Azeem, Muhammad

Link to this page

Authority KeyName Variants
orcid::0000-0003-3066-2593
  • Azeem, Muhammad (5)
Projects

Author's Bibliography

Biotechnological model for ubiquitous mixed petroleum- and bio-based plastics degradation and upcycling into bacterial nanocellulose

Araujo, Jeovan A.; Taxeidis, George; Pereira, Everton H.; Azeem, Muhammad; Pantelić, Brana; Jeremić, Sanja; Ponjavić, Marijana; Chen, Yuanyuan; Mojicević, Marija; Nikodinović-Runić, Jasmina; Topakas, Evangelos; Brennan Fournet, Margaret

(Elsevier, 2024)

TY  - JOUR
AU  - Araujo, Jeovan A.
AU  - Taxeidis, George
AU  - Pereira, Everton H.
AU  - Azeem, Muhammad
AU  - Pantelić, Brana
AU  - Jeremić, Sanja
AU  - Ponjavić, Marijana
AU  - Chen, Yuanyuan
AU  - Mojicević, Marija
AU  - Nikodinović-Runić, Jasmina
AU  - Topakas, Evangelos
AU  - Brennan Fournet, Margaret
PY  - 2024
UR  - https://www.sciencedirect.com/science/article/pii/S0959652624004724
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2315
AB  - Ubiquitous post-consumer plastic waste is often physically mixed combining recalcitrant petroleum-based plastics with bioplastics, forming (petro-bio)plastic streams. Finding appropriate end-of-life (EoL) strategies for mixed (petro-bio)plastic waste is highly pertinent in achieving environmental protection, sustainability for plastic value chain industries including recyclers and government policy makers worldwide. The presence of bioplastic mixed in with polyethylene terephthalate (PET) or other petroleum-based plastic streams poses a substantial drawback to mechanical recycling and strongly impedes the development of sustainable EoL routes. Here, we present a model system for the sustainable management of mixed (petro-bio)plastic waste, demonstrating a biotechnological route through synergy-promoted enzymatic degradation of PET–representing petrochemical polyester plastic–mixed with thermoplastic starch (TPS)–as a model bioplastic. Leaf-branch compost cutinase (LCCICCG) and commercial amylase (AMY) deliver effective depolymerization of this mixed (petro-bio)plastic material, with subsequent bio-upcycling of the mixed waste stream into bacterial nanocellulose (BNC) by Komagataeibacter medellinensis. Compared to LCCICCG and AMY, the LCCICCG/AMY combined treatment synergistically produced a 2.6- and 4.4-fold increase in enzymatic decomposition at 70 °C in four days, respectively, yielding sugars and terephthalic acid (TPA) as the main depolymerization building blocks. Bio-upcycling of post-enzymatic degradation hydrolysates resulted in a high BNC yield of 3 g L−1 after 10 days. This work paves the way for sustainable management routes for challenging mixed recalcitrant plastic and bioplastic waste and prepares opportunities for its participation in the circular production of sustainable eco-polymers.
PB  - Elsevier
T2  - Journal of Cleaner Production
T1  - Biotechnological model for ubiquitous mixed petroleum- and bio-based plastics degradation and upcycling into bacterial nanocellulose
SP  - 141025
DO  - 10.1016/j.jclepro.2024.141025
ER  - 
@article{
author = "Araujo, Jeovan A. and Taxeidis, George and Pereira, Everton H. and Azeem, Muhammad and Pantelić, Brana and Jeremić, Sanja and Ponjavić, Marijana and Chen, Yuanyuan and Mojicević, Marija and Nikodinović-Runić, Jasmina and Topakas, Evangelos and Brennan Fournet, Margaret",
year = "2024",
abstract = "Ubiquitous post-consumer plastic waste is often physically mixed combining recalcitrant petroleum-based plastics with bioplastics, forming (petro-bio)plastic streams. Finding appropriate end-of-life (EoL) strategies for mixed (petro-bio)plastic waste is highly pertinent in achieving environmental protection, sustainability for plastic value chain industries including recyclers and government policy makers worldwide. The presence of bioplastic mixed in with polyethylene terephthalate (PET) or other petroleum-based plastic streams poses a substantial drawback to mechanical recycling and strongly impedes the development of sustainable EoL routes. Here, we present a model system for the sustainable management of mixed (petro-bio)plastic waste, demonstrating a biotechnological route through synergy-promoted enzymatic degradation of PET–representing petrochemical polyester plastic–mixed with thermoplastic starch (TPS)–as a model bioplastic. Leaf-branch compost cutinase (LCCICCG) and commercial amylase (AMY) deliver effective depolymerization of this mixed (petro-bio)plastic material, with subsequent bio-upcycling of the mixed waste stream into bacterial nanocellulose (BNC) by Komagataeibacter medellinensis. Compared to LCCICCG and AMY, the LCCICCG/AMY combined treatment synergistically produced a 2.6- and 4.4-fold increase in enzymatic decomposition at 70 °C in four days, respectively, yielding sugars and terephthalic acid (TPA) as the main depolymerization building blocks. Bio-upcycling of post-enzymatic degradation hydrolysates resulted in a high BNC yield of 3 g L−1 after 10 days. This work paves the way for sustainable management routes for challenging mixed recalcitrant plastic and bioplastic waste and prepares opportunities for its participation in the circular production of sustainable eco-polymers.",
publisher = "Elsevier",
journal = "Journal of Cleaner Production",
title = "Biotechnological model for ubiquitous mixed petroleum- and bio-based plastics degradation and upcycling into bacterial nanocellulose",
pages = "141025",
doi = "10.1016/j.jclepro.2024.141025"
}
Araujo, J. A., Taxeidis, G., Pereira, E. H., Azeem, M., Pantelić, B., Jeremić, S., Ponjavić, M., Chen, Y., Mojicević, M., Nikodinović-Runić, J., Topakas, E.,& Brennan Fournet, M.. (2024). Biotechnological model for ubiquitous mixed petroleum- and bio-based plastics degradation and upcycling into bacterial nanocellulose. in Journal of Cleaner Production
Elsevier., 141025.
https://doi.org/10.1016/j.jclepro.2024.141025
Araujo JA, Taxeidis G, Pereira EH, Azeem M, Pantelić B, Jeremić S, Ponjavić M, Chen Y, Mojicević M, Nikodinović-Runić J, Topakas E, Brennan Fournet M. Biotechnological model for ubiquitous mixed petroleum- and bio-based plastics degradation and upcycling into bacterial nanocellulose. in Journal of Cleaner Production. 2024;:141025.
doi:10.1016/j.jclepro.2024.141025 .
Araujo, Jeovan A., Taxeidis, George, Pereira, Everton H., Azeem, Muhammad, Pantelić, Brana, Jeremić, Sanja, Ponjavić, Marijana, Chen, Yuanyuan, Mojicević, Marija, Nikodinović-Runić, Jasmina, Topakas, Evangelos, Brennan Fournet, Margaret, "Biotechnological model for ubiquitous mixed petroleum- and bio-based plastics degradation and upcycling into bacterial nanocellulose" in Journal of Cleaner Production (2024):141025,
https://doi.org/10.1016/j.jclepro.2024.141025 . .
2
1

A novel Bacillus subtilis BPM12 with high bis(2 hydroxyethyl)terephthalate hydrolytic activity efficiently interacts with virgin and mechanically recycled polyethylene terephthalate

Pantelić, Brana; Araujo, Jeovan; Jeremić, Sanja; Azeem, Muhammad; Attallah, Olivia; Slaperas, Romanos; Mojicević, Marija; Chen, Yuanyuan; Fournet, Margaret Brennan; Topakas, Evangelos; Nikodinović-Runić, Jasmina

(Elsevier, 2023)

TY  - JOUR
AU  - Pantelić, Brana
AU  - Araujo, Jeovan
AU  - Jeremić, Sanja
AU  - Azeem, Muhammad
AU  - Attallah, Olivia
AU  - Slaperas, Romanos
AU  - Mojicević, Marija
AU  - Chen, Yuanyuan
AU  - Fournet, Margaret Brennan
AU  - Topakas, Evangelos
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - https://www.sciencedirect.com/science/article/pii/S2352186423003127
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1983
AB  - Biotechnological treatment of plastic waste has gathered substantial attention as an efficient and generally greener approach for polyethylene terephthalate (PET) depolymerization and upcycling in comparison to mechanical and chemical processes. Nevertheless, a suitable combination of mechanical and microbial degradation may be the key to bringing forward PET upcycling. In this study, a new strain with an excellent bis(2 hydroxyethyl)terephthalate (BHET) degradation potential (1000 mg/mL in 120 h at 30 °C) and wide temperature (20-47 °C) and pH (5-10) tolerance was isolated from a pristine soil sample. It was identified as Bacillus subtilis BPM12 via phenotypical and genome analysis. A number of enzymes with potential polymer degrading activities were identified, including carboxylesterase BPM12CE that was efficiently expressed both, homologously in B. subtilis BPM12 and heterologously in B. subtilis 168 strain. Overexpression of this enzyme enabled B. subtilis 168 to degrade BHET, while the activity of BPM12 increased up to 1.8-fold, confirming its BHET-ase activity. Interaction of B. subtilis BPM12 with virgin PET films and films that were re-extruded up to 5 times mimicking mechanical recycling, revealed the ability of the strain to attach and form biofilm on each surface. Mechanical recycling resulted in PET materials that are more susceptible to chemical hydrolysis, however only slight differences were detected in biological degradation when BPM12 whole-cells or cell-free enzyme preparations were used. Mixed mechano/bio-degradation with whole-cells and crude enzyme mixes from this strain can serve to further increase the percentage of PET- based plastics that can enter circularity.
PB  - Elsevier
T2  - Environmental Technology & Innovation
T1  - A novel Bacillus subtilis BPM12 with high bis(2 hydroxyethyl)terephthalate hydrolytic activity efficiently interacts with virgin and mechanically recycled polyethylene terephthalate
SP  - 103316
DO  - 10.1016/j.eti.2023.103316
ER  - 
@article{
author = "Pantelić, Brana and Araujo, Jeovan and Jeremić, Sanja and Azeem, Muhammad and Attallah, Olivia and Slaperas, Romanos and Mojicević, Marija and Chen, Yuanyuan and Fournet, Margaret Brennan and Topakas, Evangelos and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "Biotechnological treatment of plastic waste has gathered substantial attention as an efficient and generally greener approach for polyethylene terephthalate (PET) depolymerization and upcycling in comparison to mechanical and chemical processes. Nevertheless, a suitable combination of mechanical and microbial degradation may be the key to bringing forward PET upcycling. In this study, a new strain with an excellent bis(2 hydroxyethyl)terephthalate (BHET) degradation potential (1000 mg/mL in 120 h at 30 °C) and wide temperature (20-47 °C) and pH (5-10) tolerance was isolated from a pristine soil sample. It was identified as Bacillus subtilis BPM12 via phenotypical and genome analysis. A number of enzymes with potential polymer degrading activities were identified, including carboxylesterase BPM12CE that was efficiently expressed both, homologously in B. subtilis BPM12 and heterologously in B. subtilis 168 strain. Overexpression of this enzyme enabled B. subtilis 168 to degrade BHET, while the activity of BPM12 increased up to 1.8-fold, confirming its BHET-ase activity. Interaction of B. subtilis BPM12 with virgin PET films and films that were re-extruded up to 5 times mimicking mechanical recycling, revealed the ability of the strain to attach and form biofilm on each surface. Mechanical recycling resulted in PET materials that are more susceptible to chemical hydrolysis, however only slight differences were detected in biological degradation when BPM12 whole-cells or cell-free enzyme preparations were used. Mixed mechano/bio-degradation with whole-cells and crude enzyme mixes from this strain can serve to further increase the percentage of PET- based plastics that can enter circularity.",
publisher = "Elsevier",
journal = "Environmental Technology & Innovation",
title = "A novel Bacillus subtilis BPM12 with high bis(2 hydroxyethyl)terephthalate hydrolytic activity efficiently interacts with virgin and mechanically recycled polyethylene terephthalate",
pages = "103316",
doi = "10.1016/j.eti.2023.103316"
}
Pantelić, B., Araujo, J., Jeremić, S., Azeem, M., Attallah, O., Slaperas, R., Mojicević, M., Chen, Y., Fournet, M. B., Topakas, E.,& Nikodinović-Runić, J.. (2023). A novel Bacillus subtilis BPM12 with high bis(2 hydroxyethyl)terephthalate hydrolytic activity efficiently interacts with virgin and mechanically recycled polyethylene terephthalate. in Environmental Technology & Innovation
Elsevier., 103316.
https://doi.org/10.1016/j.eti.2023.103316
Pantelić B, Araujo J, Jeremić S, Azeem M, Attallah O, Slaperas R, Mojicević M, Chen Y, Fournet MB, Topakas E, Nikodinović-Runić J. A novel Bacillus subtilis BPM12 with high bis(2 hydroxyethyl)terephthalate hydrolytic activity efficiently interacts with virgin and mechanically recycled polyethylene terephthalate. in Environmental Technology & Innovation. 2023;:103316.
doi:10.1016/j.eti.2023.103316 .
Pantelić, Brana, Araujo, Jeovan, Jeremić, Sanja, Azeem, Muhammad, Attallah, Olivia, Slaperas, Romanos, Mojicević, Marija, Chen, Yuanyuan, Fournet, Margaret Brennan, Topakas, Evangelos, Nikodinović-Runić, Jasmina, "A novel Bacillus subtilis BPM12 with high bis(2 hydroxyethyl)terephthalate hydrolytic activity efficiently interacts with virgin and mechanically recycled polyethylene terephthalate" in Environmental Technology & Innovation (2023):103316,
https://doi.org/10.1016/j.eti.2023.103316 . .
6
1
1

Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation

Ferrero, Pablo; Attallah, Olivia A.; Angel Valera, Miguel; Aleksić, Ivana; Azeem, Muhammad; Nikodinović-Runić, Jasmina; Fournet, Margaret Brennan

(Springer, New York, 2022)

TY  - JOUR
AU  - Ferrero, Pablo
AU  - Attallah, Olivia A.
AU  - Angel Valera, Miguel
AU  - Aleksić, Ivana
AU  - Azeem, Muhammad
AU  - Nikodinović-Runić, Jasmina
AU  - Fournet, Margaret Brennan
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1757
AB  - An energy-efficient high throughput pre-treatment of low-density polyethylene (LDPE) using a fast, reactive extrusion (REX) assisted oxidation technique followed by bacterial attachment as an indicator for bio-amenability was studied. Silicon dioxide (SiO2) was selected as a model oxidizing and catalytic reagent with the REX process demonstrated to be effective both in the presence and absence of the catalyst. Optimized 5-min duration pre-treatment conditions were determined using Box-Behnken design (BBD) with respect to screws speed, operating temperature, and concentration of SiO2. The crystallinity index, carbonyl index and weight loss (%) of LDPE were used as the studied responses for BDD. FTIR and DSC spectra of the residual LDPE obtained after pre-treatment with the REX assisted oxidation technique showed a significant increase in residual LDPE carbonyl index from 0 to 1.04 and a decrease of LDPE crystallinity index from 29 to 18%. Up to fivefold molecular weight reductions were also demonstrated using gel permeation chromatography. Optimum LDPE pre-treatment with a duration of 5 min was obtained at low screw speed (50 rpm), operating temperature of 380-390 degrees C and variable concentration of SiO2 (0 and 2% (w/w)) indicating that effective pre-treatment can occur under noncatalytic and catalysed conditions. Biofilms were successfully formed on pre-treated LDPE samples after 14 days of incubation. Furthermore, the technique proposed in this study is expected to provide a high throughput approach for pre-treatment of pervasive recalcitrant PE-based plastics to reduce their bio inertness.
PB  - Springer, New York
T2  - Journal of Polymers and the Environment
T1  - Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation
EP  - 2846
IS  - 7
SP  - 2837
VL  - 30
DO  - 10.1007/s10924-022-02400-w
ER  - 
@article{
author = "Ferrero, Pablo and Attallah, Olivia A. and Angel Valera, Miguel and Aleksić, Ivana and Azeem, Muhammad and Nikodinović-Runić, Jasmina and Fournet, Margaret Brennan",
year = "2022",
abstract = "An energy-efficient high throughput pre-treatment of low-density polyethylene (LDPE) using a fast, reactive extrusion (REX) assisted oxidation technique followed by bacterial attachment as an indicator for bio-amenability was studied. Silicon dioxide (SiO2) was selected as a model oxidizing and catalytic reagent with the REX process demonstrated to be effective both in the presence and absence of the catalyst. Optimized 5-min duration pre-treatment conditions were determined using Box-Behnken design (BBD) with respect to screws speed, operating temperature, and concentration of SiO2. The crystallinity index, carbonyl index and weight loss (%) of LDPE were used as the studied responses for BDD. FTIR and DSC spectra of the residual LDPE obtained after pre-treatment with the REX assisted oxidation technique showed a significant increase in residual LDPE carbonyl index from 0 to 1.04 and a decrease of LDPE crystallinity index from 29 to 18%. Up to fivefold molecular weight reductions were also demonstrated using gel permeation chromatography. Optimum LDPE pre-treatment with a duration of 5 min was obtained at low screw speed (50 rpm), operating temperature of 380-390 degrees C and variable concentration of SiO2 (0 and 2% (w/w)) indicating that effective pre-treatment can occur under noncatalytic and catalysed conditions. Biofilms were successfully formed on pre-treated LDPE samples after 14 days of incubation. Furthermore, the technique proposed in this study is expected to provide a high throughput approach for pre-treatment of pervasive recalcitrant PE-based plastics to reduce their bio inertness.",
publisher = "Springer, New York",
journal = "Journal of Polymers and the Environment",
title = "Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation",
pages = "2846-2837",
number = "7",
volume = "30",
doi = "10.1007/s10924-022-02400-w"
}
Ferrero, P., Attallah, O. A., Angel Valera, M., Aleksić, I., Azeem, M., Nikodinović-Runić, J.,& Fournet, M. B.. (2022). Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation. in Journal of Polymers and the Environment
Springer, New York., 30(7), 2837-2846.
https://doi.org/10.1007/s10924-022-02400-w
Ferrero P, Attallah OA, Angel Valera M, Aleksić I, Azeem M, Nikodinović-Runić J, Fournet MB. Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation. in Journal of Polymers and the Environment. 2022;30(7):2837-2846.
doi:10.1007/s10924-022-02400-w .
Ferrero, Pablo, Attallah, Olivia A., Angel Valera, Miguel, Aleksić, Ivana, Azeem, Muhammad, Nikodinović-Runić, Jasmina, Fournet, Margaret Brennan, "Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation" in Journal of Polymers and the Environment, 30, no. 7 (2022):2837-2846,
https://doi.org/10.1007/s10924-022-02400-w . .
1
2

Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation

Ferrero, Pablo; Attallah, Olivia A.; Angel Valera, Miguel; Aleksić, Ivana; Azeem, Muhammad; Nikodinović-Runić, Jasmina; Fournet, Margaret Brennan

(Springer, New York, 2022)

TY  - JOUR
AU  - Ferrero, Pablo
AU  - Attallah, Olivia A.
AU  - Angel Valera, Miguel
AU  - Aleksić, Ivana
AU  - Azeem, Muhammad
AU  - Nikodinović-Runić, Jasmina
AU  - Fournet, Margaret Brennan
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1575
AB  - An energy-efficient high throughput pre-treatment of low-density polyethylene (LDPE) using a fast, reactive extrusion (REX) assisted oxidation technique followed by bacterial attachment as an indicator for bio-amenability was studied. Silicon dioxide (SiO2) was selected as a model oxidizing and catalytic reagent with the REX process demonstrated to be effective both in the presence and absence of the catalyst. Optimized 5-min duration pre-treatment conditions were determined using Box-Behnken design (BBD) with respect to screws speed, operating temperature, and concentration of SiO2. The crystallinity index, carbonyl index and weight loss (%) of LDPE were used as the studied responses for BDD. FTIR and DSC spectra of the residual LDPE obtained after pre-treatment with the REX assisted oxidation technique showed a significant increase in residual LDPE carbonyl index from 0 to 1.04 and a decrease of LDPE crystallinity index from 29 to 18%. Up to fivefold molecular weight reductions were also demonstrated using gel permeation chromatography. Optimum LDPE pre-treatment with a duration of 5 min was obtained at low screw speed (50 rpm), operating temperature of 380-390 degrees C and variable concentration of SiO2 (0 and 2% (w/w)) indicating that effective pre-treatment can occur under noncatalytic and catalysed conditions. Biofilms were successfully formed on pre-treated LDPE samples after 14 days of incubation. Furthermore, the technique proposed in this study is expected to provide a high throughput approach for pre-treatment of pervasive recalcitrant PE-based plastics to reduce their bio inertness.
PB  - Springer, New York
T2  - Journal of Polymers and the Environment
T1  - Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation
EP  - 2846
IS  - 7
SP  - 2837
VL  - 30
DO  - 10.1007/s10924-022-02400-w
ER  - 
@article{
author = "Ferrero, Pablo and Attallah, Olivia A. and Angel Valera, Miguel and Aleksić, Ivana and Azeem, Muhammad and Nikodinović-Runić, Jasmina and Fournet, Margaret Brennan",
year = "2022",
abstract = "An energy-efficient high throughput pre-treatment of low-density polyethylene (LDPE) using a fast, reactive extrusion (REX) assisted oxidation technique followed by bacterial attachment as an indicator for bio-amenability was studied. Silicon dioxide (SiO2) was selected as a model oxidizing and catalytic reagent with the REX process demonstrated to be effective both in the presence and absence of the catalyst. Optimized 5-min duration pre-treatment conditions were determined using Box-Behnken design (BBD) with respect to screws speed, operating temperature, and concentration of SiO2. The crystallinity index, carbonyl index and weight loss (%) of LDPE were used as the studied responses for BDD. FTIR and DSC spectra of the residual LDPE obtained after pre-treatment with the REX assisted oxidation technique showed a significant increase in residual LDPE carbonyl index from 0 to 1.04 and a decrease of LDPE crystallinity index from 29 to 18%. Up to fivefold molecular weight reductions were also demonstrated using gel permeation chromatography. Optimum LDPE pre-treatment with a duration of 5 min was obtained at low screw speed (50 rpm), operating temperature of 380-390 degrees C and variable concentration of SiO2 (0 and 2% (w/w)) indicating that effective pre-treatment can occur under noncatalytic and catalysed conditions. Biofilms were successfully formed on pre-treated LDPE samples after 14 days of incubation. Furthermore, the technique proposed in this study is expected to provide a high throughput approach for pre-treatment of pervasive recalcitrant PE-based plastics to reduce their bio inertness.",
publisher = "Springer, New York",
journal = "Journal of Polymers and the Environment",
title = "Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation",
pages = "2846-2837",
number = "7",
volume = "30",
doi = "10.1007/s10924-022-02400-w"
}
Ferrero, P., Attallah, O. A., Angel Valera, M., Aleksić, I., Azeem, M., Nikodinović-Runić, J.,& Fournet, M. B.. (2022). Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation. in Journal of Polymers and the Environment
Springer, New York., 30(7), 2837-2846.
https://doi.org/10.1007/s10924-022-02400-w
Ferrero P, Attallah OA, Angel Valera M, Aleksić I, Azeem M, Nikodinović-Runić J, Fournet MB. Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation. in Journal of Polymers and the Environment. 2022;30(7):2837-2846.
doi:10.1007/s10924-022-02400-w .
Ferrero, Pablo, Attallah, Olivia A., Angel Valera, Miguel, Aleksić, Ivana, Azeem, Muhammad, Nikodinović-Runić, Jasmina, Fournet, Margaret Brennan, "Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation" in Journal of Polymers and the Environment, 30, no. 7 (2022):2837-2846,
https://doi.org/10.1007/s10924-022-02400-w . .
1
2

Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization

Nikolaivits, Efstratios; Pantelić, Brana; Azeem, Muhammad; Taxeidis, George; Babu, Ramesh; Topakas, Evangelos; Fournet, Margaret Brennan; Nikodinović-Runić, Jasmina

(Frontiers Media Sa, Lausanne, 2021)

TY  - JOUR
AU  - Nikolaivits, Efstratios
AU  - Pantelić, Brana
AU  - Azeem, Muhammad
AU  - Taxeidis, George
AU  - Babu, Ramesh
AU  - Topakas, Evangelos
AU  - Fournet, Margaret Brennan
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1479
AB  - Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.
PB  - Frontiers Media Sa, Lausanne
T2  - Frontiers in Bioengineering and Biotechnology
T1  - Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization
VL  - 9
DO  - 10.3389/fbioe.2021.696040
ER  - 
@article{
author = "Nikolaivits, Efstratios and Pantelić, Brana and Azeem, Muhammad and Taxeidis, George and Babu, Ramesh and Topakas, Evangelos and Fournet, Margaret Brennan and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.",
publisher = "Frontiers Media Sa, Lausanne",
journal = "Frontiers in Bioengineering and Biotechnology",
title = "Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization",
volume = "9",
doi = "10.3389/fbioe.2021.696040"
}
Nikolaivits, E., Pantelić, B., Azeem, M., Taxeidis, G., Babu, R., Topakas, E., Fournet, M. B.,& Nikodinović-Runić, J.. (2021). Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. in Frontiers in Bioengineering and Biotechnology
Frontiers Media Sa, Lausanne., 9.
https://doi.org/10.3389/fbioe.2021.696040
Nikolaivits E, Pantelić B, Azeem M, Taxeidis G, Babu R, Topakas E, Fournet MB, Nikodinović-Runić J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. in Frontiers in Bioengineering and Biotechnology. 2021;9.
doi:10.3389/fbioe.2021.696040 .
Nikolaivits, Efstratios, Pantelić, Brana, Azeem, Muhammad, Taxeidis, George, Babu, Ramesh, Topakas, Evangelos, Fournet, Margaret Brennan, Nikodinović-Runić, Jasmina, "Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization" in Frontiers in Bioengineering and Biotechnology, 9 (2021),
https://doi.org/10.3389/fbioe.2021.696040 . .
6
61
3
57