## Supplementary data for the article:

Aleksic, I.; Ristivojevic, P.; Pavic, A.; Radojević, I.; Čomić, L. R.; Vasiljevic, B.; Opsenica, D.; Milojković-Opsenica, D.; Senerovic, L. Anti-Quorum Sensing Activity, Toxicity in Zebrafish (Danio Rerio) Embryos and Phytochemical Characterization of Trapa Natans Leaf Extracts. *Journal of Ethnopharmacology* **2018**, 222, 148–158. <a href="https://doi.org/10.1016/j.jep.2018.05.005">https://doi.org/10.1016/j.jep.2018.05.005</a>

## **Supplementary data**

Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of *Trapa natans* leaf extracts

Ivana Aleksic<sup>a</sup>, Petar Ristivojevic<sup>b</sup>, Aleksandar Pavic<sup>a</sup>, Ivana Radojevic<sup>c</sup>, Ljiljana R. Čomić<sup>c</sup>, Branka Vasiljevic<sup>a</sup>, Dejan Opsenica<sup>d</sup>, Dusanka Milojkovic-Opsenica<sup>e\*</sup> and Lidija Senerovic<sup>a\*</sup>

<sup>a</sup>Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia

<sup>b</sup>Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158, Belgrade, Serbia

<sup>c</sup>Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Republic of Serbia

<sup>d</sup>Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, P.O. Box 473, 11000, Belgrade, Serbia

\*Corresponding authors:

Lidija Senerovic, email: seneroviclidija@imgge.bg.ac.rs

Dusanka Milojkovic-Opsenica, email: dusankam@chem.bg.ac.rs

**Table 1S** - Lethal and teratogenic effects observed in zebrafish (*Danio rerio*) embryos at different hours post fertilization (hpf).

| Category           | Developmental endpoints                                                                                                                                                                                                                                                                    |    | Exposure time (hpf) |    |    |    |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|----|----|----|--|
|                    |                                                                                                                                                                                                                                                                                            |    | 24                  | 48 | 72 | 96 |  |
| Lethal effect      | Egg coagulation <sup>a</sup> No somite formation Tail not detached No heart-beat                                                                                                                                                                                                           |    | •                   | •  | •  | •  |  |
| Teratogenic effect | Malformation of head  Malformation of eyes <sup>b</sup> Malformation sacculi/otoliths <sup>c</sup> Malformation of chorda Malformation of tail <sup>d</sup> Scoliosis Heart beat frequency Blood circulation Pericardial edema Yolk edema Yolk deformation Growth retardation <sup>e</sup> | of | •                   |    |    | •  |  |

<sup>&</sup>lt;sup>a</sup> No clear organs structure are recognized

<sup>&</sup>lt;sup>b</sup> Malformation of eyes was recorded for the retardation in eye development and abnormality in shape and size.

<sup>&</sup>lt;sup>c</sup> Presence of no, one or more than two otoliths per sacculus, as well as reduction and enlargement of otoliths and/or sacculi (otic vesicles).

<sup>&</sup>lt;sup>d</sup> Tail malformation was recorded when the tail was bent, twisted or shorter than to control embryos as assessed by optical comparison.

<sup>&</sup>lt;sup>e</sup> Growth retardation was recorded by comparing with the control embryos in development or size (before hatching, at 24 hpf and 48 hpf) or in a body length (after hatching, at and onwards 72 hpf) using by optical comparison using a inverted microscope (CKX41; Olympus, Tokyo, Japan).

**Figure 1S.** Base peak chromatogram of *T. natans* methanolic leaves extract.



**Table 2S.** Phenolic compounds quantified in the analyzed *T. natans* extracts, correlation coefficient, limit of detection (LOD), limit of quantification (LOQ). The mass spectrometer was operated using UHPLC-LTQ OrbiTtrap MS analysis in negative ionization mode, with collision energy 30 eV.

| Peak <sup>a</sup> | Compound                               | TnA    | TnM    | $\mathbb{R}^2$ | LOD (mg/L) | LOQ (mg/L) |
|-------------------|----------------------------------------|--------|--------|----------------|------------|------------|
|                   | Compound                               | mg     | mg/L   |                |            |            |
| 3                 | Gallic acid                            | 45.33  | 30.31  | 0.9945         | 0.08       | 0.27       |
| 4                 | Protocatechuic acid                    | 1.91   | 0.96   | 0.9969         | 0.09       | 0.30       |
| 7                 | Caffeic acid                           | 1.66   | 0.88   | 0.9988         | 0.07       | 0.22       |
| 8                 | p-Coumaric acid                        | 2.16   | 1.10   | 0.9956         | 0.10       | 0.34       |
| 9                 | Ellagic_acid                           | 482.93 | 258.75 | 0.9938         | 0.11       | 0.37       |
| 11                | Ferulic_acid                           | 22.84  | 49.01  | 0.9987         | 0.08       | 0.27       |
| 14                | Naringenin                             | 8.34   | 3.52   | 0.9939         | 0.14       | 0.47       |
| 19                | Rutin                                  | 2.02   | 2.52   | 0.9907         | 0.15       | 0.51       |
| 20                | Kaempferol 3-O-glucoside (Astragalin)  | 2.01   | 1.86   | 0.9989         | 0.05       | 0.17       |
| 22                | Quercetin 3-O-galactoside (Hyperoside) | 36.06  | 41.28  | 0.9950         | 0.11       | 0.37       |

<sup>&</sup>lt;sup>a</sup> Peak numbers correspond to Fig. 1S. Compounds were quantified by the external standard quantification procedure.