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MEMBERS OF THE CREB/ATF AND AP1 FAMILY OF TRANSCRIPTION FACTORS 
 ARE INVOLVED IN THE REGULATION OF SOX18 GENE EXPRESSION
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Abstract – The SOX18 transcription factor plays an important role in endothelial cell specification, angiogenesis and 
atherogenesis. By profiling transcription factor interactions (TranSignalTM TF Protein Array) we identified several tran-
scription factors implicated in angiogenesis that have the ability to bind to the SOX18 optimal promoter region in vitro. 
In this report we focused our attention on distinct transcription factors identified by the array as belonging to AP-1 and 
CREB/ATF protein families. In particular, we analyzed the effects of CREB, JunB, c-Jun and ATF3 on SOX18 gene expres-
sion. Functional analysis revealed that CREB acts as a repressor, while JunB, c-Jun and ATF3 act as activators of SOX18 
promoter activity. Our findings indicate that a transcriptional network that includes CREB, JunB, c-Jun and ATF3 could 
be involved in angiogenesis-related transcriptional regulation of the SOX18 gene.
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INTRODUCTION

SOX (sex-determining region Y box) genes consti-
tute a large family of diverse and well-conserved 
genes that encode for transcription factors im-
plicated in the control of various developmental 
processes (Pevny and Lovell-Badge, 1997; Weg-
ner, 1999). They are characterized by the presence 
of a DNA-binding HMG box domain (Pevny and 
Lovell-Badge, 1997; Wegner, 1999) and classified 
into ten groups (A – J), based on HMG box homol-
ogy and intron-exon structure (Bowles et al., 2000). 
The Sox18/SOX18 gene, together with the Sox7/
SOX7 and Sox17/SOX17 genes, belongs to the SOX 
group F (Bowles et al., 2000). It has been shown that 
SoxF family members have a role in vascular devel-
opment and postnatal neovascularization (Cerme-
nati et al., 2008; Matsui et al., 2006). Moreover, the 
functional importance of SOX18 proteins in vascu-
lar development is revealed by the vascular defects 

caused by Sox18/SOX18 mutations in mice and 
humans. Mutations in Sox18 underlie the mutant 
phenotype of ragged mutant mouse (Downes and 
Koopman, 2001) and mutations in human SOX18 
are associated with the hypotrichosis-lymphede-
ma-telangiectasia syndrome (Irrthum et al., 2003). 
Murine Sox18 is demonstrated to be involved in the 
induction of angiogenesis during wound healing 
and tissue repair (Darby et al., 2001) and SOX18 is 
shown to play a role in atherosclerosis in humans 
(Garcia-Ramirez et al., 2005). Furthermore, it has 
been demonstrated that interfering with SOX18 
function inhibits blood vessel formation and subse-
quent tumor growth (Young et al., 2006).

So far, our major goal has been to investigate 
the transcriptional regulation of the human SOX18 
gene. We have characterized the SOX18 promoter 
and demonstrated that the ubiquitous transcrip-
tion factors Sp3 (specificity protein 3), ZBP-89 
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(zinc finger binding protein 89), NF-Y (nuclear 
factor Y) and EGR1 (early growth response protein 
1) are involved in the regulation of its expression 
in the HeLa tumor cell line and in the endothelial 
cell line EA.hy926 (Petrovic et al., 2010a; Petro-
vic et al., 2009; Petrovic and Stevanovic, 2007). 
Furthermore, we have demonstrated that the an-
giogenic factor VEGF and the pro-inflammatory 
cytokine TNF increase the SOX18 protein level in 
human umbilical vein endothelial cells (HUVEC) 
(Petrovic et al., 2010b). Also, we showed that non 
steroidal anti-inflammatory drugs have an inhibi-
tory effect on SOX18 in endothelial cells (Petro-
vic et al., 2010b). Thus, our aim has been to gain 
additional insights into the complex mechanisms 
involved in the regulation of human SOX18 gene 
expression that will improve our understanding 
of its role in physiological and pathophysiological 
processes.

In this study we have extended our search for 
transcription factors involved in the regulation of the 
human SOX18 gene expression. By transcription fac-
tor (TF) interaction profiling (TranSignalTM TF Pro-
tein Array) we have identified several TFs implicated 
in angiogenesis that have the ability to bind to the 
SOX18 optimal promoter region in vitro. Since in sili-
co analysis revealed the presence of a cAMP response 
element (CRE) within the SOX18 optimal promoter, 
we focused our attention on the functional analysis 
of TFs (identified by the TranSignalTM TF Protein 
Array), that bind to CRE/CRE-like elements (Ber-
hane and Boggaram, 2001; Hai and Curran, 1991). 
In particular, we have analyzed the effects of CREB 
(cAMP response element-binding), ATF3 (activat-
ing transcription factor 3), c-Jun and JunB. These 
TFs are members of the basic region/leucine zipper 
(bZIP) family of transcription factors  Hai and Cur-
ran, 1991). The bZIP factors contain a basic domain 
required for interactions with DNA and an adjacent 
leucine zipper domain that facilitates dimerization 
between family members (Busch and Sassone-Corsi, 
1990). 

Here we report that overexpression of the SOX18 
promoter activity in HeLa cells is downregulated by 

CREB and upregulated by ATF3, c-Jun and JunB. 
These findings indicate that CREB/ATF and AP-1 
transcription factors might play important roles in 
the transcriptional regulation of SOX18 gene ex-
pression.

MATERIALS AND METHODS

TranSignalTM TF Protein Array IV

DNA-protein interactions were examined by Tran-
SignalTM TF Protein Array IV (Panomics). This ar-
ray enables the simultaneous interaction profiling 
of the promoter of interest with 42 TFs immobi-
lized on an array membrane. Briefly, we generated 
a 5′ biotinylated DNA probe that encompasses the 
SOX18 promoter region (-700 to +147 bp) in order 
to assess which TFs arrayed on the membrane have 
the potential to bind to the analyzed region. This 
region, encompassing the optimal SOX18 promoter 
(-726 to +166 bp) (Petrovic et al., 2010a; Petrovic 
and Stevanovic, 2007), was amplified using primers 
containing artificial XhoI and HindIII restriction 
sites:

Forward: 5′TACTCGAGAGCCAGCAAGCCACT-
GAG3′ and 

Reverse: 5′CTAAGCTTAACGGAGCGCGGGAGC
GC3′, (restriction sites underlined). 	

The obtained PCR product was digested with the 
corresponding enzymes. The SOX18 promoter frag-
ment, 847 bp in size, was labeled at the 5′ end at the 
XhoI site with biotin using Bio-16-dUTP (Roche) and 
the Klenow fragment (Amersham). Hybridization, 
washing and detection of signals was performed ac-
cording to the manufacturer`s instructions. The spe-
cificity of binding was confirmed by a competition 
assay using 10-times molar excess of the unlabeled 
SOX18 DNA probe.

In silico analysis

MatInspector Release professional 7.2.2 (http://www. 
genomatix.de/) was used to analyze the putative 
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transcription factor binding sites within the SOX18 
promoter region. 

Site-directed mutagenesis

Site-directed mutagenesis was performed by PCR, 
according to the protocol of the QuickChange Multi 
Site-Directed Mutagenesis Kit (Stratagene), using 
an 892pCAT6 construct as a template (Petrovic and 
Stevanovic, 2007). By using oligonucleotide SOX-
18CREBmut - 5’CTCAAAGTCCCTGGTGCTC-
GAGGTTACACATGG3’, a triple exchange variant 
(wt: TGACG; mut: TCGAG) was introduced into 
the CRE binding half-site (Fig. 2A). Following mu-
tagenesis, the mutated construct was sequenced to 
confirm the presence of the required mutation and 
also to verify that no additional mutations were in-
troduced by PCR.

Transient transfection assays

HeLa cells were transfected using the calcium-
phosphate precipitation method, as previously 
described (Petrovic et al., 2010a). Briefly, 1.2 x 
106 cells were seeded in a 10 cm dish and trans-
fected with 10 µg of SOX18 promoter constructs 
892pCAT6/892pCAT6mut, together with 3 µg of 
pCH110 vector (Amersham Pharmacia Biotech) 
and 4 µg of pBluescript (Stratagene). In the co-
transfection assays, 2 µg of either an empty ex-
pression vector (pcDNA3) or the corresponding 
CREB expression vector was used. For ATF3, c-
Jun and JunB, 10 µg of corresponding expression 
vectors were used (pCDNA3 for c-Jun and JunB 
and pTarget for ATF3 expression vector). Extracts 
for β-galactosidase (β-gal) and chloramphenicol 
acetyltransferase (CAT) assays were prepared 48 
h after transfection. β-gal and CAT assays were 
performed as described (Kovacevic Grujicic et 
al., 2005). The normalized CAT activities were 
evaluated as a percentage of the selected pro-
moter construct which was set as 100% activity. 
Mean values of relative CAT activities were com-
pared with Student’s t test using SPSS10.0 soft-
ware. A p value of less than 0.05 was considered 
significant. 

RESULTS AND DISCUSSION

Identification of TFs binding to SOX18 promoter

The TranSignalTM TF Protein Array IV provides 
screening of transcription factor abilities to bind to 
and potentially regulate the expression of a gene of 
interest. This methodology enables the simultaneous 
profiling of interactions between the promoter of in-
terest and 42 TFs immobilized on array membranes.

In order to investigate direct interactions between 
the various transcription factors and the promoter 
region of the human SOX18 gene, we performed a 
TF Protein Array using a DNA probe derived from 
the SOX18 promoter spanning the region -700 to 
+147 bp relative to the transcription start point (tsp). 
In this study, we selected the TranSignalTM TF Pro-
tein Array IV that contains, among others, transcrip-
tion factors implicated in angiogenesis. We tested 
their ability to bind to the fragment encompassing 
the SOX18 promoter region. We detected the bind-
ing of numerous TFs to the SOX18 optimal promoter 
region. The specificity of the binding was confirmed 
by a competition assay using a 10-times molar excess 
of the unlabeled DNA probe. Out of 42 TFs tested, 
22 TFs displayed the ability to specifically bind to 
the SOX18 promoter region (data not shown). Fac-
tors identified by this array belong to EGR (Early 
growth response), ETS (E-twenty six), PPAR (per-
oxisome proliferator-activated receptor), AP-1 (acti-
vator protein 1) and CREB/ATF family of proteins. 
We have previously shown that EGR1 transcription 
factor binds to the minimal promoter region of the 
human SOX18 gene and acts as a potent activator of 
both SOX18 promoter activity and its endogenous 
expression in HeLa and EA.hy926 cells (Petrovic et 
al., 2010a). 

Accordingly, we focused our attention on the 
distinct bZIP TFs, identified by the TF protein array, 
that belong to CREB/ATF and AP-1 protein fami-
lies (Fig. 1), which are implicated in the process of 
angiogenesis (Gerald et al., 2004; Nawa et al., 2002; 
Schmidt et al., 2007; Schorpp-Kistner et al., 1999; 
Zhang et al., 2004). In particular, we investigated the 
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effect of CREB, ATF3 and AP-1 family members (c-
Jun and JunB) on SOX18 promoter activity.

Functional analysis of the CRE binding motif within 
SOX18 promoter

MatInspector analysis of the SOX18 optimal pro-
moter region revealed one putative CRE binding 
half-site positioned at -477 to -473 bp, relative to tsp 
(Fig. 2A). It is interesting that the octamer sequence 
motif encompassing this CRE binding half-site and 
3 downstream nucleotides is almost identical (7 out 
of 8 nucleotides are identical) to the previously de-
scribed CRE element in the c-fos promoter (Fisch et 
al., 1987). Thus, we assume that this motif represents 
a functional regulatory element, since a plethora of 
deviations from the consensus sequence for CRE/
ATF has been reported (Benbrook and Jones, 1994; 
Yin et al., 2008).

In order to functionally characterize this puta-
tive regulatory element, we performed site-directed 
mutagenesis of the CRE half-site within the SOX18 
promoter region as described in Materials and 
Methods (Fig. 2B). The ability of the mutant report-
er construct and its wild type counterpart to drive 

the expression of the reporter gene was analyzed 
in the HeLa cell line. Mutations in the CRE half-
site resulted in approximately 1.4 fold increase of 
SOX18 promoter activity (Fig. 2B). Thus, the func-
tional analysis of the SOX18 promoter suggests that 
the analyzed binding motif represents a negative 
control element. 

Effect of CREB overexpression on SOX18 promoter 
activity

It has been shown that CREB binds to both CRE 
half-sites (TGACG) as well as to full palindro-
mic motifs with different affinities (Mayr and 
Montminy, 2001; Nichols et al., 1992). Since CREB 
is able to repress several target genes (Lamph et 
al., 1990; Lemaigre et al., 1993; Melnikova et al., 
2010; Ofir et al., 1991) and we demonstrated that 
mutations in the CRE half-site resulted in an up-
regulation of SOX18 promoter activity, our further 
goal was to test the effect of ectopically expressed 
CREB on SOX18 promoter activity. Cotrans-
fection experiments in HeLa cells revealed that 
overexpression of CREB leads to a considerable 
reduction of the 892pCAT6 construct activity, by 
approximately 60% (Fig. 3). Accordingly, we hy-
pothesize that CREB acts as a repressor of SOX18 
promoter activity, at least in part, through the CRE 
motif analyzed in this study.

Several lines of evidence implicate CREB in 
angiogenesis. This transcription factor dramati-
cally affects cellular functions such as enhanced 
growth, increased angiogenesis and decreased ap-
optosis, which define the fate of a growing tumor 
(Abramovitch et al., 2004). Also, the expression of 
CCN1, which is known to be involved in tumori-
genesis and angiogenesis, is activated by CREB-
mediated transcriptional activation (Meyuhas et 
al., 2008). In addition, Jin et al. have implicated 
CREB in mediating VEGFR1 (Vascular endothe-
lial growth factor receptor 1) expression in vivo 
(Jin et al., 2009). The results presented here fur-
ther suggest that CREB might exert its role in an-
giogenesis, at least in part, by controlling SOX18 
gene expression.

Fig. 1. DNA-protein interactions between the SOX18 promoter 
region (-700 to +147) and CREB, ATF3, c-Jun and JunB tran-
scription factors. TranSignalTM TF Protein Array IV membrane 
was incubated with a 5’ biotinylated SOX18 promoter fragment 
in the absence or presence of 10 times molar excess of unlabeled 
probe (+ comp). The proteins on the array are spotted in dupli-
cate. HRP markers (spotted in duplicate) that served as a positive 
control of detection are designated as ctrl.
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Effects of overexpression of JunB, and c-Jun ATF3 on 
SOX18 promoter activity

Proteins of the bZIP family bind as dimers to their 
cognate DNA binding sequences (Hai and Curran, 

1991). The sequence of each bZIP domain also gov-
erns whether these proteins form homodimers or 
heterodimers (Alberini, 2009). The specificity of 
function for these proteins is determined primarily 
by the variable combinations between bZIP proteins, 

Fig. 2. The effect of CRE binding half-site mutation on SOX18 promoter activity. A) Schematic illustration of the 892pCAT6mut con-
struct. The positions of the putative CRE binding half-site, relative to tsp, are indicated. The CRE binding half-site is presented in bold; 
mutated nucleotides are underlined. B) Functional analysis of the mutant construct 892pCAT6mut. HeLa cells were transfected with 
either wild type (892pCAT6) or CRE mutated (892pCAT6mut) SOX18 promoter-reporter construct and analyzed for promoter activity 
as a function of CAT activity. Normalized CAT activity was calculated as the percentage of the 892pCAT6 reporter construct activity 
which was set as 100%. The data are presented as the means ± S.E.M. of at least three independent experiments. Mean values of relative 
CAT activities were compared with Student’s t-test. Value of p<0.05 is presented by *.



522 ISIDORA PETROVIĆ  ET AL.

as well as by interactions with other TFs and co-
factors (Hai and Curran, 1991; Hsu et al., 1991; van 
Dam and Castellazzi, 2001). In this report, the bZIP 
proteins JunB, c-Jun and ATF3 that were identified 
by TF Protein Array, were subjected to further func-
tional analysis.

We have investigated the individual effects of 
JunB, c-Jun and ATF3 overexpression on SOX18 
promoter activity in HeLa cells. Co-transfection ex-
periments revealed that JunB, c-Jun and ATF3 act as 
transcriptional activators, upregulating SOX18 pro-
moter activity by 3, 6 and 2- fold, respectively (Fig. 
4). It is interesting to point out that increasing evi-
dence implicates CREB/ATF and AP-1 family mem-
bers in angiogenic responses and programs (Gerald 
et al., 2004; Schorpp-Kistner et al., 1999; Zhang et al., 
2004). For example, Id1, one of the ATF3 target genes, 

regulates angiogenesis by changing the expression 
levels of thrombospondin 1 and VEGF (Benezra et 
al., 2001; Kang  et al., 2003; Ling et al., 2005; Volpert 
et al., 2002). Similar to SOX18, ATF3 expression has 
also been detected in atherosclerotic lesions (Garcia-
Ramirez et al., 2005; Nawa et al., 2002). It has also 
been reported that JunB has a critical role in vascular 
development and tumor angiogenesis by regulating 
VEGF transcription in response to mitogens and hy-
poxia (Schmidt et al., 2007). In addition, DNAzyme-
mediated suppression of c-Jun inhibits the corneal 
neovascularization stimulated by VEGF and also sig-
nificantly reduces tumor growth in an in vivo mouse 
model (Zhang et al., 2004).

Taken together, the presented results indicate 
that a transcriptional network including CREB, 
ATF3, c-Jun and JunB could be involved in the ang-
iogenesis-related transcriptional regulation of SOX18 
gene expression. It should be pointed out that CREB/

Fig. 4. The effects of JunB, c-Jun and ATF3 overexpression on 
SOX18 promoter activity. HeLa cells were transiently cotrans-
fected with SOX18 promoter-reporter construct (892pCAT6), 
together with either pcDNA3 JunB, pcDNA3 c-Jun or pTarget 
ATF3 expression vectors. Normalized CAT activity was calculat-
ed as the percentage of the 892pCAT6 activity in cells co-trans-
fected with corresponding empty vector which was set as 100%. 
The data are presented as the means ± S.E.M. of at least three 
independent experiments. Mean values of relative CAT activities 
were compared with Student’s t-test. Value of p<0.05 is presented 
by * and values of p<0.01 are presented by **.

Fig. 3. The effect of CREB overexpression on SOX18 promot-
er activity. HeLa cells were transiently co-transfected with the 
SOX18 promoter-reporter construct (892pCAT6), together with 
either the empty vector pcDNA3 or the CREB expression vec-
tor. Normalized CAT activity was calculated as the percentage 
of 892pCAT6 activity in cells co-transfected with empty vector 
pcDNA3, which was set as 100%. The data are presented as the 
means ± S.E.M. of three independent experiments. Mean values 
of relative CAT activities were compared with Student’s t-test. 
Value of p<0.01 is presented by **. 
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ATF and AP-1 factors act in response to a variety of 
stimuli, including cytokines, growth factors, stress, 
mechanical injury and ischemia/hypoxia, as also 
shown for SOX18 itself (Cai et al., 2000; Chi et al., 
2006; Darby et al., 2001; Hess et al., 2004; Leonard et 
al., 2008; Nawa et al., 2002; Young et al., 2006). Ac-
cordingly, it would be interesting to further explore 
the interplay of these TFs in SOX18 gene regulation 
under various stress conditions. 
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