Krstić, Aleksandra

Link to this page

Authority KeyName Variants
orcid::0000-0003-0991-7459
  • Krstić, Aleksandra (3)
  • Medić, Aleksandra (2)
Projects

Author's Bibliography

Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems

Bojić, Luka; Pejić, Jelena; Stojkovska, Jasmina; Stevanović, Milena; Medić, Aleksandra; Petrović, Isidora; Milivojević, Milena

(2024)

TY  - CONF
AU  - Bojić, Luka
AU  - Pejić, Jelena
AU  - Stojkovska, Jasmina
AU  - Stevanović, Milena
AU  - Medić, Aleksandra
AU  - Petrović, Isidora
AU  - Milivojević, Milena
PY  - 2024
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/1262
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2366
AB  - Osteosarcoma (OS) is a highly aggressive primary malignant bone tumor that most commonly affects children, adolescents, and young adults. The standard treatment for OS consists of surgical resection and chemotherapy, whereas radiation therapy is recommended for the unresectable tumor. Due to its easy metastasis and recurrence, the 5-year overall survival rate is only 66.5 %. Thus, there is a critical need to recognize the molecular mechanisms underlying OS development and pathogenesis. Traditionally, two-dimensional (2D) cells are widely used in cancer biology and pre-clinical studies. However, 2D models are unable to mimic cell–cell and cell-extracellular matrix interactions which are crucial for adequate cellular function. Three-dimensional (3D) model systems are able to recapitulate key features of human cancer and are recognized as a promising platform for fundamental and translational research. In the present work, we established an osteosarcoma 3D model based on alginate microbeads and studied the effect of combined treatment with doxorubicin (Doxo), widely used chemotherapeutic, and quercetin (Quer), a plant pigment with anticancer properties, on OS model systems.
C3  - Hemijska industrija (Chemical Industry)
T1  - Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems
EP  - 20
IS  - 1S
SP  - 20
VL  - 78
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2366
ER  - 
@conference{
author = "Bojić, Luka and Pejić, Jelena and Stojkovska, Jasmina and Stevanović, Milena and Medić, Aleksandra and Petrović, Isidora and Milivojević, Milena",
year = "2024",
abstract = "Osteosarcoma (OS) is a highly aggressive primary malignant bone tumor that most commonly affects children, adolescents, and young adults. The standard treatment for OS consists of surgical resection and chemotherapy, whereas radiation therapy is recommended for the unresectable tumor. Due to its easy metastasis and recurrence, the 5-year overall survival rate is only 66.5 %. Thus, there is a critical need to recognize the molecular mechanisms underlying OS development and pathogenesis. Traditionally, two-dimensional (2D) cells are widely used in cancer biology and pre-clinical studies. However, 2D models are unable to mimic cell–cell and cell-extracellular matrix interactions which are crucial for adequate cellular function. Three-dimensional (3D) model systems are able to recapitulate key features of human cancer and are recognized as a promising platform for fundamental and translational research. In the present work, we established an osteosarcoma 3D model based on alginate microbeads and studied the effect of combined treatment with doxorubicin (Doxo), widely used chemotherapeutic, and quercetin (Quer), a plant pigment with anticancer properties, on OS model systems.",
journal = "Hemijska industrija (Chemical Industry)",
title = "Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems",
pages = "20-20",
number = "1S",
volume = "78",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2366"
}
Bojić, L., Pejić, J., Stojkovska, J., Stevanović, M., Medić, A., Petrović, I.,& Milivojević, M.. (2024). Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems. in Hemijska industrija (Chemical Industry), 78(1S), 20-20.
https://hdl.handle.net/21.15107/rcub_imagine_2366
Bojić L, Pejić J, Stojkovska J, Stevanović M, Medić A, Petrović I, Milivojević M. Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems. in Hemijska industrija (Chemical Industry). 2024;78(1S):20-20.
https://hdl.handle.net/21.15107/rcub_imagine_2366 .
Bojić, Luka, Pejić, Jelena, Stojkovska, Jasmina, Stevanović, Milena, Medić, Aleksandra, Petrović, Isidora, Milivojević, Milena, "Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems" in Hemijska industrija (Chemical Industry), 78, no. 1S (2024):20-20,
https://hdl.handle.net/21.15107/rcub_imagine_2366 .

Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds

Pejić, Jelena; Mojsin, Marija; Stojkovska, Jasmina; Medić, Aleksandra; Petrović, Isidora; Stevanović, Milena; Obradović, Bojana; Milivojević, Milena

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Pejić, Jelena
AU  - Mojsin, Marija
AU  - Stojkovska, Jasmina
AU  - Medić, Aleksandra
AU  - Petrović, Isidora
AU  - Stevanović, Milena
AU  - Obradović, Bojana
AU  - Milivojević, Milena
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2151
AB  - Introduction: The NT2/D1 embryonal carcinoma cell line represents a well-established in vitro model of
human neurogenesis. It’s widely used for studying neurodevelopmental processes, neurotoxicity, and
neurodegenerative disorders. The utilization of alginate fibers as a 3D cell culture system offers a biocompatible and structurally supportive environment for neural differentiation and maturation of cells,
making it a suitable tool for investigating neurodevelopmental processes.
Methods: In thisstudy, we evaluated the alginate microfibers as a 3D modelsystem for in vitro neural differentiation of NT2/D1 cells.We described the immobilization of NT2/D1 cellsin alginate microfibers and
the effect of propagation in this 3D model on morphological features, viability, and proliferation of immobilized cells. We also assessed the RA-induced initiation of neural differentiation of NT2/D1 cellsin alginate microfibers by comparison with the initiation of neural differentiation in adherent 2D cell culture.
Results: Our results showed that immobilized NT2/D1 acquired morphological features characteristic
of cells propagated in 3D model systems and retain viability, proliferative capacity, and ability to attach
to adherent surfaces. In addition, immobilized NT2/D1 cells preserved neural differentiation capacity.
Upon RA induction we detected a marked decrease in the expression of specific pluripotency-maintaining markers, SOX2, OCT4, and NANOG. Consecutively, the expression of early neural markers, SOX3,
PAX6, and miR219 was significantly increased.
Conclusion: Neural differentiation of NT2/D1 cellsimmobilized within alginate fibersrepresents a highly
promising 3D modelsystem forstudying human neurogenesis and offers a valuable platform forscreening the effect of drugs and bioactive compounds on human neural differentiation.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds
EP  - 113
SP  - 113
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2151
ER  - 
@conference{
author = "Pejić, Jelena and Mojsin, Marija and Stojkovska, Jasmina and Medić, Aleksandra and Petrović, Isidora and Stevanović, Milena and Obradović, Bojana and Milivojević, Milena",
year = "2023",
abstract = "Introduction: The NT2/D1 embryonal carcinoma cell line represents a well-established in vitro model of
human neurogenesis. It’s widely used for studying neurodevelopmental processes, neurotoxicity, and
neurodegenerative disorders. The utilization of alginate fibers as a 3D cell culture system offers a biocompatible and structurally supportive environment for neural differentiation and maturation of cells,
making it a suitable tool for investigating neurodevelopmental processes.
Methods: In thisstudy, we evaluated the alginate microfibers as a 3D modelsystem for in vitro neural differentiation of NT2/D1 cells.We described the immobilization of NT2/D1 cellsin alginate microfibers and
the effect of propagation in this 3D model on morphological features, viability, and proliferation of immobilized cells. We also assessed the RA-induced initiation of neural differentiation of NT2/D1 cellsin alginate microfibers by comparison with the initiation of neural differentiation in adherent 2D cell culture.
Results: Our results showed that immobilized NT2/D1 acquired morphological features characteristic
of cells propagated in 3D model systems and retain viability, proliferative capacity, and ability to attach
to adherent surfaces. In addition, immobilized NT2/D1 cells preserved neural differentiation capacity.
Upon RA induction we detected a marked decrease in the expression of specific pluripotency-maintaining markers, SOX2, OCT4, and NANOG. Consecutively, the expression of early neural markers, SOX3,
PAX6, and miR219 was significantly increased.
Conclusion: Neural differentiation of NT2/D1 cellsimmobilized within alginate fibersrepresents a highly
promising 3D modelsystem forstudying human neurogenesis and offers a valuable platform forscreening the effect of drugs and bioactive compounds on human neural differentiation.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds",
pages = "113-113",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2151"
}
Pejić, J., Mojsin, M., Stojkovska, J., Medić, A., Petrović, I., Stevanović, M., Obradović, B.,& Milivojević, M.. (2023). Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 113-113.
https://hdl.handle.net/21.15107/rcub_imagine_2151
Pejić J, Mojsin M, Stojkovska J, Medić A, Petrović I, Stevanović M, Obradović B, Milivojević M. Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:113-113.
https://hdl.handle.net/21.15107/rcub_imagine_2151 .
Pejić, Jelena, Mojsin, Marija, Stojkovska, Jasmina, Medić, Aleksandra, Petrović, Isidora, Stevanović, Milena, Obradović, Bojana, Milivojević, Milena, "Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):113-113,
https://hdl.handle.net/21.15107/rcub_imagine_2151 .

Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells

Krstić, Aleksandra; Pavić, Aleksandar; Balint, Vanda; Lazić, Stefan; Avdović, Edina; Marković, Zoran; Pejić, Jelena; Stevanović, Milena; Petrović, Isidora

(2022)

TY  - CONF
AU  - Krstić, Aleksandra
AU  - Pavić, Aleksandar
AU  - Balint, Vanda
AU  - Lazić, Stefan
AU  - Avdović, Edina
AU  - Marković, Zoran
AU  - Pejić, Jelena
AU  - Stevanović, Milena
AU  - Petrović, Isidora
PY  - 2022
UR  - https://doi.org/10.21175/rad.spr.abstr.book.2022.9.3
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1866
AB  - Pancreatic carcinoma represents one of the most lethal malignant diseases in the world although some
progress has been made in treating the disease in the past decades. Current multi-agent treatment options
have improved the overall survival of patients, but more effective treatment strategies are still needed. In this
paper we have characterized anticancer potential of coumarin-palladium(II) complex against pancreatic
carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were
assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented
results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being
effective at micromolar concentrations (0.5 M). Treatments induced apoptosis, increased BAX/BCL-2 ratio
and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in
pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma
xenografts resulted in significant reduction of tumor mass, while did not provoke any adverse toxic effects
including hepatotoxicity. Presented results indicate the great potential of tested compound and the
perspective of its further development towards pancreatic cancer therapy.
C3  - RAD International concerence on radiation in various fields of research
T1  - Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells
IS  - Spring Edition
SP  - 34
DO  - 10.21175/rad.spr.abstr.book.2022.9.3
ER  - 
@conference{
author = "Krstić, Aleksandra and Pavić, Aleksandar and Balint, Vanda and Lazić, Stefan and Avdović, Edina and Marković, Zoran and Pejić, Jelena and Stevanović, Milena and Petrović, Isidora",
year = "2022",
abstract = "Pancreatic carcinoma represents one of the most lethal malignant diseases in the world although some
progress has been made in treating the disease in the past decades. Current multi-agent treatment options
have improved the overall survival of patients, but more effective treatment strategies are still needed. In this
paper we have characterized anticancer potential of coumarin-palladium(II) complex against pancreatic
carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were
assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented
results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being
effective at micromolar concentrations (0.5 M). Treatments induced apoptosis, increased BAX/BCL-2 ratio
and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in
pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma
xenografts resulted in significant reduction of tumor mass, while did not provoke any adverse toxic effects
including hepatotoxicity. Presented results indicate the great potential of tested compound and the
perspective of its further development towards pancreatic cancer therapy.",
journal = "RAD International concerence on radiation in various fields of research",
title = "Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells",
number = "Spring Edition",
pages = "34",
doi = "10.21175/rad.spr.abstr.book.2022.9.3"
}
Krstić, A., Pavić, A., Balint, V., Lazić, S., Avdović, E., Marković, Z., Pejić, J., Stevanović, M.,& Petrović, I.. (2022). Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells. in RAD International concerence on radiation in various fields of research(Spring Edition), 34.
https://doi.org/10.21175/rad.spr.abstr.book.2022.9.3
Krstić A, Pavić A, Balint V, Lazić S, Avdović E, Marković Z, Pejić J, Stevanović M, Petrović I. Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells. in RAD International concerence on radiation in various fields of research. 2022;(Spring Edition):34.
doi:10.21175/rad.spr.abstr.book.2022.9.3 .
Krstić, Aleksandra, Pavić, Aleksandar, Balint, Vanda, Lazić, Stefan, Avdović, Edina, Marković, Zoran, Pejić, Jelena, Stevanović, Milena, Petrović, Isidora, "Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells" in RAD International concerence on radiation in various fields of research, no. Spring Edition (2022):34,
https://doi.org/10.21175/rad.spr.abstr.book.2022.9.3 . .

Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes

Balint, Vanda; Stanisavljević Ninković, Danijela; Anastasov, Nataša; Lazić, Stefan; Kovačević-Grujičić, Nataša; Stevanović, Milena; Lazić, Andrijana; Krstić, Aleksandra; Pejić, Jelena

(2022)

TY  - CONF
AU  - Balint, Vanda
AU  - Stanisavljević Ninković, Danijela
AU  - Anastasov, Nataša
AU  - Lazić, Stefan
AU  - Kovačević-Grujičić, Nataša
AU  - Stevanović, Milena
AU  - Lazić, Andrijana
AU  - Krstić, Aleksandra
AU  - Pejić, Jelena
PY  - 2022
UR  - https://doi.org/10.21175/rad.spr.abstr.book.2022.22.1
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1864
AB  - Astrocytes are the main homeostatic cells in the central nervous system (CNS) that provide mechanical,
metabolic, and trophic support to neurons. Disruption of their physiological role or acquisition of
senescence-associated phenotype can contribute to the CNS dysfunction and pathology. However, molecular
mechanisms underlying the complex physiology of astrocytes are explored insufficiently. Recent studies have
shown that miRNAs are involved in the regulation of astrocyte function through different mechanisms.
Although miR-21 has been reported as an astrocytic miRNA with an important role in astrogliosis, no link
between this miRNA and cellular senescence of astrocytes has been identified. To address the role of miR-21
in astrocytes, with special focus on cellular senescence, we used NT2/A (astrocytes derived from NT2/D1
cells). Downregulation of miR-21 expression in both immature and mature NT2/A by the antisense
technology induced the arrest of cell growth and premature cellular senescence, as indicated by senescence
hallmarks such as increased expression of cell cycle inhibitors p21 and p53 and augmented senescenceassociated
β-galactosidase activity. Additionally, in silico analysis predicted many of the genes, previously
shown to be upregulated in astrocytes with the irradiation-induced senescence, as miR-21 targets. Taken
together, our results point to miR-21 as a potential regulator of astrocyte senescence. To the best of our
knowledge, these are the first data showing the link between miR-21 and cellular senescence of astrocytes.
Since senescent astrocytes are associated with different CNS pathologies, development of novel therapeutic
strategies based on miRNA manipulation could prevent senescence and may improve the physiological
outcome.
C3  - RAD International concerence on radiation in various fields of research
T1  - Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes
IS  - Spring Edition
SP  - 90
DO  - 10.21175/rad.spr.abstr.book.2022.22.1
ER  - 
@conference{
author = "Balint, Vanda and Stanisavljević Ninković, Danijela and Anastasov, Nataša and Lazić, Stefan and Kovačević-Grujičić, Nataša and Stevanović, Milena and Lazić, Andrijana and Krstić, Aleksandra and Pejić, Jelena",
year = "2022",
abstract = "Astrocytes are the main homeostatic cells in the central nervous system (CNS) that provide mechanical,
metabolic, and trophic support to neurons. Disruption of their physiological role or acquisition of
senescence-associated phenotype can contribute to the CNS dysfunction and pathology. However, molecular
mechanisms underlying the complex physiology of astrocytes are explored insufficiently. Recent studies have
shown that miRNAs are involved in the regulation of astrocyte function through different mechanisms.
Although miR-21 has been reported as an astrocytic miRNA with an important role in astrogliosis, no link
between this miRNA and cellular senescence of astrocytes has been identified. To address the role of miR-21
in astrocytes, with special focus on cellular senescence, we used NT2/A (astrocytes derived from NT2/D1
cells). Downregulation of miR-21 expression in both immature and mature NT2/A by the antisense
technology induced the arrest of cell growth and premature cellular senescence, as indicated by senescence
hallmarks such as increased expression of cell cycle inhibitors p21 and p53 and augmented senescenceassociated
β-galactosidase activity. Additionally, in silico analysis predicted many of the genes, previously
shown to be upregulated in astrocytes with the irradiation-induced senescence, as miR-21 targets. Taken
together, our results point to miR-21 as a potential regulator of astrocyte senescence. To the best of our
knowledge, these are the first data showing the link between miR-21 and cellular senescence of astrocytes.
Since senescent astrocytes are associated with different CNS pathologies, development of novel therapeutic
strategies based on miRNA manipulation could prevent senescence and may improve the physiological
outcome.",
journal = "RAD International concerence on radiation in various fields of research",
title = "Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes",
number = "Spring Edition",
pages = "90",
doi = "10.21175/rad.spr.abstr.book.2022.22.1"
}
Balint, V., Stanisavljević Ninković, D., Anastasov, N., Lazić, S., Kovačević-Grujičić, N., Stevanović, M., Lazić, A., Krstić, A.,& Pejić, J.. (2022). Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes. in RAD International concerence on radiation in various fields of research(Spring Edition), 90.
https://doi.org/10.21175/rad.spr.abstr.book.2022.22.1
Balint V, Stanisavljević Ninković D, Anastasov N, Lazić S, Kovačević-Grujičić N, Stevanović M, Lazić A, Krstić A, Pejić J. Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes. in RAD International concerence on radiation in various fields of research. 2022;(Spring Edition):90.
doi:10.21175/rad.spr.abstr.book.2022.22.1 .
Balint, Vanda, Stanisavljević Ninković, Danijela, Anastasov, Nataša, Lazić, Stefan, Kovačević-Grujičić, Nataša, Stevanović, Milena, Lazić, Andrijana, Krstić, Aleksandra, Pejić, Jelena, "Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes" in RAD International concerence on radiation in various fields of research, no. Spring Edition (2022):90,
https://doi.org/10.21175/rad.spr.abstr.book.2022.22.1 . .
1

Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells

Krstić, Aleksandra; Pavić, Aleksandar; Avdović, Edina H.; Marković, Zoran; Stevanović, Milena; Petrović, Isidora

(MDPI, Basel, 2022)

TY  - JOUR
AU  - Krstić, Aleksandra
AU  - Pavić, Aleksandar
AU  - Avdović, Edina H.
AU  - Marković, Zoran
AU  - Stevanović, Milena
AU  - Petrović, Isidora
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1559
AB  - Pancreatic carcinoma still represents one of the most lethal malignant diseases in the world although some progress has been made in treating the disease in the past decades. Current multi-agent treatment options have improved the overall survival of patients, however, more effective treatment strategies are still needed. In this paper we have characterized the anticancer potential of coumarin-palladium(II) complex against pancreatic carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being effective at micromolar concentrations (0.5 mu M). Treatments induced apoptosis, increased BAX/BCL-2 ratio and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma xenografts resulted in significant reduction in tumor mass, without provoking any adverse toxic effects including hepatotoxicity. Presented results indicate the great potential of the tested compound and the perspective of its further development towards pancreatic cancer therapy.
PB  - MDPI, Basel
T2  - Molecules
T1  - Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells
IS  - 7
VL  - 27
DO  - 10.3390/molecules27072115
ER  - 
@article{
author = "Krstić, Aleksandra and Pavić, Aleksandar and Avdović, Edina H. and Marković, Zoran and Stevanović, Milena and Petrović, Isidora",
year = "2022",
abstract = "Pancreatic carcinoma still represents one of the most lethal malignant diseases in the world although some progress has been made in treating the disease in the past decades. Current multi-agent treatment options have improved the overall survival of patients, however, more effective treatment strategies are still needed. In this paper we have characterized the anticancer potential of coumarin-palladium(II) complex against pancreatic carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being effective at micromolar concentrations (0.5 mu M). Treatments induced apoptosis, increased BAX/BCL-2 ratio and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma xenografts resulted in significant reduction in tumor mass, without provoking any adverse toxic effects including hepatotoxicity. Presented results indicate the great potential of the tested compound and the perspective of its further development towards pancreatic cancer therapy.",
publisher = "MDPI, Basel",
journal = "Molecules",
title = "Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells",
number = "7",
volume = "27",
doi = "10.3390/molecules27072115"
}
Krstić, A., Pavić, A., Avdović, E. H., Marković, Z., Stevanović, M.,& Petrović, I.. (2022). Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells. in Molecules
MDPI, Basel., 27(7).
https://doi.org/10.3390/molecules27072115
Krstić A, Pavić A, Avdović EH, Marković Z, Stevanović M, Petrović I. Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells. in Molecules. 2022;27(7).
doi:10.3390/molecules27072115 .
Krstić, Aleksandra, Pavić, Aleksandar, Avdović, Edina H., Marković, Zoran, Stevanović, Milena, Petrović, Isidora, "Coumarin-Palladium(II) Complex Acts as a Potent and Non-Toxic Anticancer Agent against Pancreatic Carcinoma Cells" in Molecules, 27, no. 7 (2022),
https://doi.org/10.3390/molecules27072115 . .
6
6