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Astrocytes are the most abundant cell population within the CNS of mammals. Their glial role is per-
fectly performed in the healthy CNS as they support functions of neurons. The omnipresence of
astrocytes throughout the white and grey matter and their intimate relation with blood vessels of
the CNS, as well as numerous immunity-related actions that these cells are capable of, imply that
astrocytes should have a prominent role in neuroinflammatory disorders, such as multiple sclerosis
(MS). The role of astrocytes in MS is rather ambiguous, as they have the capacity to both stimulate
and restrain neuroinflammation and tissue destruction. In this paper we present some of the proved
and the proposed functions of astrocytes in neuroinflammation and discuss the effect of MS thera-
peutics on astrocytes.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.
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‘‘. . .and by my prescience
I find my zenith doth depend upon
A most auspicious star, whose influence
If now I court not but omit, my fortunes
Will ever after droop. . .’’
William Shakespeare (The Tempest)
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1. Support and much more

Astrocytes are glial cells of the CNS which provide optimal
physical and metabolic environment for neuronal activities. A
common characteristic of all astrocytes is their star-like shape to
which they owe their name (ancient Greek, arsqom – star, jt9so1
– cell). The other specificity of astrocytes is that their cytoplasm
contains intermediate filaments composed of a distinct protein,
glial fibrillary acidic protein (GFAP) [1]. Thus, we could describe
an astrocyte as a neuroglial star-shaped cell containing GFAP. Be-
yond this simple description, astrocytes are a diverse cell popula-
tion, with distinct properties in different CNS regions and at
cal Societies. Published by Elsevier
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different periods of CNS development [2]. For instance, rodent
astrocytes have been classified into two groups on the basis of their
morphology and location, i.e., highly ramified protoplasmic astro-
cytes of the grey matter, which ensheath synapses and are in con-
tact with blood vessels and fibrous astrocytes of the white matter,
which are in turn in contact with the nodes of Ranvier [3]. Still, this
classification into two groups might not be adequate to appreciate
the full extent of astrocyte diversity, especially in humans, as hu-
man neocortex harbors several anatomically defined subclasses
of astrocytes not represented in rodents [4]. Moreover, human
astrocytes are up to three fold larger and more ramified than their
rodent counterparts. These facts allowed Oberheim et al. to pro-
pose that astrocytic complexity has permitted the increased func-
tional competence of the adult human brain [4]. The variety of
functions that astrocytes perform within the CNS, implies that
these cells are involved in almost everything the CNS does [5]. In-
deed, as previously stated by Zhang and Barres, astrocytes are cru-
cial for potassium homeostasis, neurotransmitter uptake, synapse
formation and function, regulation of blood–brain barrier (BBB),
myelination of axons and the development of the nervous system
[2]. From neuroscientist’s point of view, maybe the most intriguing
finding is that astrocytes intensively contribute to neurotransmis-
sion and regulation of sleeping, learning and memory [6,7]. Their
importance for neurotransmission is highlighted in the concept
of tripartite synapse, where astrocyte end-feet play equally impor-
tant role for signal transduction as presynaptic and postsynaptic
terminals [7]. There, in response to the increase of intracellular
B.V. Open access under CC BY-NC-ND license.
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calcium concentration evoked by neurons, astrocytes release ‘‘glio-
transmitters’’, such as glutamate, ATP and D-serine. It seems that
new picture of brain function emerges in which slow-signaling
astrocytes adjust fast synaptic transmission and neuronal firing
to shape complex brain functions [6].

2. Gatekeepers and doormen

From the neuroimmunologist’s point of view, the contribution
of astrocytes to BBB formation and function is among the most
important roles of these glial cells, as BBB is the location where
first interaction between CNS and immune cells happens in the
process of neuroinflammation (Fig. 1). BBB represents one of the
major contributors to CNS immune privilege and therefore study-
ing its immune-related functions is of major importance for under-
standing pathogenesis of inflammatory demyelinating CNS disease
multiple sclerosis (MS) and its various animal models, such as
experimental autoimmune encephalomyelitis (EAE), Theiler’s
murine encephalomyelitis virus-induced demyelinating disease
(TMEV-IDD), herpes simplex virus (HSV)-induced encephalitis
and murine hepatitis virus (MHV)-induced demyelination. The
importance of astrocytes for BBB formation is clearly presented
by their ability to induce tight junctions, high mitochondrial con-
tent and other intrinsic properties of neural endothelial cells, that
build up the BBB, in endothelial cells of non-neural origin [8]. BBB-
inducing actions of astrocytes are also prominent in heterologous
system, where rat astrocytes and human umbilical endothelial
cells or immortalized human endothelial cells are co-cultivated,
thus implying that BBB-promoting factors made by astrocytes are
not species-specific [9,10].

It is assumed that immune cells invade the CNS in two steps
during neuroinflammation [11]. First, immune cells egress from
postcapillary venules through endothelial cells and enter Vir-
chow–Robin spaces (VRS). Subsequently, they interact with astro-
cytes of glia limitans and only if they subdue these cells, immune
Fig. 1. Plethora of astrocytic actions related to neuroinflammation. Immune cells egress f
macrophages (Mf), perivascular macrophages (PM) and microglia (Mg) affect glial basa
parenchyma astrocytes (A) influence invading cells in various ways. They induce apo
intercellular extracellular matrix (ECM, dotted lines), generate osteopontin which poten
ECM components (black dots) have chemoatractive, neurotoxic and immunomodulatory e
(TIMP), which inhibit MMP function, thus contributing to tissue preservation. Astrocytes
to T cells if performed with appropriate co-stimulation or inhibitory to T cells if performed
or parenchyma stimulate antigen-presenting properties of astrocytes, production of chem
(ROI) and reactive nitrogen intermediates (RNI). Astrocytic syncitin, product of human e
well as pro-inflammatory cytokines, affect neurons (N), olygodendrocytes (Od) and mye
regeneration of neurons. They also provide essential factors for oligodendrocyte progen
cells enter the CNS parenchyma (Fig. 1). Importantly, T cells have
to cooperate with macrophages/microglia in order to penetrate
through glia limitans into parenchyma [12], possibly due to speci-
ficities of glial basal lamina composition which makes it imperme-
able to lymphocytes, but permeable to macrophages [11].
Astrocytes are supposed to additionally limit this second step by
induction of apoptosis in infiltrating cells. There is a constitutive
expression of the death ligand CD95L on the astrocytic end-feet,
and astrocyte-induced T cell apoptosis is dependent on CD95L
[13,14]. This mechanism of T cell death could well be responsible
for the perivascular apoptosis which is typical for established neur-
oinflammation, as seen in EAE [15]. Also, this mechanism could
contribute to the prevention of intraparenchymal infiltration of T
cells, and thus to the restrain of neuroinflammation. Still, astro-
cytes are also susceptible to CD95L-induced apoptosis and if large
numbers of T cells enter VRS they could defeat astrocytes in their
own game. For instance, it was shown that CD4+ T cells induce
CD95L-mediated apoptosis in astrocytes in TMEV-IDD [16]. Nota-
bly, CD95L is not the only apoptosis-inducing molecule utilized
by astrocytes, as these cells have been shown capable of inducing
apoptosis in rat and murine encephalitogenic T cells by the means
of soluble factors, such as nitric oxide [17] and osteonectin and
astrocyte-derived immune suppressor factor (AdIF) [18].

3. Masons and wreckers

Extracellular matrix (ECM) is becoming increasingly appreci-
ated as an important component of neuroinflammatory cascade
in multiple sclerosis. ECM is an extracellular part of all animal tis-
sues, it provides structural support to the cells and regulates inter-
cellular communication, as well as it is a potent source of
inflammatory messengers [19]. Two different forms of ECM exist
in animal tissues. The first one is the basal lamina – clearly defined
deposition composed of networked glycoproteins and fibrous
proteins, including collagen type IV, laminin, nidogen, and heparin
rom postcapillary venules into Virchow–Robin spaces (VRS). There recently egressed
l lamina and pave the way for T lymphocytes into parenchyma. Within VRS and

ptosis in T cells within VRS and in the parenchyma, produce MMP which affect
tiate Th1 and Th17 immune response. Matrix metalloproteinase (MMP)-degraded
ffects. On the other hand, astrocytes produce tissue inhibitors of metalloproteinases
also present antigens to T cells, still their antigen presentation could be stimulatory
without proper co-stimulation. Cytokines produced by Mf, T and Mg from VRS and/

oatractants (such as MCP-1), as well as generation of reactive oxygen intermediates
ndogenous retrovirus, also stimulates ROI and RNI production. These molecules, as
lin sheet. Astrocytes also produce various nerotrophic factors (NTF) which support
itor cells (OPC)-mediated regeneration of myelin.
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sulfate proteoglycan. The second form of ECM is the interstitial ma-
trix-loose network mostly composed of collagen I, and depen-
dently of tissue type, variable amounts of collagen II and V, as
well as different glycoproteins, such as fibronectin, vitronectin,
tenascin and proteoglycans. Besides these basic constituents,
ECM contains numerous other components, as well. Moreover,
the elements of ECM exist in several different isoforms which allow
for a possibility of tissue-specific biochemical diversification of
ECM. Notably, biochemical variety is closely related to functional
diversification of ECM [19].

Structural specificity of ECM is highly emphasized in the CNS
parenchymal basal lamina made by astrocytes, which contains
laminins 1 and 2, unlike endothelial basal lamina which express
laminins 8 and 10 [20]. Significantly, extravasation into VRS is
achieved through interaction of immune cells with laminin 8 in
endothelial basal lamina, while neither laminin 1 nor laminin 2
is involved in the passage of the cells through glia limitans into
CNS parenchyma [20]. Further, specificity of the CNS ECM is that
its interstitial component contains small amount of rigid fibrous
proteins, such as collagens, laminins, fibronectins and high amount
of hyaluronan, chondroitin sulfate and heparan sulfate [21]. All of
the components of the CNS ECM are synthesized by CNS resident
cells, including astrocytes [22,23].

Recent studies have shown a complex modification in the CNS
ECM during the course of EAE and MS, including altered expression
of both basal lamina and interstitial ECM proteins [23–25]. As an
example, perivascular fibrosis, a characteristic feature of chronic
MS lesions is composed of fibrilar collagen, dyglican and decorin.
It is supposed to function as a physical and a biological barrier that
limits neuroinflammation and the expansion of MS lesions [25].
Importantly, astrocytes might be the cells that produce major col-
lagen components of the fibrosis in MS [25], as they were shown to
express these molecules in vitro [26]. As already mentioned, astro-
cytes induce apoptosis in T cells through generation of an ECM
component osteonectin [18]. Thus, in these ways, astrocytes might
contribute to the limitation of neuroinflammation in the CNS.

Moreover, a splice variant of fibronectin CS-1 (CS – connecting
segment) is detectable in astrocytes at the edge of lesions in MS
[27]. CS-1 segment of fibronectin is important for MS pathology
as it is a receptor for leukocyte integrin a4b1, the major adhesion
molecule for the cells invading the CNS [28]. In the process of im-
mune cells admission into the CNS several adhesive interactions
occur, such as between leukocyte function associated antigen
(LFA)-1(aLb2) and intercellular adhesion molecules (ICAM), as well
as between a4b1 integrin and vascular cell adhesion molecule
(VCAM)-1 (reviewed in details by Engelhardt) [29]. The importance
of a4b1 integrin for the immune invasion of the CNS has been prac-
tically shown through the efficacy of natalizumab, a monoclonal
blocking antibody of a4 integrin subunit, in MS therapy [30]. Addi-
tionally, it has been shown in EAE in mice that it is a4b1 integrin
and not a4b7 integrin that is crucial for the entry of immune cells
into the CNS [31,32]. What’s more, a classical a4b1 integrin recep-
tor – VCAM-1 expressed on astrocytes seems to be essential for
infiltration of the CNS parenchyma by encephalitogenic T cells
and for induction of neurological deficits in murine EAE [33]. In
support of the importance of astrocytes as a source of VCAM-1 in
neuroinflammation, it has recently been shown that TMEV induces
expression of this adhesion molecule in murine brain astrocytes
[34]. Thus, through expression of VCAM-1 and fibronectin CS-1
astrocytes actively contribute to the infiltration of cells expressing
a4b1 integrin into the CNS parenchyma. Related to a4b1 integrin,
osteopontin is another component of ECM that has a major impact
on neuroinflammation. Osteopontin is upregulated in EAE, TMEV-
IDD and MS, in which cases it is located in perivascular cuffs
[19,28,35]. It stimulates infiltrating T cells through a4b1 engage-
ment and directs these cells towards pathogenic Th1 and Th17
phenotype. Also, osteopontin stimulates expression of IL-2 which
is significant for T cell survival, simultaneously inhibiting their
apoptosis [19,28]. Significantly, astrocytes might be an important
source of osteopontin during neuroinflammation, as shown in a
rat model of systemic lipopolysaccharide injection [36]. Therefore,
through both generation of CS-1 fibronectin and osteopontin,
astrocytes might contribute to the tissue destruction in MS.

Important factors in ECM remodeling during inflammation are
matrix metalloproteases (MMPs), endopeptidases that belong to
the family of at least 20 different members. They are transcription-
ally regulated by various factors, such as proinflammatory cyto-
kines, growth factors or hormones, while their activity in tissues
is regulated by tissue inhibitors of metalloproteinases (TIMPs).
MMPs disrupt basal lamina of BBB and contribute to parenchymal
damage in neuroinflammation [37]. Infiltration of immune cells
through parenchymal basal lamina requires activity of MMP2 and
MMP9, which cleave distroglycan receptors leading to destabiliza-
tion of astrocyte end-feet anchorage to parenchymal membrane.
Further, MMPs selectively hydrolyze some matrix molecules,
resulting in formation of bioactive peptides which play role of che-
moattractants or immunomodulators, thus affecting activity of im-
mune cells [19]. Expression of MMP 2 and 9 has also been detected
in astrocyte cultures in vitro, as well as in MS lesions in situ [38,39],
thus implying that astrocytes could contribute to ECM decomposi-
tion in neuroinflammatory plaques. Still, the ability of astrocytes to
produce TIMP-1 was reported in EAE and TMEV-IDD in mice [40,41]
and it has been assumed that astrocytes intensively contribute to
the CNS tissue repair through generation of TIMP-1 and consequent
influence on ECM maintenance and remodeling [42].

Finally, components of ECM might be essential for pro-inflam-
matory functions of astrocytes induced by IL-1b. This cytokine is
considered to be a major activator of astrocytic expression and
generation of chemoattractant and adhesion molecules for leuko-
cytes in neuroinflammation [43]. Parenchymal astrocytes are in
close contact with interstitial ECM, which is mainly built of non-ri-
gid structures, including hyaluronan, tenascin-C, and proteogly-
cans. However, after BBB disruption, astrocytes become exposed
to more rigid ECM components released from perivascular ECM,
such as fibronectin, laminin, and fibrillins. These ECM components
are also produced within the CNS parenchyma in response to in-
jury or inflammation. Significantly, interaction of astrocytes with
these components in vitro seems to be essential for IL-1b-induced
reactivity of astrocytes [44].
4. Enemies within and friends in need

Although BBB is impermeable to most immune cells, CNS is con-
stantly patrolled by low numbers of activated T cells which cross
the intact BBB [45,46]. It has been proposed that activated enceph-
alitogenic T cells penetrate BBB non-specifically and recognize CNS
antigens on the surface of local antigen presenting cells within the
parenchyme [47]. Besides dendritic cells, macrophages and
microglial cells, MHC class II-inducible astrocytes are candidates
for the initial presentation of autoantigens to infiltrating T cells
in the CNS parenchyma [45]. Astrocytes have been shown to pro-
cess and present major neuroinflammation-related autoantigens,
such as myelin basic protein (MBP), proteolipid protein (PLP),
and myelin oligodendrocyte glycoprotein (MOG) to encephalito-
genic CD4+ T cells in EAE [48,49]. Expression of MHC class II mol-
ecules on astrocytes was assumed to be crucial for antigen
presentation within the CNS and therefore for pathogenesis of
TMEV-IDD in mice [50]. Importantly, astrocytes seem to be the ma-
jor hosts for TMEV within the CNS, thus are responsible for persis-
tence of TMEV in the CNS, which additionally promotes them as
important antigen-presenters in this disease [51]. Persistent
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infection of astrocytes with HSV and close contact of infected
astrocytes with T cells were detected in HSV-induced encephalitis
[52,53], thus implying that astrocytes might be significant present-
ers of antigens in this animal model, as well. Further, astrocytes
seem to be the major cellular reservoir of neurotropic MHV [54],
and MHV was shown to induce both MHC class I and MHC class
II molecules on astrocytes [55,56]. This relationship suggests that
astrocytes are deeply involved in antigen presentation to T cells
in MHV-induced demyelination of the CNS. Still, antigen-present-
ing capabilities of astrocytes are questionable, especially in vivo.
All the important molecules for efficient antigen presentation to
and activation of CD4+ T cells, including MHC class II molecules
and co-stimulators, such as B7-1, B7-2 and CD40 have been shown
to be present on astrocytes in some experimental settings, but ab-
sent in others (reviewed in details by Dong and Benveniste and
Chastain et al.) [57,58]. Thus, there is also a possibility that astro-
cytes present antigens in the absence of adequate co-stimulation,
shifting CD4+ T cells towards regulatory phenotypes or inducing
apoptosis or anergy in T cells [47]. Accordingly, astrocytes have
been shown capable of inducing regulatory anti-encephalitogenic
cells, which were able to protect animals from EAE [59,60].

Expression of antigen-presenting molecules in astrocytes is
heavily dependent on the stimulation by pro-inflammatory cyto-
kines, such as IFN-c, TNF and IL-1b [57]. Also, their antigen-
presenting capacity seems to be dependent on IL-12 and/or IL-23
[61]. These, and other, inflammatory mediators could act on astro-
cytes at very early stages of neuroinflammation, even before intra-
parenchymal infiltration of T cells, as it has been demonstrated
that breakdown of the solute barrier occurs earlier than the cellular
barrier in EAE [62]. This early leakage of soluble products of intra-
vascular inflammatory cells through BBB generates a highly toxic
environment resulting in vigorous astroglial responses and myelin
and axonal damage at the time when parenchymal T cells are rare
[63]. Astrocytic reactivity was observed before inflammatory infil-
trates in EAE lesions [64], as well as in areas of MS lesions that lack
a significant inflammation [65]. Moreover, astrocytic responses
coincided with the earliest manifestation of axonal damage in
EAE [63]. Evidence also exists for an early role for astrocytes in
other disorders with a neuroinflammatory pathogenic component,
such as amyotrophic lateral sclerosis [66], glaucoma [67], and Par-
kinson’s disease [68]. Notably, human endogenous retrovirus
(HERV)-W family has been frequently associated with neuroin-
flammation, and MS in particular [69]. The HERV-W envelope-en-
coded glycosylated protein, syncytin-1, has increased expression in
astrocytes in MS CNS. Overexpression of syncytin-1 in astroglia in-
duces endoplasmic reticulum (ER) stress chaperones, such as the
old astrocyte-specifically induced substance (OASIS). This chaper-
one, in turn, enhances astrocytic expression of inducible nitric
oxide synthase (iNOS), thus stimulating production of NO, which
has been among the most prominent damage-inducing molecules
in neuroinflammation [70]. Astrocytes and microglia/macrophages
are the most important source of iNOS in neuroinflammation and
they have been shown to produce NO in response to various stim-
uli, including microbial products and components, cytokines and
neurotoxins [70,71]. The importance of NO generation by astro-
cytes was shown in MS [72–74], as well as in EAE [75,76], TMEV-
IDD [77] and MHV-induced encephalitis [78]. Two major patho-
genic T cell populations in EAE and MS are Th1 and Th17 cells, with
IFN-c and IL-17 as their respective signature cytokines [79]. Inter-
estingly, while both rodent macrophages and astrocytes express
iNOS in response to IFN-c, only astrocytes respond by further ele-
vation of NO production in response to simultaneous stimulation
with IFN-c and IL-17 [80]. Also, rat astrocytes are capable of stim-
ulating both IFN-c and IL-17 synthesis in T cells [81]. Furthermore,
astrocytic iNOS has been demonstrated in MS lesions, and it is rec-
ognized as an important pathogenic feature of MS [82].
Astrocytes are well capable of producing various pro- and anti-
inflammatory cytokines, such as IL-1, IL-6, IL-10, IL-12, IL-15, IL-23,
IL-27, IL-33, IFN-a, IFN-b, TGF-b, TNF and various chemokines,
including CCL2 (MCP-1), CCL3, CCL4, CCL5, CCL20, CCL5 (RANTES),
CXCL8 (IL-8), CXCL10 (IP-10) and CXCL12 (SDF-1) [57,61,81,
83–87]. Thus, astrocytes could be involved in the complexity of
cytokine functions in MS pathogenesis [88]. Here, we emphasize
capability of astrocytes to produce IL-12 family cytokines, i.e.,
IL-12, IL-23 and IL-27, as these cytokines are among crucial for
the direction of Th cells towards encephalitogenic Th1 and Th17
phenotype [85,89,90]. Also, astrocyte-derived IL-15 has been
shown essential for the activation of encephalitogenic CD8+ cells
in MS [91]. Further, it is proposed that reactive hypertrophic astro-
cytes contribute to the evolution of MS lesions through production
of various pro-inflammatory mediators which attract immune cells
to the lesions and/or activate these cells within the CNS paren-
chyma [92]. More specifically, reactive astrocytes produce MCP-1
(CCL2), a chemokine which has a crucial role in the recruitment
and activation of myelin-degrading macrophages [92]. Once mono-
cytes invade CNS parenchyma, the ongoing inflammation affects
astrocytes. In heavily infiltrated areas of CNS massive loss of
connexin43 (Cx43) expression is evident in EAE [24]. The loss of
Cx43 affects astrocyte connectivity, as networking of astrocytes
through gap junctions is dependent on this molecule. Importantly,
regions of interrupted astrocytic communication also show axonal
dystrophy, demonstrated by the abnormally dephosphorylated
heavy-chain neurofilament proteins [24]. Astrocytes in these
Cx43-depleted lesions are strongly GFAP-positive, which is a prom-
inent characteristic of reactive astrogliosis [93]. In reactive astrogl-
iosis, astrocytes intensively proliferate and migrate to the lesions.
Their reactivity within the lesions might be pro-inflammatory and
devastating, as exemplified in the previous part of the text. Also,
these cells make a scar that prevents neuro-regeneration in the
affected area [94]. However, in EAE mice that had transgenically tar-
geted ablation of proliferating astrocytes, there was no astrogliosis
and glial scar formation, and this was associated with a pronounced
and significant increase in macrophage, T lymphocyte and neutro-
phil entry into CNS parenchyma, and finally with more severe and
rapidly fulminant clinical course of the disease [95]. These findings
show that besides negative effects of astrogliosis and glial scar for-
mation, reactive astrocytes-formed perivascular barriers restrict the
influx of leukocytes into CNS parenchyma and protect CNS function
during neuroinflammation. Also, through production of anti-
inflammatory cytokines and growth factors astrocytes contribute
to the limitation of neuroinflammation and to the repair of neuronal
tissue [84]. Finally, the maintenance of basic metabolical functions
of astrocytes seems to be essential for prevention of tissue destruc-
tion in neuroinflammation. As an example, it was shown in an
autoimmune inflammatory disease neuromyelitis optica (NMO),
once considered a subtype of MS, that the auto-antibodies specific
to the aquaporin-4 (AQP4) water channel can induce astrocyte
injury which may lead to the accumulation of excitotoxic molecules
and accordingly to damage of oligodendrocytes and neurons [96].

Demyelinination is a major pathologic feature of MS, while inef-
ficient remyelination might cause a long-lasting neurological defi-
cits in patients [97]. Besides infiltrating cells, microglia and
astrocytes contribute to demyelination through phagocytosis of
myelin and generation of molecules toxic to olygodendrocytes.
The ability of astrocytes to perform phagocytosis of myelin was re-
corded in acute MS lesions, where hypertrofic astrocytes were
identified as cells capable of myelin degradation and internaliza-
tion of myelin debris through clathrin-coated pits [98]. Regarding
toxicity of astrocytic products, for instance syncytin-1 expression
in astrocytes leads to the induction of various reactive species,
such as superoxide anion and peroxynitrite, to which oligodendro-
cytes are particularly vulnerable because the level of antioxidants
s L
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might be lower in this cell type [99]. Still, astrocytes are also
important for myelin formation and prevention of demyelination
as demonstrated in Alexander’s disease, a demyelinating disease
that emerges as a consequence of mutations in GFAP. Although
the precise disease mechanisms are unknown, it is appreciated
that the structural integrity of astrocytes, which provide a link be-
tween oligodendrocytes and BBB, seems to be critical for myelin
preservation and axonal support [100]. Interestingly, in the model
of HSV-induced CNS demyelination loss of astrocytes preceded loss
of myelin, thus supporting the idea of the importance of astrocytes
for myelin integrity [101]. Moreover, astrocytes produce a number
of growth factors and related molecules that promote oligodendr-
ocytic generation of myelin, although some of them have an oppo-
site affect [102]. Through these factors and by other means,
astrocytes also affect oligodendrocyte progenitor cells (OPCs) capa-
ble of remyelinating axons in the adult brain. It is supposed that
astrocytes have the potential to significantly influence the extent
to which the inflammatory lesion environment is supportive or
obstructive to OPC recruitment and differentiation, oligodendro-
cyte survival, and remyelination [103].
Table 1
Effects of various approved and potential drugs for MS on astrocytes.

Drug Effect on astrocytes Reference

IFN-b Downregulation of antigen presentation,
cytokine and NO production and MMP
generation

[39,106–
108]

Elevation of neurotrophic factors
Glatiramer

acetate
Elevation of anti-inflammatory cytokines and
neurotrophic factors

[109]

Fingolimod Reduction of reactive astrogliosis [110,111]
Improvement of communication through gap-
junctions

Glucocorticoids Down-regulation of pro-inflammatory
cytokines, MMP and astrogliosis

[112–
114]

Mycophenolate
mofetil

Downregulation of NO synthesis [116]

Rapamycin Inhibition of astroglyosis [118]
Tacrolimus Inhibition of pro-inflammatory cytokines [120]
Methotrexate Induction of astrogliosis, injury [122]
Teriflunomide Downregulation of NO synthesis [125]
Fluoxetine Down-regulation of antigen-presenting

capacity
[130,131]

Elevation of neurotrophic potential
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5. Astrocytes as drug targets

Having in mind the importance of astrocytes for pathogenesis of
MS and other neuroinflammatory diseases, it is rational to direct
therapeutic treatment towards potentiation of beneficial and
reduction of detrimental actions of these cells. Although so far
there has been no astrocyte-specific therapy designed for the treat-
ment of MS, beneficial effect of some of approved and candidate
drugs for the treatment of neuroinflammatory disorders could be
related to modulation of astrocyte functions. There are currently
four drugs that are approved worldwide as therapeutics for MS pa-
tients, i.e., IFN-b, copaxone, mitoxantrone and natalizumab. Fingo-
limod could be added to this list soon, as it has recently been
approved by U.S. Food and Drug Administration as an oral treat-
ment of patients with relapsing forms of MS (http://www.fda.
gov/NewsEvents/Newsroom/PressAnnouncements/
ucm226755.htm). Also, synthetic glucocorticoids are still widely
used for the treatment of relapses in MS patients. Beside these,
numerous drugs, including mycophenolate mofetil, rapamycin,
tacrolimus, leflunomide, azathioprine, cyclophosphamide and
cladribine have been studied for the efficiency in MS [104,105].

Numerous in vitro studies suggest that IFN-b restrains various
inflammatory actions of astrocytes, such as antigen presenting
capacity [106], cytokine and iNOS expression [107] and MMP gen-
eration [39]. Further, elevated levels of a putative astrocytic para-
crine neurotrophic factor S100B are also observed in MS patients
treated with IFN-b [108]. Glatiramer acetate (GA, Copaxone,
Copolymer 1) also elevates expression of neurotrophic factors
and anti-inflammatory cytokines in the CNS of EAE mice [109]. Fin-
golimod (FTY720), the first oral drug approved as MS therapeutic,
acts as a functional antagonist of sphingosine 1-phosphate (S1P)
receptors and its primary targets are S1P1 receptors on lympho-
cytes [110]. Through reduction of S1P1 signaling in lymphocytes,
FTY720 slows egress kinetics of pro-inflammatory Th17 cells from
lymph nodes, decreasing infiltration of the CNS and consequent
neuroinflammation. Still, beneficial effect of fingolimod in neuroin-
flammation seems to be also dependent on its direct influence on
astrocytes [110,111]. Down-regulation of S1P1 signaling in astro-
cytes reduce reactive astrogliosis and improve gap-junctional
communication among these cells, which might contribute to
structural restoration of the CNS parenchyma in MS patients
[110]. Synthetic glucorticoids have been shown to affect various
inflammatory functions of astrocytes, such as cytokine synthesis
[112], MMP generation [113] and GFAP-related astrocytosis [114].
Mycophenolate mofetil has been shown beneficial in a random-
ized, blinded, parallel-group, pilot trial in MS patients [115], and it
was previously shown that its bioactive metabolite mycophenolic
acid inhibits iNOS-mediated NO generation in primary rat astro-
cytes [116]. Rapamycin (sirolimus) has recently been shown to
modulate EAE [117] and to inhibit reactive astrogliosis in a model
of spinal cord injury in rats [118]. Tacrolimus (FK506, fujimycin) is
efficient in relapsing-remitting EAE in mice [119], and is currently
under investigation in a clinical trial in MS patients in Canada
(ClinicalTrials.gov Identifier: NCT00298662). This drug was re-
ported to inhibit IL-1b and TNF synthesis in rat astrocytes [120].
Methotrexate has been shown beneficial in progressive MS [121],
and it was reported that the drug had an intensive effect on astro-
cyte biology [122]. Leflunomide was shown effective in EAE [123]
and its active metabolite teriflunomide has been shown beneficial
in MS clinical trial [124]. Teriflunomide also down-regulates iNOS
expression and NO generation by rat astrocytes [125]. Effect of
mitoxantrone and natalizumab that are approved for MS therapy,
as well as of Azathioprine, Cyclophosphamide and Cladribine that
have beneficial effects in the disease [126–128], to the best of
our knowledge, have not been investigated in relation to astrocyte
functions in neuroinflammation.

Interestingly, fluoxetine (prozac, sarafem), an antidepressant of
the selective serotonin reuptake inhibitor (SSRI) class I, has been
shown to reduce the development of focal inflammatory lesions
in MS patients [129]. Importantly, this drug activates protein ki-
nase A (PKA) in astrocytes, which might be essential for prevention
of MHC class II-dependent antigen presentation by these cells
[130]. It has been previously reported that astrocytes in the white
matter of subjects with MS are deficient in b2 adrenergic receptors
(b2AR) [131]. Signaling through b2AR increases cAMP, leading to
activation of PKA and subsequent phosphorilation and inactivation
of coactivator class II transactivator (CIITA), which is a key regula-
tor of MHC class II molecule transcription. Thus, b2AR deficiency
reduces the suppressive action of PKA on antigen presenting capac-
ity of astrocytes while fluoxetine might compensate this deficiency
through inducing PKA in astrocytes [130]. Moreover, as fluoxetine
also stimulates secretion of neurotrophic S100B from astrocytes
[131], the beneficial effects of the drug in MS, could be partially ex-
plained through enhanced neurotrophic potential of the affected
CNS tissue. The effect of various drugs on astrocytes is presented
in Table 1.
s L
icense

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm226755.htm
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm226755.htm
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm226755.htm
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6. Final remarks

All of the findings presented here imply that astrocytes are
among the crucial players in neuroinflammation. In some phases
of neuroinflammatory diseases it might be beneficial to reduce
astrocytic activity, yet in other loss or disruption of astrocyte func-
tions may underlie or exacerbate the inflammation and patholo-
gies associated with autoimmune diseases of the CNS, including
MS. Therefore, a potential therapeutic approach for MS patients
has to be carefully tailored and to include aspect of a drug influ-
ence on astrocytes. Future investigation should aim to elucidate
if astrocytes are indeed as important for neuroinflammatory etio-
pathogenesis as suggested in many papers, including this one.
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