Nikolaivits, Efstratios

Link to this page

Authority KeyName Variants
890d5a93-39cf-46c3-aaa5-98c3a8e677aa
  • Nikolaivits, Efstratios (3)
Projects

Author's Bibliography

A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers

Nikolaivits, Efstratios; Taxeidis, George; Gkountela, Christina; Vouyiouka, Stamatina; Maslak, Veselin; Nikodinović-Runić, Jasmina; Topakas, Evangelos

(Elsevier, Amsterdam, 2022)

TY  - JOUR
AU  - Nikolaivits, Efstratios
AU  - Taxeidis, George
AU  - Gkountela, Christina
AU  - Vouyiouka, Stamatina
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
AU  - Topakas, Evangelos
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1630
AB  - The uncontrolled release of plastics in the environment has rendered them ubiquitous around the planet, threatening the wildlife and human health. Biodegradation and valorization of plastics has emerged as an ecofriendly alternative to conventional management techniques. Discovery of novel polymer-degrading enzymes with diversified properties is hence an important task in order to explore different operational conditions for plastic-waste upcycling. In the present study, a barely studied psychrophilic enzyme (MoPE) from the Antractic bacterium Moraxella sp. was heterologously expressed, characterized and its potential in polymer degradation was further investigated. Based on its amino acid composition and structure, MoPE resembled PET-degrading enzymes, sharing features from both mesophilic and thermophilic homologues. MoPE hydrolyzes nonbiodegradable plastics, such as polyethylene terephthalate and polyurethane, as well as biodegradable
PB  - Elsevier, Amsterdam
T2  - Journal of Hazardous Materials
T1  - A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers
VL  - 434
DO  - 10.1016/j.jhazmat.2022.128900
ER  - 
@article{
author = "Nikolaivits, Efstratios and Taxeidis, George and Gkountela, Christina and Vouyiouka, Stamatina and Maslak, Veselin and Nikodinović-Runić, Jasmina and Topakas, Evangelos",
year = "2022",
abstract = "The uncontrolled release of plastics in the environment has rendered them ubiquitous around the planet, threatening the wildlife and human health. Biodegradation and valorization of plastics has emerged as an ecofriendly alternative to conventional management techniques. Discovery of novel polymer-degrading enzymes with diversified properties is hence an important task in order to explore different operational conditions for plastic-waste upcycling. In the present study, a barely studied psychrophilic enzyme (MoPE) from the Antractic bacterium Moraxella sp. was heterologously expressed, characterized and its potential in polymer degradation was further investigated. Based on its amino acid composition and structure, MoPE resembled PET-degrading enzymes, sharing features from both mesophilic and thermophilic homologues. MoPE hydrolyzes nonbiodegradable plastics, such as polyethylene terephthalate and polyurethane, as well as biodegradable",
publisher = "Elsevier, Amsterdam",
journal = "Journal of Hazardous Materials",
title = "A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers",
volume = "434",
doi = "10.1016/j.jhazmat.2022.128900"
}
Nikolaivits, E., Taxeidis, G., Gkountela, C., Vouyiouka, S., Maslak, V., Nikodinović-Runić, J.,& Topakas, E.. (2022). A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. in Journal of Hazardous Materials
Elsevier, Amsterdam., 434.
https://doi.org/10.1016/j.jhazmat.2022.128900
Nikolaivits E, Taxeidis G, Gkountela C, Vouyiouka S, Maslak V, Nikodinović-Runić J, Topakas E. A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. in Journal of Hazardous Materials. 2022;434.
doi:10.1016/j.jhazmat.2022.128900 .
Nikolaivits, Efstratios, Taxeidis, George, Gkountela, Christina, Vouyiouka, Stamatina, Maslak, Veselin, Nikodinović-Runić, Jasmina, Topakas, Evangelos, "A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers" in Journal of Hazardous Materials, 434 (2022),
https://doi.org/10.1016/j.jhazmat.2022.128900 . .
3
24
23

A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers

Nikolaivits, Efstratios; Taxeidis, George; Gkountela, Christina; Vouyiouka, Stamatina; Maslak, Veselin; Nikodinović-Runić, Jasmina; Topakas, Evangelos

(Elsevier, Amsterdam, 2022)

TY  - JOUR
AU  - Nikolaivits, Efstratios
AU  - Taxeidis, George
AU  - Gkountela, Christina
AU  - Vouyiouka, Stamatina
AU  - Maslak, Veselin
AU  - Nikodinović-Runić, Jasmina
AU  - Topakas, Evangelos
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1564
AB  - The uncontrolled release of plastics in the environment has rendered them ubiquitous around the planet, threatening the wildlife and human health. Biodegradation and valorization of plastics has emerged as an ecofriendly alternative to conventional management techniques. Discovery of novel polymer-degrading enzymes with diversified properties is hence an important task in order to explore different operational conditions for plastic-waste upcycling. In the present study, a barely studied psychrophilic enzyme (MoPE) from the Antractic bacterium Moraxella sp. was heterologously expressed, characterized and its potential in polymer degradation was further investigated. Based on its amino acid composition and structure, MoPE resembled PET-degrading enzymes, sharing features from both mesophilic and thermophilic homologues. MoPE hydrolyzes nonbiodegradable plastics, such as polyethylene terephthalate and polyurethane, as well as biodegradable
PB  - Elsevier, Amsterdam
T2  - Journal of Hazardous Materials
T1  - A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers
VL  - 434
DO  - 10.1016/j.jhazmat.2022.128900
ER  - 
@article{
author = "Nikolaivits, Efstratios and Taxeidis, George and Gkountela, Christina and Vouyiouka, Stamatina and Maslak, Veselin and Nikodinović-Runić, Jasmina and Topakas, Evangelos",
year = "2022",
abstract = "The uncontrolled release of plastics in the environment has rendered them ubiquitous around the planet, threatening the wildlife and human health. Biodegradation and valorization of plastics has emerged as an ecofriendly alternative to conventional management techniques. Discovery of novel polymer-degrading enzymes with diversified properties is hence an important task in order to explore different operational conditions for plastic-waste upcycling. In the present study, a barely studied psychrophilic enzyme (MoPE) from the Antractic bacterium Moraxella sp. was heterologously expressed, characterized and its potential in polymer degradation was further investigated. Based on its amino acid composition and structure, MoPE resembled PET-degrading enzymes, sharing features from both mesophilic and thermophilic homologues. MoPE hydrolyzes nonbiodegradable plastics, such as polyethylene terephthalate and polyurethane, as well as biodegradable",
publisher = "Elsevier, Amsterdam",
journal = "Journal of Hazardous Materials",
title = "A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers",
volume = "434",
doi = "10.1016/j.jhazmat.2022.128900"
}
Nikolaivits, E., Taxeidis, G., Gkountela, C., Vouyiouka, S., Maslak, V., Nikodinović-Runić, J.,& Topakas, E.. (2022). A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. in Journal of Hazardous Materials
Elsevier, Amsterdam., 434.
https://doi.org/10.1016/j.jhazmat.2022.128900
Nikolaivits E, Taxeidis G, Gkountela C, Vouyiouka S, Maslak V, Nikodinović-Runić J, Topakas E. A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. in Journal of Hazardous Materials. 2022;434.
doi:10.1016/j.jhazmat.2022.128900 .
Nikolaivits, Efstratios, Taxeidis, George, Gkountela, Christina, Vouyiouka, Stamatina, Maslak, Veselin, Nikodinović-Runić, Jasmina, Topakas, Evangelos, "A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers" in Journal of Hazardous Materials, 434 (2022),
https://doi.org/10.1016/j.jhazmat.2022.128900 . .
3
24
23

Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization

Nikolaivits, Efstratios; Pantelić, Brana; Azeem, Muhammad; Taxeidis, George; Babu, Ramesh; Topakas, Evangelos; Fournet, Margaret Brennan; Nikodinović-Runić, Jasmina

(Frontiers Media Sa, Lausanne, 2021)

TY  - JOUR
AU  - Nikolaivits, Efstratios
AU  - Pantelić, Brana
AU  - Azeem, Muhammad
AU  - Taxeidis, George
AU  - Babu, Ramesh
AU  - Topakas, Evangelos
AU  - Fournet, Margaret Brennan
AU  - Nikodinović-Runić, Jasmina
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1479
AB  - Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.
PB  - Frontiers Media Sa, Lausanne
T2  - Frontiers in Bioengineering and Biotechnology
T1  - Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization
VL  - 9
DO  - 10.3389/fbioe.2021.696040
ER  - 
@article{
author = "Nikolaivits, Efstratios and Pantelić, Brana and Azeem, Muhammad and Taxeidis, George and Babu, Ramesh and Topakas, Evangelos and Fournet, Margaret Brennan and Nikodinović-Runić, Jasmina",
year = "2021",
abstract = "Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.",
publisher = "Frontiers Media Sa, Lausanne",
journal = "Frontiers in Bioengineering and Biotechnology",
title = "Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization",
volume = "9",
doi = "10.3389/fbioe.2021.696040"
}
Nikolaivits, E., Pantelić, B., Azeem, M., Taxeidis, G., Babu, R., Topakas, E., Fournet, M. B.,& Nikodinović-Runić, J.. (2021). Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. in Frontiers in Bioengineering and Biotechnology
Frontiers Media Sa, Lausanne., 9.
https://doi.org/10.3389/fbioe.2021.696040
Nikolaivits E, Pantelić B, Azeem M, Taxeidis G, Babu R, Topakas E, Fournet MB, Nikodinović-Runić J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. in Frontiers in Bioengineering and Biotechnology. 2021;9.
doi:10.3389/fbioe.2021.696040 .
Nikolaivits, Efstratios, Pantelić, Brana, Azeem, Muhammad, Taxeidis, George, Babu, Ramesh, Topakas, Evangelos, Fournet, Margaret Brennan, Nikodinović-Runić, Jasmina, "Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization" in Frontiers in Bioengineering and Biotechnology, 9 (2021),
https://doi.org/10.3389/fbioe.2021.696040 . .
6
63
3
57