catechins in a significant quantity. After addition of 

562 digestive cocktails and digestion with or without the FM, this content reduced significantly 

563 following changes in flavan-3-ol composition and recoveries before and after digestion (r = 0.98, 

564 for total flavan-3-ols, monomeric flavan-3-ols, procyanidin isomers type B and procyanidin 

565 gallate isomers). The final recovery of TFC from grape seed after digestion with FM, 33.1%, was 

566 higher than expected, reflecting the influence of phenolic acids on the overall determination of 

567 TFC via the applied method. 

568 3.6. Proanthocyanidin content

569 As shown in Fig. 1c, a small amount of proantocyanidins was detected in the grape skin extract; 

570 however, upon mixing with the digestive cocktail their content was not detected, neither before 

571 nor after digestion with or without FM. In the food matrix alone, their presence was not detected; 

572 however, UHPLC-Orbitrap MS analysis determined procyanidin gallate isomers. It is possible 

573 that their content was under the limit of detection for the applied spectrophotometric method. 
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574 The PC content of the initial grape seed extract was 261.27±8.59 mg/100 ml, which was 

575 significantly reduced to 26% recovery in the DSE sample. After mixing with the food matrix, the 

576 reduction of their content was even more pronounced, declining to only 10% recovery. The 

577 obtained results were in good agreement with the UHPLC-Orbitrap MS analysis of flavan-3-ols 

578 (r = 0.96, for total flavan-3-ols, monomeric flavan-3-ols, procyanidin isomers type B and 

579 procyanidin gallate isomers). These results confirmed the strong capacity of flavan-3-ols to 

580 interact with enzymes and food matrix compounds. It was also observed by other researchers that 

581 proantocyanidins are more prone, than other polyphenol classes, to bind with food components, 

582 which results in the formation of insoluble aggregates during digestion (Pineda-Vadillo, et al., 

583 2016)

584

585 3.7. Antioxidant properties

586 The second part of the study focused on the evaluation of the effect of the food matrix on the 

587 antioxidant capacity of grape skin and seed extracts during in vitro digestion. Antioxidant 

588 properties of natural antioxidants cannot be evaluated through only a single method due to their 

589 multi-functionality (Gülçin, Elİas, Gepdİremen, Taoubİ, & Köksal, 2009). Several antioxidant 

590 assays are required to evaluate different aspects of their functionality, because each assay 

591 involves different chemical mechanisms of action (Serpen, Gökmen, & Fogliano, 2012). The 

592 methods for measuring antioxidant capacity are basically classified into two groups, depending 

593 on the reaction mechanism: methods based on the antioxidant ability to quench free radicals via 

594 hydrogen donation (HAT-based methods) and based on single-electron-transfer mechanism 

595 (SET-based methods) (Prior, Wu, & Schaich, 2005). A widely used method based on electron 

596 transfer is the ferric-reducing-power method, whereas quencher ability is commonly measured 
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597 by ABTS radical scavenging activity based on both HAT and SET mechanisms (Prior, Wu, & 

598 Schaich, 2005). Further, it is known that metal ions, such as ferrous, can act as pro-oxidants for 

599 lipid oxidation; thus, the ability of substances to chelate iron can be valuable for estimating their 

600 antioxidant activity. 

601 3.7.1. Ferric reducing power 

602 Ferric reducing power is based on the antioxidant ability to reduce the Fe3+/ferricyanide complex 

603 to the ferrous form by donating an electron. The Fe2+ ion was than monitored by measuring 

604 absorbance of Perl’s Prussian blue complex at 700 nm (Gülçin, Bursal, Şehitoğlu, Bilsel, & 

605 Gören, 2010). The highest and similar values of FRP were recorded for grape skin and seed 

606 extracts, whereas the food matrix exhibited approximately a 50% lower value (Fig. 2a). Addition 

607 of digestive fluids with or without FM to grape extracts demonstrated a similar outcome, a 

608 decrease in FRP of approximately 25%. The digestion of both extracts alone showed no 

609 significant changes in FRP; however, digestion in the presence of the FM exhibited a different 

610 impact on FRP. FRP was slightly elevated for DSK/FM, reaching 85% of the initial FRP value 

611 for skin extract; no significant changes were observed for the FRP of DSE/FM, and the 

612 remaining FRP was 75% of the initial SE value. Similar results were observed by Stanisavljević, 

613 et al. (2015) who reported that FRP of chokeberry juice significantly decreased after mixing the 

614 juice with digestive fluids and food matrix and slightly increased after digestion reaching about 

615 61% of initial FRP.

616 Correlation between the total flavonoid content and FRP of the grape skin and seed extracts was 

617 very high (r =0.94, for skin r =0.98 for seed). Correlation analysis also revealed a significant 

618 positive correlation between the FRP of the grape seed extract and PC content (r = 0.96), total 

619 flavan-3-ols (r = 0.95), monomeric flavan-3-ols (r = 0.95) procyanidin isomers type B (r = 0.96) 
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620 and procyanidin gallate isomers (r = 0.95). Considering that the total flavonoid content of the 

621 skin extract actually reflected the content of rutin and phenolic acids, the obtained data indicated 

622 that those compounds were the major antioxidants with ferric-reducing ability in the skin extract. 

623 In the grape seed extract, flavan-3-ols exerted this ability, showing similar patterns of behaviour. 

624 Although the content of phenolic acids and FRP of the grape seed extract was not significantly 

625 correlated, their contribution to FRP should also be taking into account due to their high content 

626 in the seed extract and digested samples. 

627 The reducing ability of grape by-products before and upon GID was also observed by other 

628 authors, but direct comparison is not possible due to different measure units and methods used 

629 (Pineda-Vadillo, et al., 2016; Wang, Amigo-Benavent, Mateos, Bravo, & Sarriá, 2017). In these 

630 studies the ferric reducing antioxidant power (FRAP) was applied to measure reducing ability of 

631 samples. However, the reduction or similar FRAP values to the initial ones were observed upon 

632 GID.  

633 3.7.2. ABTS radical-scavenging activity

634 As presented in Fig. 2b, the ABTS radical-scavenging activity of the skin extract was minor and 

635 that for the food matrix was under the quantification limit, while the grape seed extract showed a 

636 considerable activity of 61.56 µg AAE/mL. The addition of digestive fluids yielded a significant 

637 increase of ABTS•+ scavenging activity (approximately five times for skin extract and 1.3 times 

638 for seed extract) and similar results for the digestion control samples, without a significant 

639 difference between them. After digestion of both grape extracts without food matrix, the ABTS•+ 

640 scavenging activity was not changed. This could indicate that 1) digestive fluids liberated 

641 compounds from the grape extracts with quencher ability of ABTS radical; 2) digestive cocktail 

642 contained substances with ABTS•+ scavenging activity. The liberated phenolic acids such as p-
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643 coumaric, caffeic and protocatechuic acids from the grape skin extract and caffeic acid from the 

644 grape seed extract were probably mostly contributed to their antioxidant activity. Concerning 

645 food matrix, it has been reported that meat, zein and potato proteins have important ability to 

646 scavenge ABTS radical which can be increased by their partial denaturation after addition of 

647 digestive cocktails (Elias, Kellerby, & Decker, 2008; Serpen, Gökmen, & Fogliano, 2012). 

648 Enzymes probably mostly contributed to ABTS•+ scavenging activity of digestive cocktails. On 

649 the other hand, digestion significantly elevated the scavenging activity of the food matrix and 

650 both grape extracts in the presence of the food matrix. All three digested samples showed a high 

651 ability to quench the ABTS radical (102.85 ± 0.55 µg AAE/ mL for food matrix, 98.29 ± 8.91 µg 

652 AAE/ mL for grape skin extract, 99.84 ± 0.14 µg AAE/ mL for grape seed extract). The obtained 

653 results clearly indicated that, only in the presence of the food matrix during digestion, the radical 

654 scavenging capacity could be increased; however, increase in the scavenging activity was not the 

655 same among the samples. The highest increase was recorded in the grape skin extract (34%), 

656 than that in the food matrix (25%), and the lowest increase was determined in the grape seed 

657 extract (13%). It appears that the release of food matrix components had a major influence on the 

658 ABTS•+ radical scavenging, which was improved by grape skin extract polyphenols (flavonols 

659 and phenolic acids) or reduced by grape seed extract polyphenols (flavan-3-ols). This 

660 observation was confirmed via correlation analysis. A high positive correlation was found 

661 between the total polyphenol content and ABTS•+ scavenging activity (r = 0.92) for grape skin 

662 extract, whereas the ABTS•+ scavenging activity of the grape seed extract showed a highly 

663 negative correlation with the total PC (r = -0.94), total flavan-3-ols (r = -0.91), monomeric 

664 flavan-3-ols (r = -0.91) procyanidin isomers type B (r = -0.92) and procyanidin gallate isomers 

665 (r = -0.90).
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666 Different components of the food matrix could be responsible for the increased ABTS radical-

667 scavenging activity of the samples: 1) liberated peptides of digested meat, zein and potato 

668 proteins, which had been demonstrated to have increased antioxidative capacity compared to the 

669 initial proteins (Elias, Kellerby, & Decker, 2008); 2) liberation of histidine-containing dipeptide 

670 such as carnosine, which have high antioxidant activity, as well as solubilization of tocopherols, 

671 which are powerful antioxidants present in meat (Chan, Decker, & Feustman, 1994). Synergistic 

672 effects of the grape skin extract with FM compounds could be probably attributed to the 

673 liberation of hydroxycinnamic acids (caffeic and p-coumaric) from the grape skin extract during 

674 digestion, for which a high total antioxidant activity has been established (Rice-Evans, Miller, & 

675 Paganga, 1996). The high binding capacity of flavan-3-ols with food matrix components in the 

676 final digest evidently reduced their ABTS•+ scavenging capacity. However, the ABTS•+ 

677 scavenging activity of the digested grape skin and seed extracts increased for 36% and 10% in 

678 the presence of food matrix. Other studies provided information supporting the radical 

679 scavenging activity of polyphenols determined with different methods and measure units used 

680 (DPPH, ABTS•+); however, the significant decrease of radical quenching ability upon GID was 

681 observed (Lucas-González, Viuda-Martos, Pérez Álvarez, & Fernández-López, 2018; 

682 Stanisavljević, et al., 2015; Wang, Amigo-Benavent, Mateos, Bravo, & Sarriá, 2017).

683 3.7.3. Ferrous-ion-chelating capacity

684 Fe2+ induces lipid peroxidation mainly through the Fenton reaction or by accelerating the 

685 transformation of lipid hydroperoxides to the respective radicals (Gülçin, 2012). In meat, iron 

686 can be liberated during cooking and digestion (Vieira, Zhang, & Decker, 2017). Thus, the 

687 presence of chelating agents in the grape skin and seed extracts is substantial for the reduction of 

688 free transitional metals and their protective effect against oxidative stress of biomolecules. The 
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689 capacity of samples to chelate ferrous ion is presented in Fig. 2c. Considering the results 

690 obtained, it can be concluded that neither the grape skin extract nor the grape seed extract are 

691 potent Fe2+ chelators. The food matrix alone, on the other hand, possessed a considerable FCC of 

692 32.4%. It is evident that the majority of the chelating capacity originates from digestive fluids 

693 and the food matrix; however, surprisingly, the mixture of grape skin extract, seed extract and 

694 FM with digestive fluids exhibited very similar values (94.6%, 90.1%, and 90.6%, respectively). 

695 Digestion did not exhibit any significant effect on FCC; however, the samples of grape skin 

696 extract digested with or without the matrix demonstrated a higher ability to bind Fe2+ than those 

697 of seed extracts. The low chelating capacity and significant increase after addition of digestive 

698 fluids and food matrix to chokeberry juice before digestion was also observed by Stanisavljević, 

699 et al. (2015); however after digestion mildly increase of this value was observed. 

700 The correlation analysis revealed that the FCC of the skin extract demonstrated a strong positive 

701 correlation with the ABTS radical-scavenging capacity (r = 0.93) and a strong negative 

702 correlation with the total flavonoid content (r = -0.91) and ferric-reducing power (r = -0.94). On 

703 the other hand, the FCC of the grape seed extract was strongly affected by the presence of total 

704 flavan-3-ols and their composition. The increase in procyanidin content (r = -0.96), total flavan-

705 3-ols (r = -1), monomers (r = -0.99), procyanidin isomers type B (r = -1) and gallate isomers (r 

706 = -0.99) resulted in a decrease in FCC. The negative correlation was also observed between FCC 

707 and FRP (r = -0.96), TPC (r = -0.91) and TFC (r = -0.98). In contrast, the ABTS radical-

708 scavenging activity and FCC exhibited a strong positive correlation (r = 0.92).

709 It can be concluded that the chelating capacity is considerably more than simple sum of matrix 

710 and digestive fluid capacities and is considerably affected by the presence of grape extracts, 

711 which tends to reduce it. Procyanidins of the grape seed extract exerted greater inhibition effects 
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712 on FCC of digestive cocktails and FM compounds than phenolic acids and flavonoids of the 

713 grape skin extract. The inhibition effects were probably a result of complex protein-phenolic 

714 interactions, which were more pronounced with catechins than phenolic acids and flavonols. 

715 Further, considering that polyphenols were able to reduce Fe3+ to Fe2+, they can increase the 

716 amount of Fe2+ in the reaction mixture upon digestion, resulting in an additional decrease in FCC 

717 following digestion. Thus, strong metal chelators from the food matrix such as peptides and 

718 carnosine (Chan, Decker, & Feustman, 1994; Elias, Kellerby, & Decker, 2008), which also 

719 scavenge free radicals, probably contributed the most to the FCC of the digested samples. 

720 Decreased, increased or unchanged antioxidant activity of the digested polyphenols with or 

721 without food matrix was measured via different methods that were reported in the literature 

722 (Ozdal, Capanoglu, & Altay, 2013; Pineda-Vadillo, et al., 2016; Wang, Amigo-Benavent, 

723 Mateos, Bravo, & Sarriá, 2017); the results indicated that the type of polyphenols and the food 

724 matrix subjected to digestion strongly influenced the final antioxidant properties.

725 Conclusions

726 In summary, under conditions of simulated gastrointestinal digestion, grape skin and seed 

727 extracts exhibited different patterns of behaviour, which is most likely conditioned by the 

728 different composition of the polyphenolic compounds present in the extracts. The major 

729 polyphenols in the initial grape skin and seed extracts were phenolic acids and flavonols, and 

730 phenolic acids and flavan-3-ols, respectively. Recovery of total non-flavan-3-ol phenolics 

731 extracted from grape seed was almost two times lower after digestion compared to that for grape 

732 skin extract, which could be explained by the release of hydroxycinnamic acids (caffeic and p-

733 coumaric) from the grape skin extract. A considerable loss of flavan-3-ols to only 0.23% total 

734 recovery was recorded upon digestion of the grape seed extract due to their strong binding 
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735 capacity to digestive cocktail compounds which was also confirmed by the significant reduction 

736 of proanthocyanidin content. The addition of the food matrix to the grape skin extract did not 

737 significantly affect the recovery of the major grape skin polyphenols, compared to their digestion 

738 without food matrix, but the total recovery of the major classes was significantly lower due to the 

739 significant contribution of the food matrix polyphenols to the total amount of phenolics in the 

740 mixture before digestion. On the other hand, the addition of FM to the grape seed extract 

741 increased both, the total recovery of flavan-3-ols and non-flavan-3-ol polyphenols compared to 

742 their digestion without food matrix which was in accordance with the TFC recovery. In vitro 

743 digestion significantly elevated total phenolic content of the grape extracts after digestion with 

744 FM compared to the digestion control, which could be attributed aside from the liberated 

745 phenolic compounds, reducing sugars and amino acids, to the significant reducing properties of 

746 other food matrix constituents such as meat proteins hydrolysates. The significant influence of 

747 food matrix compounds to antioxidant properties of the grape extracts was also observed: the 

748 ferric reducing power decreased, while ferrous chelating capacity and ABTS quenching ability 

749 significantly increased. The meat protein hydrolysates and carnosine probably mostly attributed 

750 to the improved ABTS•+ radical scavenging activity and ferrous-ion chelating capacity. The 

751 increase of antioxidant activities of digested grape extracts in the presence of food matrix was 

752 more pronounced in the grape skin extract than in the grape seed extract. The main reason was 

753 the high binding capacity of flavan-3-ols with food matrix and digestive fluids components 

754 which possess antioxidant activities. 

755 An important feature observed in the present study, which should not be ignored, is the 

756 significant contribution of digestive fluids and food matrix compounds to overall polyphenolic 

757 content and antioxidant activities. This result should be extensively studied in the future because 
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758 in vitro models are being more extensively exploited in investigating the fate of specific food 

759 components. The present study suggests that enrichment of meat- and cereal-based products with 

760 grape polyphenol extracts could be a good strategy to formulate a healthier diet. However, 

761 further elaborative studies are needed, especially, to elucidate how this approach reflects on the 

762 formation of lipid hydroperoxides, advanced lipoxidation end-products during GID and digestion 

763 of food components. The balance between the inhibitory effects of polyphenols on the digestion 

764 of food components and their beneficial antioxidant effects should be considered in developing 

765 new functional food products. 
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941 Figure captions

942 Fig. 1. Total polyphenol content (a), total flavonoid content (b) and proanthocyanidin content (c) 

943 of analysed samples. Bars followed by the same lower case letters are not significantly different 

944 (p > 0.05). Abbreviations: FM- diluted food matrix; FMC- food matrix control; DFM- digested 

945 food matrix; SK- diluted grape skin extract; SKC- grape skin digestion control; DSK- digested 

946 grape skin extract; SK/FMC- skin extract with food matrix control; DSK/FM- digested skin 

947 extract with food matrix; SE- diluted grape seed extract; SEC- grape seed extract control; DSE- 

948 digested grape seed extract; SE/FMC- grape seed extract with food matrix control; DSE/FM- 

949 digested grape seed extract with food matrix.

950 Fig. 2. Ferric-reducing power (a), ABTS radical-scavenging activity (b), Ferrous-ion-chelating 

951 capacity (c) of analysed samples. Bars followed by the same lower case letters are not 

952 significantly different (p > 0.05). Abbreviations: FM- diluted food matrix; FMC- food matrix 

953 control; DFM- digested food matrix; SK- diluted grape skin extract; SKC- grape skin digestion 

954 control; DSK- digested grape skin extract; SK/FMC- skin extract with food matrix control; 

955 DSK/FM- digested skin extract with food matrix; SE- diluted grape seed extract; SEC- grape 

956 seed extract control; DSE- digested grape seed extract; SE/FMC- grape seed extract with food 

957 matrix control; DSE/FM- digested grape seed extract with food matrix.



  

43

958

959 Figure 1.



  

44

960

961



  

45

962 Figure 2.

963

964 Table 1.

965 The content of polyphenols in the undigested and digested samples of the grape skin (results are 

966 expresed as µg/L)*.

Phenolic 

compou

nds

SK SKC DSK

DS

KR, 

% 

FM FMC DFM

DF

MR, 

%

SK/FMC
DSK/F

M

DSK/FMR

,% 

(DSK/FM

TR,%) 

Phenolic 

acids

Protocate

chuic 

acid

45.85±0.

44a

43.46±4.0

6a

56.40±0.

69b

123.

0
n.d.

22.28±0

.22c
n.d. -

47.66±4.

40ab
n.d. 0

Ellagic 

acid
532±5ad 491±76acd 442±5abc 83.0 408±48abc

284±70b

c
354±1c 86.7 617±17d 401±42ac 75.4

5-O-

caffeoylq

uinic acid

48.23±1.

12a
n.d.

56.34±8.

74abc

116.

8

79.82±14

.67abc

50.05±1

.92ab

52.53±0

.32b
65.8

59.18±0.

50c

49.30±0.

25a
102.2 

Ferulic 

acid

91.44±0.

46a

70.23±0.2

9b

91.54±22

.75abc

100.

0
n.d. n.d. n.d. -

138.26±2

1.58ac

129.13±

6.89c
141.2

Caffeic 

acid
n.d.

107.07±1

0.97abd

120.75±0

.8a
-

82.47±0.

35b
n.d. n.d. 0

148.60±7

.10c

129.8±0.

22cd
-

p-

Coumari

c acid

n.d.
141.04±2

3.1ae

191.15±2

5.8be
-

30.87±4.

49cd

42.24±0

.04c

33.58±0

.07d

108.

8

165.30±0

.22ab

189.10±

0.95e
-

Total 

phenolic 

acids

717.5 

(24.4)

852.3 

(38.6)

958.2 

(38.5)

133.

5

600.6 

(29.3)

398.1 

(28.8)

439.6 

(31.5)
73.2 1176.0

898.3 

(40.7)

125.2 

(68.1)

Flavonol

s

Rutin 31.14±0. 28.01±0.7 32.40±2. 104. 22.06±0. n.d. 22.92±0 103. 29.60±0. 28.90±0. 92.8
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19a 6b 01ab 0 75c .05c 9 60ab 04b

Querceti

n

851.97±0

.24a

833.63±0.

68bc

834.90±0

.20b
97.9

833.58±0

.43bc

833.58±

0.19c

833.60±

0.38c

100.

0

834.20±1

.15bc

834.70±

0.53bc
98.0 (49.5)

Querceti

n-3-O-

galactosi

de

246.60±1

5.08a

141.68±2

6.7bc

196.50±6

.59b
79.7 n.d. n.d. n.d. -

117.67±4

.70c

130.30±

4.36c
52.8

Isorhamn

etin

535.98±1

.58a
n.d. n.d. 0

533.75±0

.19a
n.d. n.d. 0

533.40±0

.23a
n.d. 0

Isorhamn

etin-3-O-

glucoside

275.20±1

8.97a

192.90±3

4.2ab

275.45±2

0.5a

100.

1
n.d. n.d. n.d. -

189.50±0

.03b

228.00±

8.28a
82.8

Total 

flavonols

1940.9 

(65.9)

1196.2 

(54.2)

1339.3 

(53.8)
69.0

1389.4 

(67.8)

833.6 

(60.3)

856.5 

(61.3)
61.6 1704.4

1222 

(55.4)
62.9 (36.7)

Anthocy

anins

Malvidin

-3,5-di-

O-

glucoside

n.d.
23.47±0.3

1a

25.40±0.

53c
- n.d. n.d. n.d. - n.d.

16.77±0.

14b
-

Peonidin-

3-O-

glucoside

64.70±0.

41a

35.83±0.0

8b
n.d. 0 n.d. n.d. n.d. -

26.25±0.

26c
n.d. 0

Malvidin

-3-O-

glucoside

100.80±1

5.01a

19.50±0.3

6b

22.68±0.

27c
22.3 n.d. n.d. n.d. - n.d. n.d. 0

Total 

anthocya

nins

165.5 

(5.6)
78.8 (3.6) 48(1.92) 29.0 - - - - 26.2 16.8 10.2

Other 

phenolic

s

Aesculin
34.12±2.

95
n.d. n.d. 0 n.d. n.d. n.d. - n.d. n.d. 0
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Luteolin n.d. n.d.
51.65±0.

32
- n.d. n.d. n.d. - n.d. n.d. -

Genistein n.d. n.d.
13.36±1.

88abc
- n.d.

11.30±0

.32a

9.44±0.

38b
- n.d.

13.85±0.

11c
-

Phloretin
32.64±0.

14
n.d. n.d. 0 n.d. n.d. n.d. - n.d. n.d. 0

Taxifolin
55.46±0.

21a

52.71±0.2

1b

53.96±0.

1c
97.3 n.d.

52.51±0

.32b
n.d. -

56.26±0.

22a
n.d. 0

Pterostilb

ene
n.d.

28.03±6.5

7ab

25.70±0.

11a
- n.d.

25.42±0

.78a

32.89±0

.08b
-

52.00±2.

93c

52.55±0.

83c
-

Eriodicty

ol
n.d. n.d. n.d. -

58.83±0.

07a

58.86±0

.05a

58.73±0

.25a
99.8 n.d. n.d. -

Total 2944.0 2208.0 2490.2 84.6 2048.8 1379.7 1397.2 68.2 3014.9 2203.5 74.8 (44.1)

967 *value in parenthesis represent relative amount of phenolic class in the sample. Different letters in the same row denote a significant difference 

968 according to t-test, p˂0,05. ‘n.d.’-stands for not detected; Abbreviations: SK- diluted grape skin extract; SKC – grape skin digestion control; 

969 DSK-digested grape skin extract; FM-diluted food matrix; FMC-food matrix control; DFM-digested food matrix; SK/FMC –skin extract with 

970 food matrix control; DSK/FM digested skin extract with food matrix; DSKR – digested skin extract recovery; DFMR – digested food matrix 

971 recovery; DSK/FMR - digested skin extract with food matrix recovery; DSK/FMTR - digested skin extract with food matrix total recovery.

972
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973 Table 2.

974 The content of non-flavan-3ol polyphenols in the undigested and digested samples of the grape 

975 seed extracts (results are expresed as µg/L).*

Phenolic compounds SE SEC DSE
SER,

%
FM FMC DFM

FMR,

%
SE/FMC DSE/FM

DSE/FMR,% 

(DSE/FMTR,%)

Phenolic acids

Gallic acid 1224.70±31.70a n.d. 772.30±1.01b 63.1 n.d. n.d. n.d. - 852.40±34.50bc 958.80±55.40c 78.3

Protocatechuic acid 35.59±0.23a 30.78±1.41bd 32.20±0.46b 90.5 n.d. 22.30±0.29c n.d. - 27.60±0.11d 29.40±1.79bd 80.6

Ellagic acid 19457±882a 13800±2135b 8093±313c 41.6 408±48d 284±70d 354±1d 86.7 1793±124d 11114±181bc 57.1 

5-O-caffeoylquinic 

acid
48.55±1.45a n.d. 58.30±13.97abc 120.1 79.82±14.67abc 50.05±1.90a 52.58±0.25a 65.8 61.82±0.60b 57.99±0.10c 119.4

Caffeic acid n.d. 84.09±1.12a 83.93±0.70a - 82.47±0.34a n.d. n.d. 0 93.94±0.17b 93.30±1.04b -

p-Coumaric acid n.d. n.d. n.d. - 30.87±4.49ab 42.30±0.11a 33.67±0.20b 109.1 37.69±2.01ab 37.30±2.03ab -

Total phenolic acids 20765.8 (93.0) 13915.0 (93.3) 9039.7 (90.5) 43.5 600.7 (29.3) 398.1 439.7 (31.5) 73.2 2866.5 12290.8 (99.1) 59.2 (57.5)

Flavonols

Rutin 23.32±0.11a 23.30±0.21ab 27.73±4.09abc 118.9 22.06±0.75abc n.d. 22.90±0.05b 103.8 21.85±0.12c 22.47±0.42 abc 96.3

Quercetin 836.73±0.71a 833.74±0.19b 834.50±0.27ab 99.7 833.57±0.42b 833.70±0.38b 833.55±0.31b 100.0 n.d. n.d. 0

Quercetin-3-O-

galactoside
12.83±0.02 n.d. n.d. 0 n.d. n.d. n.d. - n.d. n.d. 0

Isorhamnetin 533.65±0.31a n.d. n.d. 0 533.70±0.12a n.d. n.d. 0 n.d. n.d. 0

Isorhamnetin-3-O-

glucoside
10.88±1.41 n.d. n.d. 0 n.d. n.d. n.d. - n.d. n.d. 0

Kaempferol 38.79±0.13 n.d. n.d. 0 n.d. n.d. n.d. - n.d. n.d. 0

Total flavonols 1456.2 (6.5) 857.0 (5.7) 862.2 (8.6) 59.2 1389.3 (67.8) 833.7 856.4 (61.3) 61.6 21.9 22.47 (0.18) 1.5 (0.8)

Other phenolics

Luteolin n.d. 51.48±0.58 n.d. - n.d. n.d. n.d. - n.d. n.d. -

Genistein n.d. n.d. 14.53±2.04ab - n.d. 11.43±0.50a 9.76±0.07b - 11.05±0.34a 15.30±2.14ab -

Phloretin 33.29±0.03 n.d. n.d. 0 n.d. n.d. n.d. - n.d. n.d. 0

Taxifolin n.d. n.d. n.d. - n.d. 52.30±0.09a n.d. - 57.65±3.14a n.d. -

Pterostilbene 8.87±0.08a 22.64±3.37bcd 14.42±0.45b 162.6 n.d. 25.40±0.71c 32.80±0.14d - 116.30±0.19e 13.79±0.13b 155.5

Eriodictyol 60.02±0.2ac 58.94±0.09bc 59.01±0.25bc 98.3 58.83±0.07b 58.90±0.05bc 58.50±0.51abc 99.4 59.19±0.17bc 59.40±0.17c 99.0

Total 22324.2 14905.0 9989.8 44.7 2048.8 1379.9 1397.3 68.2 3132.5 12401.8 55.5 (50.9)
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976 *value in parenthesis represent relative amount of phenolic class in the sample. Different letters in the same row denote a significant difference 

977 according to t-test, p˂0,05. ‘n.d.’-stands for not detected; Abbreviations: SK- diluted grape skin extract; SKC – grape skin digestion control; 

978 DSK-digested grape skin extract; FM-diluted food matrix; FMC-food matrix control; DFM-digested food matrix; SK/FMC –skin extract with 

979 food matrix control; DSK/FM digested skin extract with food matrix; DSKR – digested skin extract recovery; DFMR – digested food matrix 

980 recovery; DSK/FMR - digested skin extract with food matrix recovery; DSK/FMTR - digested skin extract with food matrix total recovery.

981
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982 Table 3.

983 Characterisation of flavan-3-ols in the initial grape seed extract using UHPLC-MS/MS Orbitrap. 

984 Target compounds, mean expected retention time (tR), molecular formula, calculated mass, exact 

985 mass and MS4 fragments are presented.

tR, 

min
Compound name

Molecular 

formula,

[M–H]–

Calculated 

mass,

[M–H]–

Exact 

mass,

[M–H]–

Δ 

ppm

MS2 Fragments, (% Base 

Peak)

MS3 Fragments, (% Base 

Peak)

MS4 Fragments, (% Base 

Peak)

Monomeric flavan-3-ols

5.34 Catechin C15H13O6
– 289.07176 289.07156 0.69

271(5), 245*(100), 205(40), 

179(15), 125(5)

227(30), 203(100), 187(25), 

175(10), 161(20)

188(70), 185(20), 175(100), 

161(40), 157(10)

5.83 Epicatechin C15H13O6
– 289.07176 289.07188 -0.42

271(5), 245(100), 205(40), 

179(15), 125(5)

227(35), 203(100), 187(30), 

175(15), 161(25)

188(60), 185(20), 175(100), 

161(35), 157(15)

4.93 (epi)Catechin hexoside C21H23O11
- 451.12404 451.12463 -1.31

361(30), 331(100), 289(70), 

247(10)
313(100), 287(40), 269(30) −

Procyanidin isomers A type

4.90 Procyanidin dimer A type isomer 1 C30H23O12
– 575.11950 575.11993 -0.75

559(20), 421(50), 425(100), 

407(90), 289(50), 287(10)
407(100)

289(50), 297(40), 285(90), 

281(100), 269(10)

5.53 Procyanidin dimer A type isomer 2 C30H23O12
– 575.11950 575.11938 0.21

559(20), 421(60), 425(100), 

407(90), 289(60), 287(10)
407(100)

289(50), 297(40), 285(90), 

281(100), 269(10)

Procyanidin isomers B type

4.85 Procyanidin dimer B type isomer 1 C30H25O12
– 577.13515 577.13513 0.03

559(10), 451(30), 425(100), 

407(50), 289(25), 287(10)
407(100), 381(5), 273(10)

389(30), 297(30), 285(100), 

243(70)

5.10 Procyanidin dimer B type isomer 2 C30H25O12
- 577.13515 577.13525 -0.17

425(25), 407(10), 329(10), 

289(100), 287(80)
245(100), 205(30), 179(15)

227(30), 203(100), 187(30), 

175(10), 161(20)

5.50 Procyanidin dimer B type isomer 3 C30H25O12
- 577.13515 577.13531 -0.28

559(10), 451(30), 425(100), 

407(50), 289(25), 287(10)
407(100), 381(5), 273(10)

389(30), 297(30), 285(100), 

243(70)

6.01 Procyanidin dimer B type isomer 4 C30H25O12
- 577.13515 577.13519 -0.07

559(10), 451(30), 425(100), 

407(50), 289(25), 287(10)
407(100), 381(5), 273(10)

389(30), 297(30), 285(100), 

243(70)

6.53 Procyanidin dimer B type isomer 5 C30H25O12
- 577.13515 577.13489 0.45

559(10), 451(30), 425(100), 

407(50), 289(25), 287(10)
407(100), 381(5), 273(10)

389(30), 297(30), 285(100), 

243(70)

4.66 Procyanidin dimer B type hexoside isomer 1 C36H35O17
− 739.18797 739.18768 0.39

649(90), 619(100), 587(80), 

449(60), 407(15), 289(10)

601(30), 577(40), 467(90), 

449(70), 289(100)
−

5.24 Procyanidin dimer B type hexoside isomer 2 C36H35O17
− 739.18797 739.18805 -0.11 649(20), 619(40), 587(100), 569(100), 509(10), 467(60), −



  

51

449(60), 407(30), 289(20) 407(90), 289(15)

3.58 Procyanidin trimer B type isomer 1 C45H37O18
- 865.19854 865.19849 0.06

695(100), 577(60), 425(30), 

407(30), 287(30)
543(100), 451(45), 243(60) 525(100), 391(40)

4.21 Procyanidin trimer B type isomer 2 C45H37O18
- 865.19854 865.19739 1.33

695(100), 577(80), 425(30), 

407(40), 287(35)
543(100), 451(45), 243(60) 525(100), 391(40)

5.26 Procyanidin trimer B type isomer 3 C45H37O18
- 865.19854 865.19910 -0.65

695(100), 577(70), 425(30), 

407(40), 287(30)
543(100), 451(45), 243(60) 525(100), 391(40)

5.85 Procyanidin trimer B type isomer 4 C45H37O18
- 865.19854 865.19958 -1.20

695(100), 577(80), 425(35), 

407(35), 287(30)
543(100), 451(45), 243(60) 525(100), 391(40)

4.75 Procyanidin tetramer B type isomer 1 C60H49O24
– 1153.26193 1153.26062 1.14

1027(70), 983(100), 865(80), 

739(50), 575(90), 407(50)
947(100), 445(70) −

5.02 Procyanidin tetramer B type isomer 2 C60H49O24
– 1153.26193 1153.26001 1.66

1027(50), 983(80), 863(100), 

739(40), 575(50), 407(20)

827(30), 737(60), 701(100), 

575(90), 405(70)
−

5.35 Procyanidin tetramer B type isomer 3 C60H49O24
– 1153.26193 1153.26086 0.93

1027(70), 983(100), 865(80), 

739(50), 575(90), 407(50)

932(40), 819(80), 667(100), 

573(90), 423(40)
−

5.60 Procyanidin tetramer B type isomer 4 C60H49O24
– 1153.26193 1153.26123 0.61

1027(40), 983(80), 863(70), 

739(40), 575(100), 407(30)

577(20), 449(40), 413(30), 

287(100)
−

5.97 Procyanidin tetramer B type isomer 5 C60H49O24
– 1153.26193 1153.26160 0.29

1027(50), 983(80), 863(100), 

739(40), 575(50), 407(30)

737(40), 693(80), 575(100), 

413(40)
−

6.30 Procyanidin tetramer B type isomer 6 C60H49O24
– 1153.26193 1153.26062 1.14

1027(40), 983(60), 863(80), 

739(30), 575(100), 407(30)

533(30), 449(60), 423(50), 

413(40), 287(100)
−

Procyanidins gallate isomers

6.69 (epi)Catechin gallate C22H17O10
− 441.08272 441.08282 -0.23

331(10), 289(100), 271(10), 

169(25)

271(5), 245(100), 205(40), 

179(20)

227(20), 203(100), 187(20), 

175(10), 161(20)

5.78 Procyanidin dimer B type gallate isomer 1 C37H29O16
− 729.14611 729.14685 -1.01

577(100), 559(50), 425(30), 

407(50), 289(5), 287(5)

559(50), 421(70), 425(50), 

407(100), 289(40)

389(25), 297(30), 285(100), 

255(20), 243(20)

6.04 Procyanidin dimer B type gallate isomer 2 C37H29O16
− 729.14611 729.14679 -0.93

711(10), 603(30), 577(90), 

559(90), 407(100), 289(25)

389(25), 297(30), 285(100), 

255(20), 243(20)
257(100), 241(10), 213(5)

6.41 Procyanidin dimer B type digallate C44H33O20
– 881.15707 881.15698 0.10

729(100), 711(30), 577(10), 

559(20), 541(10), 407(30)

711(20), 603(60), 577(50), 

559(30), 407(100)
−

5.08 Procyanidin trimer B type gallate isomer 1 C52H41O22
– 1017.20950 1017.20850 0.98

965(100), 847(10), 727(50), 

695(40), 575(30), 557(30)
847(100), 695(80) −

5.51 Procyanidin trimer B type gallate isomer 2 C52H41O22
– 1017.20950 1017.20892 0.57

999(25), 865(30), 729(100), 

595(25), 575(30), 407(20)

603(20), 577(100), 559(60), 

425(25), 407(70)

559(20), 451(60), 425(30), 

407(100), 289(60)

5.75 Procyanidin trimer B type gallate isomer 3 C52H41O22
– 1017.20950 1017.20911 0.38 999(50), 865(60), 847(100), 829(40), 803(30), 695(40), −
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729(80), 575(30), 407(30) 677(100), 363(90)

6.06 Procyanidin trimer B type gallate isomer 4 C52H41O22
– 1017.20950 1017.20905 0.44

999(30), 865(100), 847(60), 

729(70), 575(30), 407(20)

847(80), 739(100), 695(60), 

407(30), 287(20)
−

6.34 Procyanidin trimer B type gallate isomer 5 C52H41O22
– 1017.20950 1017.20850 0.98

999(60), 865(80), 847(100), 

729(80), 577(40), 407(40)

847(90), 739(80), 695(100), 

407(20), 289(70)
−

6.54 Procyanidin trimer B type gallate isomer 6 C52H41O22
– 1017.20950 1017.20984 -0.33

999(30), 865(30), 847(60), 

729(100), 577(20), 407(30)

711(40), 603(50), 577(100), 

407(90), 289(20)

559(80), 451(40), 425(10), 

407(100), 289(10)

6.89 Procyanidin trimer B type gallate isomer 7 C52H41O22
– 1017.20950 1017.20837 1.11

999(30), 891(70), 847(60), 

729(100), 577(40)

603(50), 577(90), 559(70), 

407(100), 287(50)
−

986 ‘−’-stands for not detected fragments; *Peaks further fragmentated in MS3 and MS4 experiment are bold.



  

53

987 Table 4.

988 Composition of flavan-3-ols (expressed as catechin equivalents, μg CE/L) and flavan-3-ol 

989 recovery in the grape seed extracts before and after digestion*.

Compound name SE* SEC DSE

SE

R, 

%

FM* FMC 
DF

M 

FM

R, 

%

SE/FM

C 
DSE/FM

DSE/F

MR

Monomeric flavan-3-ols

Catechin
3830.50±0

.39a
n.d. n.d. - n.d. n.d. n.d. 0 n.d.

207.23±2

1.38b
5.4

(epi)Catechin hexoside
246.00±15

.60a

12.18±

0.77b

9.40±0.

59b
3.8 n.d. n.d. n.d. 0

11.71±0

.74b

18.35±1.

16c
7.5

Epicatechin
2634.00±1

98.00a

10.54±

0.79b

7.38±0.

55c
0.3 n.d. n.d. n.d. 0

126.17±

9.48d

159.09±1

1.96d
6.0

Total monomeric flavan-3-

ols

6710.5 

(27.3)
22.7 16.8 0.3 0 0 0 0 137.9 384.7 5.7

Procyanidin isomers A type

Procyanidin dimer A type 

isomer 1

81.50±6.4

0a

10.44±

0.82b

4.32±0.

34c
5.3 n.d. n.d. n.d. 0

67.91±5

.30a

6.50±0.5

1d
8.0

Procyanidin dimer A type 

isomer 2

64.50±6.4

0
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Total procyanidin isomers 

A type
146.0 (0.6) 10.4 4.3 3.0 0 0 0 0 67.9 6.5 4.5

Procyanidin isomers B type

Procyanidin dimer B type 

isomer 1
3295±208a n.d. n.d. 0 n.d. n.d. n.d. 0 n.d.

169.03±1

0.66b
5.1

Procyanidin dimer B type 

isomer 2
644±8.50a n.d. n.d. 0 n.d. n.d. n.d. 0 n.d.

14.00±1.

41b
2.2

Procyanidin dimer B type 

isomer 3
2626±248a n.d. n.d. 0 n.d. n.d. n.d. 0 n.d.

51.50±0.

71b
2.0

Procyanidin dimer B type 

isomer 4

146.00±7.

10
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin dimer B type 

isomer 5

97.50±6.4

0
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0
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Procyanidin dimer B type 

hexoside isomer 1

327.50±19

.10a
n.d. n.d. 0 n.d. n.d. n.d. 0

3.11±0.

18b

11.17±0.

65c
3.4

Procyanidin dimer B type 

hexoside isomer 2

245.50±14

.80a
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d.

4.04±0.0

6b
1.6

Procyanidin trimer B type 

isomer 1

1543.50±1

63.30a
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d.

55.41±5.

86b
3.6

Procyanidin trimer B type 

isomer 2

69.50±3.5

0
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin trimer B type 

isomer 3

1042.00±8

.50a
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d.

22.00±2.

83b
2.1

Procyanidin trimer B type 

isomer 4

1061.00±5

2.30
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin tetramer B type 

isomer 1

37.50±2.1

0
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Pro1.cyanidin tetramer B 

type isomer 2

292.50±29

.00a
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d.

4.98±0.0

4b
1.7

Procyanidin tetramer B type 

isomer 3

180.50±7.

80a

14.57±

0.63b

9.60±0.

41c
5.3 n.d. n.d. n.d. 0

198.04±

8.53a
n.d. 0

Procyanidin tetramer B type 

isomer 4

144.00±1.

40
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin tetramer B type 

isomer 5

419.50±3.

50
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin tetramer B type 

isomer 6

196.00±12

.70
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Total procyanidin isomers 

B type

12367.0 

(50.3)
14.6 9.6 0.1 0 0 0 0 201.2 332.1 2.7

Procyanidin gallate isomers

(epi)Catechin gallate
1071.50±1

19.50a

12.75±

1.42b

21.86±

2.44c
2.0

2.20±0

.14d

1.02±0

.07e
n.d. 0

15.43±1

.72bc

188.48±2

1.02f
17.6

Procyanidin dimer B type 

gallate isomer 1

940.50±87

.00a
n.d. n.d. 0 n.d. n.d. n.d. 0

17.21±1

.59b

98.66±9.

12c
10.5

Procyanidin dimer B type 

gallate isomer 2

1804.00±8

7.70a
n.d. n.d. 0

4.45±0

.07b
n.d. n.d. 0

33.37±1

.62c

145.94±7

.09d
8.1

Procyanidin dimer B type 

digallate

205.50±17

.70a

15.25±

1.31b

2.90±0.

25c
1.4

1.65±0

.07d
n.d. n.d. 0 n.d. n.d. 0
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Procyanidin trimer B type 

gallate isomer 1

151.00±2.

80
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin trimer B type 

gallate isomer 2

213.00±15

.60
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin trimer B type 

gallate isomer 3

196.00±12

.70
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin trimer B type 

gallate isomer 4

382.00±24

.00
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin trimer B type 

gallate isomer 5

106.50±3.

50
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Procyanidin trimer B type 

gallate isomer 6

205.00±26

.90a

0.78±0.

10b
n.d. 0

1.25±0

.07b
n.d. n.d. 0 n.d. n.d. 0

Procyanidin trimer B type 

gallate isomer 7

78.50.±3.5

0
n.d. n.d. 0 n.d. n.d. n.d. 0 n.d. n.d. 0

Total procyanidin gallate 

isomers

5353.5 

(21.8)
28.8 24.8 0.5

9.6 

(100)
1.0 0 0 66.0 433.1 8.1

Total flavan-3-ols 24577.0 76.5 55.5
0.2

**
9.6 1.0 0 0 473.00 1156.4 4.7**

990 * value in parenthesis represents a relative amount of specific flavan-3-ol group in the sample. ** total flavan-3-ols recovery, a percent of total 

991 detected flavan-3-ols in the initial grape seed extract. Different letters in the same row denote a significant difference according to t-test, p˂0.05; 

992 „n.d.“ stands for  not detected; Abbreviations: SE-diluted grape seed extract; SEC- grape seed extract control; DSE-digested grape seed extract; 

993 FM-diluted food matrix; FMC-food matrix control; DFM-digested food matrix; SE/FMC - grape seed extract with food matrix control; 

994 DSE/FM - digested grape seed extract with food matrix; SER – digested seed extract recovery; FMR – digested food matrix recovery; 

995 DSE/FMR - digested seed extract with food matrix recovery.

996

997 Highlights

998  Food matrix (FM) contains significant amount of phenolic acids and flavonols.
999  Total recovery of polyphenols of grape extracts was significantly influenced by 

1000 FM.
1001  Low recovery of proantocyanidins and total flavonoids of seed extracts was 
1002 observed. 
1003  FM and digestive fluids increased total polyphenol content of grape digests.
1004  FM and digestive fluids contributed to ABTS•+ scavenging activity of grape 
1005 digests.
1006  




