Nikolić, Nina

Link to this page

Authority KeyName Variants
orcid::0000-0002-4214-3291
  • Nikolić, Nina (2)
Projects

Author's Bibliography

Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions

Kostić, Ljiljana; Nikolić, Nina; Bosnić, Dragana; Samardžić, Jelena; Nikolić, Miroslav

(Springer, Dordrecht, 2017)

TY  - JOUR
AU  - Kostić, Ljiljana
AU  - Nikolić, Nina
AU  - Bosnić, Dragana
AU  - Samardžić, Jelena
AU  - Nikolić, Miroslav
PY  - 2017
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1029
AB  - Although silicon (Si) is known to improve plant growth under low phosphorus (P) conditions, the in planta mechanisms responsible for this effect are still unknown. Here, we investigated the role of Si on P uptake along with the expression of Pi transporters in wheat (Triticum aestivum L.) grown in low P acid soil in comparison with P fertilization and liming. A combined approach was performed including analyses of rhizosphere soil, tissue P content, the expression of the root Pi transporter genes (TaPHT1.1 and TaPHT1.2), and the root exudation of citrate and malate. Supply of Si in a form of Na2SiO3 increased shoot P concentration to an adequate level in the range of P-fertilized plants. Silicon ameliorated low soil pH and high Al3+ comparable to the effect of liming. The in planta effect of Si on up-regulating the expression of TaPHT1.1 and TaPHT1.2 was several fold higher and consequently P uptake doubled compared to both P fertilization and liming. In addition, Si directly stimulated root Pi acquisition by prominently increasing both malate and citrate exudation rate. Application of Si increased root exudation of organic acids that mobilize Pi in the rhizosphere and up-regulated Pi transporters in wheat roots.
PB  - Springer, Dordrecht
T2  - Plant and Soil
T1  - Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions
EP  - 455
IS  - 1-2
SP  - 447
VL  - 419
DO  - 10.1007/s11104-017-3364-0
ER  - 
@article{
author = "Kostić, Ljiljana and Nikolić, Nina and Bosnić, Dragana and Samardžić, Jelena and Nikolić, Miroslav",
year = "2017",
abstract = "Although silicon (Si) is known to improve plant growth under low phosphorus (P) conditions, the in planta mechanisms responsible for this effect are still unknown. Here, we investigated the role of Si on P uptake along with the expression of Pi transporters in wheat (Triticum aestivum L.) grown in low P acid soil in comparison with P fertilization and liming. A combined approach was performed including analyses of rhizosphere soil, tissue P content, the expression of the root Pi transporter genes (TaPHT1.1 and TaPHT1.2), and the root exudation of citrate and malate. Supply of Si in a form of Na2SiO3 increased shoot P concentration to an adequate level in the range of P-fertilized plants. Silicon ameliorated low soil pH and high Al3+ comparable to the effect of liming. The in planta effect of Si on up-regulating the expression of TaPHT1.1 and TaPHT1.2 was several fold higher and consequently P uptake doubled compared to both P fertilization and liming. In addition, Si directly stimulated root Pi acquisition by prominently increasing both malate and citrate exudation rate. Application of Si increased root exudation of organic acids that mobilize Pi in the rhizosphere and up-regulated Pi transporters in wheat roots.",
publisher = "Springer, Dordrecht",
journal = "Plant and Soil",
title = "Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions",
pages = "455-447",
number = "1-2",
volume = "419",
doi = "10.1007/s11104-017-3364-0"
}
Kostić, L., Nikolić, N., Bosnić, D., Samardžić, J.,& Nikolić, M.. (2017). Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. in Plant and Soil
Springer, Dordrecht., 419(1-2), 447-455.
https://doi.org/10.1007/s11104-017-3364-0
Kostić L, Nikolić N, Bosnić D, Samardžić J, Nikolić M. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. in Plant and Soil. 2017;419(1-2):447-455.
doi:10.1007/s11104-017-3364-0 .
Kostić, Ljiljana, Nikolić, Nina, Bosnić, Dragana, Samardžić, Jelena, Nikolić, Miroslav, "Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions" in Plant and Soil, 419, no. 1-2 (2017):447-455,
https://doi.org/10.1007/s11104-017-3364-0 . .
2
154
12
147

Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat

Kostić, Ljiljana; Nikolić, Nina; Samardžić, Jelena; Milisavljević, Mira; Maksimović, Vuk; Cakmak, Dragan; Manojlović, Dragan; Nikolić, Miroslav

(Springer, New York, 2015)

TY  - JOUR
AU  - Kostić, Ljiljana
AU  - Nikolić, Nina
AU  - Samardžić, Jelena
AU  - Milisavljević, Mira
AU  - Maksimović, Vuk
AU  - Cakmak, Dragan
AU  - Manojlović, Dragan
AU  - Nikolić, Miroslav
PY  - 2015
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/890
AB  - We studied the effect of liming and P fertilization of extremely acid soil (accidently acidified by sulfidic mining waste) on P availability and the subsequent adaptive responses of wheat roots. The wheat plants were grown in rhizoboxes allowing precise sampling of rhizosphere and bulk soil for sequential extraction of P fractions and determination of exchangeable Al. Root exudates were collected by pieces of paper for electrophoresis and subjected to HPLC analysis. Expression of organic anions and P-i transporter genes was analyzed by a real-time quantitative PCR. The concomitant application of lime with P fertilization increased the concentrations of plant-available P fractions in both rhizosphere and bulk compartments. The applied soil amendments strongly affected plant growth, biomass partitioning and shoot P accumulation. Liming enhanced root exudation of citrate in P unfertilized plants, while the high malate efflux was maintained until both P deficiency and Al toxicity were eliminated by the amendments. We showed the importance of liming for recovering of P acquisition potential of wheat roots, which can be strongly impaired in acid soils. Our results clearly demonstrated that P-deficient roots not subjected to Al stress in the limed soil can maintain high efflux of malate and even increase efflux of citrate along with the enhanced expression of related anion transporters (TaMATE1 and TaALMT1).
PB  - Springer, New York
T2  - Biology and Fertility of Soils
T1  - Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat
EP  - 298
IS  - 3
SP  - 289
VL  - 51
DO  - 10.1007/s00374-014-0975-y
ER  - 
@article{
author = "Kostić, Ljiljana and Nikolić, Nina and Samardžić, Jelena and Milisavljević, Mira and Maksimović, Vuk and Cakmak, Dragan and Manojlović, Dragan and Nikolić, Miroslav",
year = "2015",
abstract = "We studied the effect of liming and P fertilization of extremely acid soil (accidently acidified by sulfidic mining waste) on P availability and the subsequent adaptive responses of wheat roots. The wheat plants were grown in rhizoboxes allowing precise sampling of rhizosphere and bulk soil for sequential extraction of P fractions and determination of exchangeable Al. Root exudates were collected by pieces of paper for electrophoresis and subjected to HPLC analysis. Expression of organic anions and P-i transporter genes was analyzed by a real-time quantitative PCR. The concomitant application of lime with P fertilization increased the concentrations of plant-available P fractions in both rhizosphere and bulk compartments. The applied soil amendments strongly affected plant growth, biomass partitioning and shoot P accumulation. Liming enhanced root exudation of citrate in P unfertilized plants, while the high malate efflux was maintained until both P deficiency and Al toxicity were eliminated by the amendments. We showed the importance of liming for recovering of P acquisition potential of wheat roots, which can be strongly impaired in acid soils. Our results clearly demonstrated that P-deficient roots not subjected to Al stress in the limed soil can maintain high efflux of malate and even increase efflux of citrate along with the enhanced expression of related anion transporters (TaMATE1 and TaALMT1).",
publisher = "Springer, New York",
journal = "Biology and Fertility of Soils",
title = "Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat",
pages = "298-289",
number = "3",
volume = "51",
doi = "10.1007/s00374-014-0975-y"
}
Kostić, L., Nikolić, N., Samardžić, J., Milisavljević, M., Maksimović, V., Cakmak, D., Manojlović, D.,& Nikolić, M.. (2015). Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. in Biology and Fertility of Soils
Springer, New York., 51(3), 289-298.
https://doi.org/10.1007/s00374-014-0975-y
Kostić L, Nikolić N, Samardžić J, Milisavljević M, Maksimović V, Cakmak D, Manojlović D, Nikolić M. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. in Biology and Fertility of Soils. 2015;51(3):289-298.
doi:10.1007/s00374-014-0975-y .
Kostić, Ljiljana, Nikolić, Nina, Samardžić, Jelena, Milisavljević, Mira, Maksimović, Vuk, Cakmak, Dragan, Manojlović, Dragan, Nikolić, Miroslav, "Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat" in Biology and Fertility of Soils, 51, no. 3 (2015):289-298,
https://doi.org/10.1007/s00374-014-0975-y . .
23
15
23