info:eu-repo/grantAgreement/MESTD/inst-2020/200042/RS//

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200042/RS//

Authors

Publications

YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION

Ćurčić, Jovana; Malešević, Milka; Dinić, Miroslav; Novović, Katarina; Vasiljević, Zorica; Stanisavljević, Nemanja; Jovčić, Branko

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Ćurčić, Jovana
AU  - Malešević, Milka
AU  - Dinić, Miroslav
AU  - Novović, Katarina
AU  - Vasiljević, Zorica
AU  - Stanisavljević, Nemanja
AU  - Jovčić, Branko
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2380
AB  - Pseudomonas aeruginosa is a Gram-negative
pathogen responsible for frequent hospital-acquired
infections of the bloodstream, the respiratory
tract, and the urinary tract. Quorum
quenching enzymes are recognized as an alternative
antivirulence approach targeting pathogenic
bacteria. The efficacy of YtnP lactonase in
reducing the virulence of P. aeruginosa MMA83
in vivo using Caenorhabditis elegans as a model
system was investigated. The recombinant YtnP
lactonase exhibits no cytotoxicity, demonstrated
by its lack of harmful effects on both the
immortalized human HaCaT cell line and two
strains of C. elegans (AU37 and N2 wild-type). In
a toxin-mediated killing liquid assay, the survival
rates of C. elegans AU37 mutant and N2 wildtype
strains infected with the clinical isolate P.
aeruginosa MMA83 significantly increased when
pre-treated with YtnP lactonase, compared to
untreated controls. Considering that virulence
factors expression is regulated by quorum sensing
(QS) signaling it is hypothesized that YtnP
lactonase prolongs the life span of C. elegans
by downregulating the QS and expression of
virulence factors of MMA83. The protective effects
of YtnP lactonase against MMA83-induced
pathogenicity in C. elegans, coupled with its absence
of cytotoxicity, position YtnP lactonase as
a promising prophylactic agent with antivirulence
properties.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION
EP  - 143
SP  - 143
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2380
ER  - 
@conference{
author = "Ćurčić, Jovana and Malešević, Milka and Dinić, Miroslav and Novović, Katarina and Vasiljević, Zorica and Stanisavljević, Nemanja and Jovčić, Branko",
year = "2024",
abstract = "Pseudomonas aeruginosa is a Gram-negative
pathogen responsible for frequent hospital-acquired
infections of the bloodstream, the respiratory
tract, and the urinary tract. Quorum
quenching enzymes are recognized as an alternative
antivirulence approach targeting pathogenic
bacteria. The efficacy of YtnP lactonase in
reducing the virulence of P. aeruginosa MMA83
in vivo using Caenorhabditis elegans as a model
system was investigated. The recombinant YtnP
lactonase exhibits no cytotoxicity, demonstrated
by its lack of harmful effects on both the
immortalized human HaCaT cell line and two
strains of C. elegans (AU37 and N2 wild-type). In
a toxin-mediated killing liquid assay, the survival
rates of C. elegans AU37 mutant and N2 wildtype
strains infected with the clinical isolate P.
aeruginosa MMA83 significantly increased when
pre-treated with YtnP lactonase, compared to
untreated controls. Considering that virulence
factors expression is regulated by quorum sensing
(QS) signaling it is hypothesized that YtnP
lactonase prolongs the life span of C. elegans
by downregulating the QS and expression of
virulence factors of MMA83. The protective effects
of YtnP lactonase against MMA83-induced
pathogenicity in C. elegans, coupled with its absence
of cytotoxicity, position YtnP lactonase as
a promising prophylactic agent with antivirulence
properties.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION",
pages = "143-143",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2380"
}
Ćurčić, J., Malešević, M., Dinić, M., Novović, K., Vasiljević, Z., Stanisavljević, N.,& Jovčić, B.. (2024). YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 143-143.
https://hdl.handle.net/21.15107/rcub_imagine_2380
Ćurčić J, Malešević M, Dinić M, Novović K, Vasiljević Z, Stanisavljević N, Jovčić B. YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:143-143.
https://hdl.handle.net/21.15107/rcub_imagine_2380 .
Ćurčić, Jovana, Malešević, Milka, Dinić, Miroslav, Novović, Katarina, Vasiljević, Zorica, Stanisavljević, Nemanja, Jovčić, Branko, "YTNP LACTONASE IMPROVES THE ABILITY OF CAENORHABDITIS ELEGANS TO SURVIVE PSEUDOMONAS AERUGINOSA MMA83 INFECTION" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):143-143,
https://hdl.handle.net/21.15107/rcub_imagine_2380 .

Azole rings linked to COX inhibitors via hydrazone bridge: Synthesis, stereochemical analysis, and investigation of antimicrobial activity

Karagüzel, Ayşe; Uğur, Sümeyye Buran; Çetinkaya, Yasin; Doğan, Şengül Dilem; Stevanović, Milena; Nikodinović-Runić, Jasmina; Gündüz, Miyase Gözde

(Elsevier, 2024)

TY  - JOUR
AU  - Karagüzel, Ayşe
AU  - Uğur, Sümeyye Buran
AU  - Çetinkaya, Yasin
AU  - Doğan, Şengül Dilem
AU  - Stevanović, Milena
AU  - Nikodinović-Runić, Jasmina
AU  - Gündüz, Miyase Gözde
PY  - 2024
UR  - https://www.sciencedirect.com/science/article/pii/S0022286024003107
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2317
AB  - Nonsteroidal anti-inflammatory drugs (NSAIDs) alleviate inflammation and pain through the inhibition of cyclooxygenase (COX) enzymes. Besides these widely recognized therapeutic utilizations, NSAIDs have been reported to display moderate antimicrobial activity and enhance antimicrobial efficacy when administered in combination with commercial antimicrobial drugs. In the present study, we designed novel potential antimicrobial agents by linking some NSAIDs (ibuprofen, flurbiprofen, and naproxen) to various azole rings (pyrazole, imidazole, triazole, and benzimidazole) via hydrazone functionality. The hydrazone linker was introduced into the chemical scaffold of the title molecules by the reaction between hydrazides obtained from NSAIDs and in-house synthesized azole-carrying benzaldehydes. The structures of the target compounds were elucidated by a combination of spectral methods. The NOESY spectra and stereochemical analyses performed using DFT method confirmed the presence of the target molecules as a mixture of E(C=N)-E(N-N)-synperiplanar and E(C=N)-E(N-N)-antiperiplanar conformers in DMSO-d6 solution. 1H and 13C NMR chemical shift values in DMSO were calculated using the GIAO method and compared with the experimental NMR data. Finally, some derivatives were demonstrated to inhibit Candida albicans filamentation and/or bacterial communication system known as quorum sensing. For COX inhibitor-azole hybrids with antimicrobial potency, naproxen appeared to be the most appropriate NSAID, while bulky benzimidazole was not found as a preferable azole ring.
PB  - Elsevier
T2  - Journal of Molecular Structure
T2  - Journal of Molecular StructureJournal of Molecular Structure
T1  - Azole rings linked to COX inhibitors via hydrazone bridge: Synthesis, stereochemical analysis, and investigation of antimicrobial activity
SP  - 137787
DO  - 10.1016/j.molstruc.2024.137787
ER  - 
@article{
author = "Karagüzel, Ayşe and Uğur, Sümeyye Buran and Çetinkaya, Yasin and Doğan, Şengül Dilem and Stevanović, Milena and Nikodinović-Runić, Jasmina and Gündüz, Miyase Gözde",
year = "2024",
abstract = "Nonsteroidal anti-inflammatory drugs (NSAIDs) alleviate inflammation and pain through the inhibition of cyclooxygenase (COX) enzymes. Besides these widely recognized therapeutic utilizations, NSAIDs have been reported to display moderate antimicrobial activity and enhance antimicrobial efficacy when administered in combination with commercial antimicrobial drugs. In the present study, we designed novel potential antimicrobial agents by linking some NSAIDs (ibuprofen, flurbiprofen, and naproxen) to various azole rings (pyrazole, imidazole, triazole, and benzimidazole) via hydrazone functionality. The hydrazone linker was introduced into the chemical scaffold of the title molecules by the reaction between hydrazides obtained from NSAIDs and in-house synthesized azole-carrying benzaldehydes. The structures of the target compounds were elucidated by a combination of spectral methods. The NOESY spectra and stereochemical analyses performed using DFT method confirmed the presence of the target molecules as a mixture of E(C=N)-E(N-N)-synperiplanar and E(C=N)-E(N-N)-antiperiplanar conformers in DMSO-d6 solution. 1H and 13C NMR chemical shift values in DMSO were calculated using the GIAO method and compared with the experimental NMR data. Finally, some derivatives were demonstrated to inhibit Candida albicans filamentation and/or bacterial communication system known as quorum sensing. For COX inhibitor-azole hybrids with antimicrobial potency, naproxen appeared to be the most appropriate NSAID, while bulky benzimidazole was not found as a preferable azole ring.",
publisher = "Elsevier",
journal = "Journal of Molecular Structure, Journal of Molecular StructureJournal of Molecular Structure",
title = "Azole rings linked to COX inhibitors via hydrazone bridge: Synthesis, stereochemical analysis, and investigation of antimicrobial activity",
pages = "137787",
doi = "10.1016/j.molstruc.2024.137787"
}
Karagüzel, A., Uğur, S. B., Çetinkaya, Y., Doğan, Ş. D., Stevanović, M., Nikodinović-Runić, J.,& Gündüz, M. G.. (2024). Azole rings linked to COX inhibitors via hydrazone bridge: Synthesis, stereochemical analysis, and investigation of antimicrobial activity. in Journal of Molecular Structure
Elsevier., 137787.
https://doi.org/10.1016/j.molstruc.2024.137787
Karagüzel A, Uğur SB, Çetinkaya Y, Doğan ŞD, Stevanović M, Nikodinović-Runić J, Gündüz MG. Azole rings linked to COX inhibitors via hydrazone bridge: Synthesis, stereochemical analysis, and investigation of antimicrobial activity. in Journal of Molecular Structure. 2024;:137787.
doi:10.1016/j.molstruc.2024.137787 .
Karagüzel, Ayşe, Uğur, Sümeyye Buran, Çetinkaya, Yasin, Doğan, Şengül Dilem, Stevanović, Milena, Nikodinović-Runić, Jasmina, Gündüz, Miyase Gözde, "Azole rings linked to COX inhibitors via hydrazone bridge: Synthesis, stereochemical analysis, and investigation of antimicrobial activity" in Journal of Molecular Structure (2024):137787,
https://doi.org/10.1016/j.molstruc.2024.137787 . .

SHORT-CHAIN FATTY ACID-PRODUCING FAECALIMONAS SP. NGB245 STRAIN REGULATES THE EXPRESSION OF NEURONAL ACTIVITY-REGULATED GENES AND ATTENUATES THE SYMPTOMS OF EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

Bisenić, Aleksandar; Tomić, Sergej; Bekić, Marina; Pavlović, Luka; Dinić, Miroslav; Terzić- Vidojević, Amarela; Radojević, Dušan; Soković Bajić, Svetlana; Mitrović, Hristina; Jakovljević, Stefan; Stevanović, Dušan; Golić, Nataša; Đokić, Jelena

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Bisenić, Aleksandar
AU  - Tomić, Sergej
AU  - Bekić, Marina
AU  - Pavlović, Luka
AU  - Dinić, Miroslav
AU  - Terzić- Vidojević, Amarela
AU  - Radojević, Dušan
AU  - Soković Bajić, Svetlana
AU  - Mitrović, Hristina
AU  - Jakovljević, Stefan
AU  - Stevanović, Dušan
AU  - Golić, Nataša
AU  - Đokić, Jelena
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2374
AB  - Alterations in gut microbiota and deregulation
of the gut immune system are recognized
as important events in autoimmune diseases.
The knowledge about the important role of anaerobic
gut bacteria that produce short-chain
fatty acids (SCFAs), in the regulation of intestinal
barrier and immune response made a way
for the development of microbiota-based interventions.
Our research aimed to isolate the
strains with the potential to produce SCFAs,
from healthy volunteer fecal material, and to
test their effects on IL-8 production in the culture
of intestinal epithelial cells (Caco2) as an in
vitro system imitating initial intestinal inflammation,
the effects on the expression of neuronal
activity-regulated genes of Caenorhabditis
elegans, and the effect on the development
of experimental autoimmune encephalomyelitis
(EAE), a mouse model of multiple  sclerosis.
Three isolated butyric acid (BA)-producing
strains, and three acetic acid (AA)-producing
strains diminished the production of IL-8 in Caco-
2 cells treated with IL-1β/TNF-α. Further, all
BA-producing strains stimulated the expression
of important neuro-related genes in C. elegans.
Based on the strongest effects in these
assays an isolate identified as Faecalimonas sp.
NGB245 strain was further tested in EAE model.
The oral treatment of EAE-induced mice with
this strain for 16h per day for 15 days resulted
in alleviated daily clinical scores, maximal
clinical scores, and the duration of the illness
in comparison to the effect of media used for
strain cultivation. These results point to the potential
of NGB245 to modify the gut-brain axis
opening the field for future development of microbiota-
based therapy for the diseases associated
with immune response dysfunctions.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - SHORT-CHAIN FATTY ACID-PRODUCING FAECALIMONAS SP. NGB245 STRAIN REGULATES THE EXPRESSION OF NEURONAL ACTIVITY-REGULATED GENES AND ATTENUATES THE SYMPTOMS OF EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS
EP  - 116
SP  - 116
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2374
ER  - 
@conference{
author = "Bisenić, Aleksandar and Tomić, Sergej and Bekić, Marina and Pavlović, Luka and Dinić, Miroslav and Terzić- Vidojević, Amarela and Radojević, Dušan and Soković Bajić, Svetlana and Mitrović, Hristina and Jakovljević, Stefan and Stevanović, Dušan and Golić, Nataša and Đokić, Jelena",
year = "2024",
abstract = "Alterations in gut microbiota and deregulation
of the gut immune system are recognized
as important events in autoimmune diseases.
The knowledge about the important role of anaerobic
gut bacteria that produce short-chain
fatty acids (SCFAs), in the regulation of intestinal
barrier and immune response made a way
for the development of microbiota-based interventions.
Our research aimed to isolate the
strains with the potential to produce SCFAs,
from healthy volunteer fecal material, and to
test their effects on IL-8 production in the culture
of intestinal epithelial cells (Caco2) as an in
vitro system imitating initial intestinal inflammation,
the effects on the expression of neuronal
activity-regulated genes of Caenorhabditis
elegans, and the effect on the development
of experimental autoimmune encephalomyelitis
(EAE), a mouse model of multiple  sclerosis.
Three isolated butyric acid (BA)-producing
strains, and three acetic acid (AA)-producing
strains diminished the production of IL-8 in Caco-
2 cells treated with IL-1β/TNF-α. Further, all
BA-producing strains stimulated the expression
of important neuro-related genes in C. elegans.
Based on the strongest effects in these
assays an isolate identified as Faecalimonas sp.
NGB245 strain was further tested in EAE model.
The oral treatment of EAE-induced mice with
this strain for 16h per day for 15 days resulted
in alleviated daily clinical scores, maximal
clinical scores, and the duration of the illness
in comparison to the effect of media used for
strain cultivation. These results point to the potential
of NGB245 to modify the gut-brain axis
opening the field for future development of microbiota-
based therapy for the diseases associated
with immune response dysfunctions.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "SHORT-CHAIN FATTY ACID-PRODUCING FAECALIMONAS SP. NGB245 STRAIN REGULATES THE EXPRESSION OF NEURONAL ACTIVITY-REGULATED GENES AND ATTENUATES THE SYMPTOMS OF EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS",
pages = "116-116",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2374"
}
Bisenić, A., Tomić, S., Bekić, M., Pavlović, L., Dinić, M., Terzić- Vidojević, A., Radojević, D., Soković Bajić, S., Mitrović, H., Jakovljević, S., Stevanović, D., Golić, N.,& Đokić, J.. (2024). SHORT-CHAIN FATTY ACID-PRODUCING FAECALIMONAS SP. NGB245 STRAIN REGULATES THE EXPRESSION OF NEURONAL ACTIVITY-REGULATED GENES AND ATTENUATES THE SYMPTOMS OF EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 116-116.
https://hdl.handle.net/21.15107/rcub_imagine_2374
Bisenić A, Tomić S, Bekić M, Pavlović L, Dinić M, Terzić- Vidojević A, Radojević D, Soković Bajić S, Mitrović H, Jakovljević S, Stevanović D, Golić N, Đokić J. SHORT-CHAIN FATTY ACID-PRODUCING FAECALIMONAS SP. NGB245 STRAIN REGULATES THE EXPRESSION OF NEURONAL ACTIVITY-REGULATED GENES AND ATTENUATES THE SYMPTOMS OF EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:116-116.
https://hdl.handle.net/21.15107/rcub_imagine_2374 .
Bisenić, Aleksandar, Tomić, Sergej, Bekić, Marina, Pavlović, Luka, Dinić, Miroslav, Terzić- Vidojević, Amarela, Radojević, Dušan, Soković Bajić, Svetlana, Mitrović, Hristina, Jakovljević, Stefan, Stevanović, Dušan, Golić, Nataša, Đokić, Jelena, "SHORT-CHAIN FATTY ACID-PRODUCING FAECALIMONAS SP. NGB245 STRAIN REGULATES THE EXPRESSION OF NEURONAL ACTIVITY-REGULATED GENES AND ATTENUATES THE SYMPTOMS OF EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):116-116,
https://hdl.handle.net/21.15107/rcub_imagine_2374 .

The Role of SOX2 and SOX9 Transcription Factors in the Reactivation-Related Functional Properties of NT2/D1-Derived Astrocytes

Balint, Vanda; Perić, Mina; Dačić, Sanja; Stanisavljević Ninković, Danijela; Marjanović, Jelena; Popović, Jelena; Stevanović, Milena; Lazić, Andrijana

(MDPI, 2024)

TY  - JOUR
AU  - Balint, Vanda
AU  - Perić, Mina
AU  - Dačić, Sanja
AU  - Stanisavljević Ninković, Danijela
AU  - Marjanović, Jelena
AU  - Popović, Jelena
AU  - Stevanović, Milena
AU  - Lazić, Andrijana
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2340
AB  - Astrocytes are the main homeostatic cells in the central nervous system, with the unique ability to transform from quiescent into a reactive state in response to pathological conditions by reacquiring some precursor properties. This process is known as reactive astrogliosis, a compensatory response that mediates tissue damage and recovery. Although it is well known that SOX transcription factors drive the expression of phenotype-specific genetic programs during neurodevelopment, their roles in mature astrocytes have not been studied extensively. We focused on the transcription factors SOX2 and SOX9, shown to be re-expressed in reactive astrocytes, in order to study the reactivation-related functional properties of astrocytes mediated by those proteins. We performed an initial screening of SOX2 and SOX9 expression after sensorimotor cortex ablation injury in rats and conducted gain-of-function studies in vitro using astrocytes derived from the human NT2/D1 cell line. Our results revealed the direct involvement of SOX2 in the reacquisition of proliferation in mature NT2/D1-derived astrocytes, while SOX9 overexpression increased migratory potential and glutamate uptake in these cells. Our results imply that modulation of SOX gene expression may change the functional properties of astrocytes, which holds promise for the discovery of potential therapeutic targets in the development of novel strategies for tissue regeneration and recovery.
PB  - MDPI
T2  - Biomedicines
T1  - The Role of SOX2 and SOX9 Transcription Factors in the Reactivation-Related Functional Properties of NT2/D1-Derived Astrocytes
IS  - 4
SP  - 796
VL  - 12
DO  - 10.3390/biomedicines12040796
ER  - 
@article{
author = "Balint, Vanda and Perić, Mina and Dačić, Sanja and Stanisavljević Ninković, Danijela and Marjanović, Jelena and Popović, Jelena and Stevanović, Milena and Lazić, Andrijana",
year = "2024",
abstract = "Astrocytes are the main homeostatic cells in the central nervous system, with the unique ability to transform from quiescent into a reactive state in response to pathological conditions by reacquiring some precursor properties. This process is known as reactive astrogliosis, a compensatory response that mediates tissue damage and recovery. Although it is well known that SOX transcription factors drive the expression of phenotype-specific genetic programs during neurodevelopment, their roles in mature astrocytes have not been studied extensively. We focused on the transcription factors SOX2 and SOX9, shown to be re-expressed in reactive astrocytes, in order to study the reactivation-related functional properties of astrocytes mediated by those proteins. We performed an initial screening of SOX2 and SOX9 expression after sensorimotor cortex ablation injury in rats and conducted gain-of-function studies in vitro using astrocytes derived from the human NT2/D1 cell line. Our results revealed the direct involvement of SOX2 in the reacquisition of proliferation in mature NT2/D1-derived astrocytes, while SOX9 overexpression increased migratory potential and glutamate uptake in these cells. Our results imply that modulation of SOX gene expression may change the functional properties of astrocytes, which holds promise for the discovery of potential therapeutic targets in the development of novel strategies for tissue regeneration and recovery.",
publisher = "MDPI",
journal = "Biomedicines",
title = "The Role of SOX2 and SOX9 Transcription Factors in the Reactivation-Related Functional Properties of NT2/D1-Derived Astrocytes",
number = "4",
pages = "796",
volume = "12",
doi = "10.3390/biomedicines12040796"
}
Balint, V., Perić, M., Dačić, S., Stanisavljević Ninković, D., Marjanović, J., Popović, J., Stevanović, M.,& Lazić, A.. (2024). The Role of SOX2 and SOX9 Transcription Factors in the Reactivation-Related Functional Properties of NT2/D1-Derived Astrocytes. in Biomedicines
MDPI., 12(4), 796.
https://doi.org/10.3390/biomedicines12040796
Balint V, Perić M, Dačić S, Stanisavljević Ninković D, Marjanović J, Popović J, Stevanović M, Lazić A. The Role of SOX2 and SOX9 Transcription Factors in the Reactivation-Related Functional Properties of NT2/D1-Derived Astrocytes. in Biomedicines. 2024;12(4):796.
doi:10.3390/biomedicines12040796 .
Balint, Vanda, Perić, Mina, Dačić, Sanja, Stanisavljević Ninković, Danijela, Marjanović, Jelena, Popović, Jelena, Stevanović, Milena, Lazić, Andrijana, "The Role of SOX2 and SOX9 Transcription Factors in the Reactivation-Related Functional Properties of NT2/D1-Derived Astrocytes" in Biomedicines, 12, no. 4 (2024):796,
https://doi.org/10.3390/biomedicines12040796 . .

Silver(I) complexes with voriconazole as promising anti-Candida agents

Stanković, Mia; Škaro Bogojević, Sanja; Kljun, Jakob; Milanović, Žiko; Stevanović, Nevena; Lazić, Jelena; Vojnović, Sandra; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(Elsevier, 2024)

TY  - JOUR
AU  - Stanković, Mia
AU  - Škaro Bogojević, Sanja
AU  - Kljun, Jakob
AU  - Milanović, Žiko
AU  - Stevanović, Nevena
AU  - Lazić, Jelena
AU  - Vojnović, Sandra
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2024
UR  - https://www.sciencedirect.com/science/article/pii/S0162013424000953
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2368
AB  - Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV–Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1–3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02–1.05 μM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a – 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Silver(I) complexes with voriconazole as promising anti-Candida agents
SP  - 112572
VL  - 256
DO  - 10.1016/j.jinorgbio.2024.112572
ER  - 
@article{
author = "Stanković, Mia and Škaro Bogojević, Sanja and Kljun, Jakob and Milanović, Žiko and Stevanović, Nevena and Lazić, Jelena and Vojnović, Sandra and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2024",
abstract = "Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV–Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1–3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02–1.05 μM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a – 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Silver(I) complexes with voriconazole as promising anti-Candida agents",
pages = "112572",
volume = "256",
doi = "10.1016/j.jinorgbio.2024.112572"
}
Stanković, M., Škaro Bogojević, S., Kljun, J., Milanović, Ž., Stevanović, N., Lazić, J., Vojnović, S., Turel, I., Đuran, M.,& Glišić, B.. (2024). Silver(I) complexes with voriconazole as promising anti-Candida agents. in Journal of Inorganic Biochemistry
Elsevier., 256, 112572.
https://doi.org/10.1016/j.jinorgbio.2024.112572
Stanković M, Škaro Bogojević S, Kljun J, Milanović Ž, Stevanović N, Lazić J, Vojnović S, Turel I, Đuran M, Glišić B. Silver(I) complexes with voriconazole as promising anti-Candida agents. in Journal of Inorganic Biochemistry. 2024;256:112572.
doi:10.1016/j.jinorgbio.2024.112572 .
Stanković, Mia, Škaro Bogojević, Sanja, Kljun, Jakob, Milanović, Žiko, Stevanović, Nevena, Lazić, Jelena, Vojnović, Sandra, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "Silver(I) complexes with voriconazole as promising anti-Candida agents" in Journal of Inorganic Biochemistry, 256 (2024):112572,
https://doi.org/10.1016/j.jinorgbio.2024.112572 . .
3

Speech Sounds Production, Narrative Skills, and Verbal Memory of Children with 22q11.2 Microdeletion

Rakonjac, Marijana; Cuturilo, Goran; Kovačević-Grujičić, Nataša; Simeunović, Ivana; Kostić, Jovana; Stevanović, Milena; Drakulić, Danijela

(MDPI, 2024)

TY  - JOUR
AU  - Rakonjac, Marijana
AU  - Cuturilo, Goran
AU  - Kovačević-Grujičić, Nataša
AU  - Simeunović, Ivana
AU  - Kostić, Jovana
AU  - Stevanović, Milena
AU  - Drakulić, Danijela
PY  - 2024
UR  - https://www.mdpi.com/2227-9067/11/4/489
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2362
AB  - 22q11.2 deletion syndrome (22q11.2DS), the most frequent microdeletion syndrome in humans, is related to a high risk of developing neurodevelopmental disorders. About 95% of patients with 22q11.2DS have speech and language impairments. Global articulation, story generation, and verbal memory tests were applied to compare articulatory characteristics of speech sounds, spontaneous language abilities, and immediate verbal memory between four groups of Serbian-speaking children: patients with 22q11.2DS, children with clinical presentation of 22q11.2DS that do not have the microdeletion, children with non-syndromic congenital heart defects, and their peers with typical speech–sound development. The obtained results showed that children with this microdeletion have impaired articulation skills and expressive language abilities. However, we did not observe weaker receptive language skills and immediate verbal memory compared to healthy controls. Children with 22q11.2DS should be considered a risk category for the development of speech–sound pathology and expressive language abilities. Since speech intelligibility is an instrument of cognition and adequate peer socialization, and language impairment in school-aged children with 22q11DS might be an indicator of increased risk for later psychotic symptoms, patients with 22q11.2 microdeletion should be included in a program of early stimulation of speech–language development immediately after diagnosis is established.
PB  - MDPI
T2  - Children
T2  - Children
T1  - Speech Sounds Production, Narrative Skills, and Verbal Memory of Children with 22q11.2 Microdeletion
IS  - 4
SP  - 489
VL  - 11
DO  - 10.3390/children11040489
ER  - 
@article{
author = "Rakonjac, Marijana and Cuturilo, Goran and Kovačević-Grujičić, Nataša and Simeunović, Ivana and Kostić, Jovana and Stevanović, Milena and Drakulić, Danijela",
year = "2024",
abstract = "22q11.2 deletion syndrome (22q11.2DS), the most frequent microdeletion syndrome in humans, is related to a high risk of developing neurodevelopmental disorders. About 95% of patients with 22q11.2DS have speech and language impairments. Global articulation, story generation, and verbal memory tests were applied to compare articulatory characteristics of speech sounds, spontaneous language abilities, and immediate verbal memory between four groups of Serbian-speaking children: patients with 22q11.2DS, children with clinical presentation of 22q11.2DS that do not have the microdeletion, children with non-syndromic congenital heart defects, and their peers with typical speech–sound development. The obtained results showed that children with this microdeletion have impaired articulation skills and expressive language abilities. However, we did not observe weaker receptive language skills and immediate verbal memory compared to healthy controls. Children with 22q11.2DS should be considered a risk category for the development of speech–sound pathology and expressive language abilities. Since speech intelligibility is an instrument of cognition and adequate peer socialization, and language impairment in school-aged children with 22q11DS might be an indicator of increased risk for later psychotic symptoms, patients with 22q11.2 microdeletion should be included in a program of early stimulation of speech–language development immediately after diagnosis is established.",
publisher = "MDPI",
journal = "Children, Children",
title = "Speech Sounds Production, Narrative Skills, and Verbal Memory of Children with 22q11.2 Microdeletion",
number = "4",
pages = "489",
volume = "11",
doi = "10.3390/children11040489"
}
Rakonjac, M., Cuturilo, G., Kovačević-Grujičić, N., Simeunović, I., Kostić, J., Stevanović, M.,& Drakulić, D.. (2024). Speech Sounds Production, Narrative Skills, and Verbal Memory of Children with 22q11.2 Microdeletion. in Children
MDPI., 11(4), 489.
https://doi.org/10.3390/children11040489
Rakonjac M, Cuturilo G, Kovačević-Grujičić N, Simeunović I, Kostić J, Stevanović M, Drakulić D. Speech Sounds Production, Narrative Skills, and Verbal Memory of Children with 22q11.2 Microdeletion. in Children. 2024;11(4):489.
doi:10.3390/children11040489 .
Rakonjac, Marijana, Cuturilo, Goran, Kovačević-Grujičić, Nataša, Simeunović, Ivana, Kostić, Jovana, Stevanović, Milena, Drakulić, Danijela, "Speech Sounds Production, Narrative Skills, and Verbal Memory of Children with 22q11.2 Microdeletion" in Children, 11, no. 4 (2024):489,
https://doi.org/10.3390/children11040489 . .
2

GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY

Atanasković, Marija; Morić, Ivana; B. Rokić, Miloš; Đokić, Anđela; Pantović, Jelena; Despotović, Dragana; Šenerović, Lidija

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Atanasković, Marija
AU  - Morić, Ivana
AU  - B. Rokić, Miloš
AU  - Đokić, Anđela
AU  - Pantović, Jelena
AU  - Despotović, Dragana
AU  - Šenerović, Lidija
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2369
AB  - The formation of biofilms by foodborne pathogens
is a constant challenge in the food industry,
leading to an increased risk of contamination and
compromising food safety. Many of the chemicals
commonly used for sanitation in the food industry
are unable to remove biofilms, are harmful
to surfaces and can be toxic. The effectiveness
of disinfectants can be improved using enzymes
that specifically target biofilm components such
as exopolysaccharides, extracellular DNA, or proteins.
In this study we investigated the potential
of glycoside hydrolases originating from the
gill microbiota of freshwater fish to control biofilm
formation in the most common foodborne
pathogens. We demonstrated that β-glucosidase
from Microbacterium sp. BG28 (BglB-BG28) effectively
inhibits cellulose-rich biofilms formed by
Salmonella enteritidis, S. typhimurium, S. infantis,
and Escherichia coli. When these bacteria were cultivated overnight with 200 μL/mL enzyme, up
to 80% less biofilm was formed. By fluorescence
microscopy, we visualised the inhibition of biofilms
on plastic, glass and aluminium, materials
commonly used in the food industry. When used
as a pre-treatment, BglB-BG28 increased the
bactericidal efficacy of Oxicid®S, a commercially
available surface disinfectant. Its effectiveness at
temperatures up to 50 °C and in a pH range from
4 to 8 together with compatibility with non-ionic
detergents and high tolerance to sodium chloride
and glucose give BglB-BG28 advantages in
harsh and diverse industrial environments. Importantly,
no toxicity to Caenorhabditis elegans
was observed at enzyme concentrations of up
to 1 mg/ml. Overall, these results demonstrate
the suitability of the β-glucosidase BglB-BG28 for
the formulation of a novel enzyme-based disinfectant
to be used in food processing facilities.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY
EP  - 42
SP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2369
ER  - 
@conference{
author = "Atanasković, Marija and Morić, Ivana and B. Rokić, Miloš and Đokić, Anđela and Pantović, Jelena and Despotović, Dragana and Šenerović, Lidija",
year = "2024",
abstract = "The formation of biofilms by foodborne pathogens
is a constant challenge in the food industry,
leading to an increased risk of contamination and
compromising food safety. Many of the chemicals
commonly used for sanitation in the food industry
are unable to remove biofilms, are harmful
to surfaces and can be toxic. The effectiveness
of disinfectants can be improved using enzymes
that specifically target biofilm components such
as exopolysaccharides, extracellular DNA, or proteins.
In this study we investigated the potential
of glycoside hydrolases originating from the
gill microbiota of freshwater fish to control biofilm
formation in the most common foodborne
pathogens. We demonstrated that β-glucosidase
from Microbacterium sp. BG28 (BglB-BG28) effectively
inhibits cellulose-rich biofilms formed by
Salmonella enteritidis, S. typhimurium, S. infantis,
and Escherichia coli. When these bacteria were cultivated overnight with 200 μL/mL enzyme, up
to 80% less biofilm was formed. By fluorescence
microscopy, we visualised the inhibition of biofilms
on plastic, glass and aluminium, materials
commonly used in the food industry. When used
as a pre-treatment, BglB-BG28 increased the
bactericidal efficacy of Oxicid®S, a commercially
available surface disinfectant. Its effectiveness at
temperatures up to 50 °C and in a pH range from
4 to 8 together with compatibility with non-ionic
detergents and high tolerance to sodium chloride
and glucose give BglB-BG28 advantages in
harsh and diverse industrial environments. Importantly,
no toxicity to Caenorhabditis elegans
was observed at enzyme concentrations of up
to 1 mg/ml. Overall, these results demonstrate
the suitability of the β-glucosidase BglB-BG28 for
the formulation of a novel enzyme-based disinfectant
to be used in food processing facilities.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2369"
}
Atanasković, M., Morić, I., B. Rokić, M., Đokić, A., Pantović, J., Despotović, D.,& Šenerović, L.. (2024). GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 42-42.
https://hdl.handle.net/21.15107/rcub_imagine_2369
Atanasković M, Morić I, B. Rokić M, Đokić A, Pantović J, Despotović D, Šenerović L. GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:42-42.
https://hdl.handle.net/21.15107/rcub_imagine_2369 .
Atanasković, Marija, Morić, Ivana, B. Rokić, Miloš, Đokić, Anđela, Pantović, Jelena, Despotović, Dragana, Šenerović, Lidija, "GLYCOSIDE HYDROLASES FROM FRESHWATER FISH GILL MICROBIOTA AS BIOFILM INHIBITORS FOR ENHANCED FOOD SAFETY" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):42-42,
https://hdl.handle.net/21.15107/rcub_imagine_2369 .

THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS

Šapić, Katarina; Novović, Katarina; Radovanović, Milica; Gajić, Ina; Vasiljević, Zorica; Malešević, Milka; Jovčić, Branko

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Šapić, Katarina
AU  - Novović, Katarina
AU  - Radovanović, Milica
AU  - Gajić, Ina
AU  - Vasiljević, Zorica
AU  - Malešević, Milka
AU  - Jovčić, Branko
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2386
AB  - The increasing prevalence of multidrug-resistant
(MDR) Acinetobacter baumannii limits effective
therapeutic options, and tigecycline has been
considered one of the last resort therapies for
MDR A. baumannii infections. Nevertheless, A.
baumannii isolates resistant to tigecycline are
becoming increasingly reported, mostly due to
overexpression of efflux pumps. The three major
RND efflux systems conferring tigecycline resistance
in A. baumannii are AdeABC, AdeFGH, and
AdeIJK, and their expression is regulated by the
two-component system AdeRS, the LysR-type
regulator AdeL, and the TetR-type regulator AdeN,
respectively. Following the above, we aimed
to determine the role of efflux pumps in tigecycline
resistance of thirty-seven A. baumannii isolates
collected from Western Balkan healthcare
settings (Serbia, Bosnia and Herzegovina and
Montenegro) in 2016 and 2022. The majority of
isolates belonged to the most prevalent international
clonal lineage IC2 (n = 32), four isolates are
members of IC1, while only one isolate is identified
as IC3. All tested isolates demonstrated a
significant decrease in tigecycline MIC in presence
of efflux pump inhibitor CCCP (≥16-fold reduction)
indicating that mechanism responsible
for tigecycline resistance is antibiotic efflux. The
comparison of target efflux pump regulatory
proteins, translated from nucleotide sequences,
to reference strains ATCC19606 and ATCC17978
revealed that most of the isolates have G186V
and N268H alternations in AdeS (n = 32), while
most common changes in AdeR were V120I and
A136V (n = 29) as described in previous studies.
Substitution Q262R was detected exclusively in
AdeL proteins of IC1 isolates, while no mutations
were observed within AdeN regulators. Expression
of the adeB, adeG, and adeJ genes in six selected
isolates was upregulated in four (1,4- to
3-fold), six (1,6- to 2,6-fold), and three isolates
(1,7- to 4-fold), respectively. This study confirmed
that overexpression of efflux pump encoding
genes enables tigecycline resistance in clinical
A. baumannii isolates.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS
EP  - 187
SP  - 187
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2386
ER  - 
@conference{
author = "Šapić, Katarina and Novović, Katarina and Radovanović, Milica and Gajić, Ina and Vasiljević, Zorica and Malešević, Milka and Jovčić, Branko",
year = "2024",
abstract = "The increasing prevalence of multidrug-resistant
(MDR) Acinetobacter baumannii limits effective
therapeutic options, and tigecycline has been
considered one of the last resort therapies for
MDR A. baumannii infections. Nevertheless, A.
baumannii isolates resistant to tigecycline are
becoming increasingly reported, mostly due to
overexpression of efflux pumps. The three major
RND efflux systems conferring tigecycline resistance
in A. baumannii are AdeABC, AdeFGH, and
AdeIJK, and their expression is regulated by the
two-component system AdeRS, the LysR-type
regulator AdeL, and the TetR-type regulator AdeN,
respectively. Following the above, we aimed
to determine the role of efflux pumps in tigecycline
resistance of thirty-seven A. baumannii isolates
collected from Western Balkan healthcare
settings (Serbia, Bosnia and Herzegovina and
Montenegro) in 2016 and 2022. The majority of
isolates belonged to the most prevalent international
clonal lineage IC2 (n = 32), four isolates are
members of IC1, while only one isolate is identified
as IC3. All tested isolates demonstrated a
significant decrease in tigecycline MIC in presence
of efflux pump inhibitor CCCP (≥16-fold reduction)
indicating that mechanism responsible
for tigecycline resistance is antibiotic efflux. The
comparison of target efflux pump regulatory
proteins, translated from nucleotide sequences,
to reference strains ATCC19606 and ATCC17978
revealed that most of the isolates have G186V
and N268H alternations in AdeS (n = 32), while
most common changes in AdeR were V120I and
A136V (n = 29) as described in previous studies.
Substitution Q262R was detected exclusively in
AdeL proteins of IC1 isolates, while no mutations
were observed within AdeN regulators. Expression
of the adeB, adeG, and adeJ genes in six selected
isolates was upregulated in four (1,4- to
3-fold), six (1,6- to 2,6-fold), and three isolates
(1,7- to 4-fold), respectively. This study confirmed
that overexpression of efflux pump encoding
genes enables tigecycline resistance in clinical
A. baumannii isolates.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS",
pages = "187-187",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2386"
}
Šapić, K., Novović, K., Radovanović, M., Gajić, I., Vasiljević, Z., Malešević, M.,& Jovčić, B.. (2024). THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 187-187.
https://hdl.handle.net/21.15107/rcub_imagine_2386
Šapić K, Novović K, Radovanović M, Gajić I, Vasiljević Z, Malešević M, Jovčić B. THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:187-187.
https://hdl.handle.net/21.15107/rcub_imagine_2386 .
Šapić, Katarina, Novović, Katarina, Radovanović, Milica, Gajić, Ina, Vasiljević, Zorica, Malešević, Milka, Jovčić, Branko, "THE ROLE OF EFFLUX PUMPS IN TIGECYCLINE RESISTANCE OF ACINETOBACTER BAUMANNII ISOLATES FROM WESTERN BALKAN HOSPITALS" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):187-187,
https://hdl.handle.net/21.15107/rcub_imagine_2386 .

Genome sequence diversity of SARS-CoV-2 in Serbia: insights gained from a 3-year pandemic study

Novković, Mirjana; Banović Đeri, Bojana; RistivojeviĆ, Bojan; Knežević, Aleksandra; Janković, Marko; Tanasić, Vanja; Radojičić, Verica; Keckarević, Dusan; Vidanović, Dejan; Tešović, Bojana; Skakić, Anita; Tolinački, Maja; Morić, Ivana; Đorđević, Valentina

(Frontiers, 2024)

TY  - JOUR
AU  - Novković, Mirjana
AU  - Banović Đeri, Bojana
AU  - RistivojeviĆ, Bojan
AU  - Knežević, Aleksandra
AU  - Janković, Marko
AU  - Tanasić, Vanja
AU  - Radojičić, Verica
AU  - Keckarević, Dusan
AU  - Vidanović, Dejan
AU  - Tešović, Bojana
AU  - Skakić, Anita
AU  - Tolinački, Maja
AU  - Morić, Ivana
AU  - Đorđević, Valentina
PY  - 2024
UR  - https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1332276
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2327
AB  - The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been evolving rapidly causing emergence of new variants and health uncertainties. Monitoring the evolution of the virus was of the utmost importance for public health interventions and the development of national and global mitigation strategies. Here, we report national data on the emergence of new variants, their distribution, and dynamics in a 3-year study conducted from March 2020 to the end of January 2023 in the Republic of Serbia. Nasopharyngeal and oropharyngeal swabs from 2,398 COVID-19-positive patients were collected and sequenced using three different next generation technologies: Oxford Nanopore, Ion Torrent, and DNBSeq. In the subset of 2,107 SARS-CoV-2 sequences which met the quality requirements, detection of mutations, assignment to SARS-CoV-2 lineages, and phylogenetic analysis were performed. During the 3-year period, we detected three variants of concern, namely, Alpha (5.6%), Delta (7.4%), and Omicron (70.3%) and one variant of interest—Omicron recombinant “Kraken” (XBB1.5) (<1%), whereas 16.8% of the samples belonged to other SARS-CoV-2 (sub)lineages. The detected SARS-CoV-2 (sub)lineages resulted in eight COVID-19 pandemic waves in Serbia, which correspond to the pandemic waves reported in Europe and the United States. Wave dynamics in Serbia showed the most resemblance with the profile of pandemic waves in southern Europe, consistent with the southeastern European location of Serbia. The samples were assigned to sixteen SARS-CoV-2 Nextstrain clades: 20A, 20B, 20C, 20D, 20E, 20G, 20I, 21J, 21K, 21L, 22A, 22B, 22C, 22D, 22E, and 22F and six different Omicron recombinants (XZ, XAZ, XAS, XBB, XBF, and XBK). The 10 most common mutations detected in the coding and untranslated regions of the SARS-CoV-2 genomes included four mutations affecting the spike protein (S:D614G, S:T478K, S:P681H, and S:S477N) and one mutation at each of the following positions: 5′-untranslated region (5’UTR:241); N protein (N:RG203KR); NSP3 protein (NSP3:F106F); NSP4 protein (NSP4:T492I); NSP6 protein (NSP6: S106/G107/F108 - triple deletion), and NSP12b protein (NSP12b:P314L). This national-level study is the most comprehensive in terms of sequencing and genomic surveillance of SARS-CoV-2 during the pandemic in Serbia, highlighting the importance of establishing and maintaining good national practice for monitoring SARS-CoV-2 and other viruses circulating worldwide.
AB  - The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been evolving rapidly causing emergence of new variants and health uncertainties. Monitoring the evolution of the virus was of the utmost importance for public health interventions and the development of national and global mitigation strategies. Here, we report national data on the emergence of new variants, their distribution, and dynamics in a 3-year study conducted from March 2020 to the end of January 2023 in the Republic of Serbia. Nasopharyngeal and oropharyngeal swabs from 2,398 COVID-19- positive patients were collected and sequenced using three different next generation technologies: Oxford Nanopore, Ion Torrent, and DNBSeq. In the subset of 2,107 SARS-CoV-2 sequences which met the quality requirements, detection of mutations, assignment to SARS-CoV-2 lineages, and phylogenetic analysis were performed. During the 3-year period, we detected three variants of concern, namely, Alpha (5.6%), Delta (7.4%), and Omicron (70.3%) and one variant of interest—Omicron recombinant “Kraken” (XBB1.5) (<1%), whereas 16.8% of the samples belonged to other SARS-CoV-2 (sub)lineages. The detected SARS-CoV-2 (sub)lineages resulted in eight COVID-19 pandemic waves in Serbia, which correspond to the pandemic waves reported in Europe and the United States. Wave dynamics in Serbia showed the most resemblance with the profile of pandemic waves in southern Europe, consistent with the southeastern European location of Serbia. The samples were assigned to sixteen SARS-CoV-2 Nextstrain clades: 20A, 20B, 20C, 20D, 20E, 20G, 20I, 21J, 21K, 21L, 22A, 22B, 22C, 22D, 22E, and 22F and six different Omicron recombinants (XZ, XAZ, XAS, XBB, XBF, and XBK). The 10 most common mutations detected in the coding and untranslated regions of the SARS-CoV-2 genomes included four mutations affecting the spike protein (S:D614G, S:T478K, S:P681H, and S:S477N) and one mutation at each of the following positions: 5′-untranslated region (5’UTR:241); N protein (N:RG203KR); NSP3 protein (NSP3:F106F); NSP4 protein (NSP4:T492I); NSP6 protein (NSP6: S106/G107/F108 - triple deletion), and NSP12b protein (NSP12b:P314L). This national-level study is the most comprehensive in terms of sequencing and genomic surveillance of SARS-CoV-2 during the pandemic in Serbia, highlighting the importance of establishing and maintaining good national practice for monitoring SARS-CoV-2 and other viruses circulating worldwide.
PB  - Frontiers
T2  - Frontiers in Microbiology
T2  - Frontiers in Microbiology
T1  - Genome sequence diversity of SARS-CoV-2 in Serbia: insights gained from a 3-year pandemic study
VL  - 15
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2327
ER  - 
@article{
author = "Novković, Mirjana and Banović Đeri, Bojana and RistivojeviĆ, Bojan and Knežević, Aleksandra and Janković, Marko and Tanasić, Vanja and Radojičić, Verica and Keckarević, Dusan and Vidanović, Dejan and Tešović, Bojana and Skakić, Anita and Tolinački, Maja and Morić, Ivana and Đorđević, Valentina",
year = "2024",
abstract = "The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been evolving rapidly causing emergence of new variants and health uncertainties. Monitoring the evolution of the virus was of the utmost importance for public health interventions and the development of national and global mitigation strategies. Here, we report national data on the emergence of new variants, their distribution, and dynamics in a 3-year study conducted from March 2020 to the end of January 2023 in the Republic of Serbia. Nasopharyngeal and oropharyngeal swabs from 2,398 COVID-19-positive patients were collected and sequenced using three different next generation technologies: Oxford Nanopore, Ion Torrent, and DNBSeq. In the subset of 2,107 SARS-CoV-2 sequences which met the quality requirements, detection of mutations, assignment to SARS-CoV-2 lineages, and phylogenetic analysis were performed. During the 3-year period, we detected three variants of concern, namely, Alpha (5.6%), Delta (7.4%), and Omicron (70.3%) and one variant of interest—Omicron recombinant “Kraken” (XBB1.5) (<1%), whereas 16.8% of the samples belonged to other SARS-CoV-2 (sub)lineages. The detected SARS-CoV-2 (sub)lineages resulted in eight COVID-19 pandemic waves in Serbia, which correspond to the pandemic waves reported in Europe and the United States. Wave dynamics in Serbia showed the most resemblance with the profile of pandemic waves in southern Europe, consistent with the southeastern European location of Serbia. The samples were assigned to sixteen SARS-CoV-2 Nextstrain clades: 20A, 20B, 20C, 20D, 20E, 20G, 20I, 21J, 21K, 21L, 22A, 22B, 22C, 22D, 22E, and 22F and six different Omicron recombinants (XZ, XAZ, XAS, XBB, XBF, and XBK). The 10 most common mutations detected in the coding and untranslated regions of the SARS-CoV-2 genomes included four mutations affecting the spike protein (S:D614G, S:T478K, S:P681H, and S:S477N) and one mutation at each of the following positions: 5′-untranslated region (5’UTR:241); N protein (N:RG203KR); NSP3 protein (NSP3:F106F); NSP4 protein (NSP4:T492I); NSP6 protein (NSP6: S106/G107/F108 - triple deletion), and NSP12b protein (NSP12b:P314L). This national-level study is the most comprehensive in terms of sequencing and genomic surveillance of SARS-CoV-2 during the pandemic in Serbia, highlighting the importance of establishing and maintaining good national practice for monitoring SARS-CoV-2 and other viruses circulating worldwide., The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been evolving rapidly causing emergence of new variants and health uncertainties. Monitoring the evolution of the virus was of the utmost importance for public health interventions and the development of national and global mitigation strategies. Here, we report national data on the emergence of new variants, their distribution, and dynamics in a 3-year study conducted from March 2020 to the end of January 2023 in the Republic of Serbia. Nasopharyngeal and oropharyngeal swabs from 2,398 COVID-19- positive patients were collected and sequenced using three different next generation technologies: Oxford Nanopore, Ion Torrent, and DNBSeq. In the subset of 2,107 SARS-CoV-2 sequences which met the quality requirements, detection of mutations, assignment to SARS-CoV-2 lineages, and phylogenetic analysis were performed. During the 3-year period, we detected three variants of concern, namely, Alpha (5.6%), Delta (7.4%), and Omicron (70.3%) and one variant of interest—Omicron recombinant “Kraken” (XBB1.5) (<1%), whereas 16.8% of the samples belonged to other SARS-CoV-2 (sub)lineages. The detected SARS-CoV-2 (sub)lineages resulted in eight COVID-19 pandemic waves in Serbia, which correspond to the pandemic waves reported in Europe and the United States. Wave dynamics in Serbia showed the most resemblance with the profile of pandemic waves in southern Europe, consistent with the southeastern European location of Serbia. The samples were assigned to sixteen SARS-CoV-2 Nextstrain clades: 20A, 20B, 20C, 20D, 20E, 20G, 20I, 21J, 21K, 21L, 22A, 22B, 22C, 22D, 22E, and 22F and six different Omicron recombinants (XZ, XAZ, XAS, XBB, XBF, and XBK). The 10 most common mutations detected in the coding and untranslated regions of the SARS-CoV-2 genomes included four mutations affecting the spike protein (S:D614G, S:T478K, S:P681H, and S:S477N) and one mutation at each of the following positions: 5′-untranslated region (5’UTR:241); N protein (N:RG203KR); NSP3 protein (NSP3:F106F); NSP4 protein (NSP4:T492I); NSP6 protein (NSP6: S106/G107/F108 - triple deletion), and NSP12b protein (NSP12b:P314L). This national-level study is the most comprehensive in terms of sequencing and genomic surveillance of SARS-CoV-2 during the pandemic in Serbia, highlighting the importance of establishing and maintaining good national practice for monitoring SARS-CoV-2 and other viruses circulating worldwide.",
publisher = "Frontiers",
journal = "Frontiers in Microbiology, Frontiers in Microbiology",
title = "Genome sequence diversity of SARS-CoV-2 in Serbia: insights gained from a 3-year pandemic study",
volume = "15",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2327"
}
Novković, M., Banović Đeri, B., RistivojeviĆ, B., Knežević, A., Janković, M., Tanasić, V., Radojičić, V., Keckarević, D., Vidanović, D., Tešović, B., Skakić, A., Tolinački, M., Morić, I.,& Đorđević, V.. (2024). Genome sequence diversity of SARS-CoV-2 in Serbia: insights gained from a 3-year pandemic study. in Frontiers in Microbiology
Frontiers., 15.
https://hdl.handle.net/21.15107/rcub_imagine_2327
Novković M, Banović Đeri B, RistivojeviĆ B, Knežević A, Janković M, Tanasić V, Radojičić V, Keckarević D, Vidanović D, Tešović B, Skakić A, Tolinački M, Morić I, Đorđević V. Genome sequence diversity of SARS-CoV-2 in Serbia: insights gained from a 3-year pandemic study. in Frontiers in Microbiology. 2024;15.
https://hdl.handle.net/21.15107/rcub_imagine_2327 .
Novković, Mirjana, Banović Đeri, Bojana, RistivojeviĆ, Bojan, Knežević, Aleksandra, Janković, Marko, Tanasić, Vanja, Radojičić, Verica, Keckarević, Dusan, Vidanović, Dejan, Tešović, Bojana, Skakić, Anita, Tolinački, Maja, Morić, Ivana, Đorđević, Valentina, "Genome sequence diversity of SARS-CoV-2 in Serbia: insights gained from a 3-year pandemic study" in Frontiers in Microbiology, 15 (2024),
https://hdl.handle.net/21.15107/rcub_imagine_2327 .

HOST-MICROBIOTA INTERPLAY REGULATES EPITHELIAL BARRIER FUNCTION AND WOUND HEALING

Dinić, Miroslav; L. Burgess, Jamie; Lukić, Jovanka; Catanuto, Paola; Radojević, Dušan; Marjanović, Jelena; Verpile, Rebecca; R. Thaller, Seth; Gonzalez, Tammy; Golić, Nataša; Tomić- Canić, Marjana; Strahinić, Ivana; Pastar, Irena

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Dinić, Miroslav
AU  - L. Burgess, Jamie
AU  - Lukić, Jovanka
AU  - Catanuto, Paola
AU  - Radojević, Dušan
AU  - Marjanović, Jelena
AU  - Verpile, Rebecca
AU  - R. Thaller, Seth
AU  - Gonzalez, Tammy
AU  - Golić, Nataša
AU  - Tomić- Canić, Marjana
AU  - Strahinić, Ivana
AU  - Pastar, Irena
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2378
AB  - Skin microbiome emerged as an important
factor which can balance tissue repair process
and wound healing. Recent evidence suggest
that intracellular bacterial localization could be
associated with the aberrant healing observed
in patients with chronic wounds, while therapeutics
targeting intracellular bacteria remain
limited. Probiotic lactobacilli and their bioactive
lysates (postbiotics) are well known for their role
in maintenance of gut epithelial homeostasis.
Hence, in this study we focused to understand
the mechanisms of cutaneous response to fourteen
postbiotics derived from different lactobacilli
to reduce intracellular Staphylococcus aureus
colonization and promote healing. Latilactobacillus
curvatus BGMK2-41 demonstrated the
most efficient capability to reduce intracellular infection by S. aureus in keratinocytes in vitro and
infection of human skin explants. Reduction of
bacterial number was followed by upregulation
of the expression of antimicrobial response
genes. Furthermore, BGMK2-41 postbiotic treatment
stimulates keratinocyte migration in vitro
and increases expression of anti-inflammatory
cytokine IL-10, promotes wound closure and
strengthens the epidermal barrier via upregulation
of tight junction proteins in a human ex vivo
wound model. Altogether, this study provided
evidence that postbiotics could stimulate fortification
of epithelial barrier to suppress dissemination
of intracellular pathogens which can be
used as a novel approach to treat dermatologic
and wound healing disorders associated with
persistent infections.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - HOST-MICROBIOTA INTERPLAY REGULATES EPITHELIAL BARRIER FUNCTION AND WOUND HEALING
EP  - 133
SP  - 133
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2378
ER  - 
@conference{
author = "Dinić, Miroslav and L. Burgess, Jamie and Lukić, Jovanka and Catanuto, Paola and Radojević, Dušan and Marjanović, Jelena and Verpile, Rebecca and R. Thaller, Seth and Gonzalez, Tammy and Golić, Nataša and Tomić- Canić, Marjana and Strahinić, Ivana and Pastar, Irena",
year = "2024",
abstract = "Skin microbiome emerged as an important
factor which can balance tissue repair process
and wound healing. Recent evidence suggest
that intracellular bacterial localization could be
associated with the aberrant healing observed
in patients with chronic wounds, while therapeutics
targeting intracellular bacteria remain
limited. Probiotic lactobacilli and their bioactive
lysates (postbiotics) are well known for their role
in maintenance of gut epithelial homeostasis.
Hence, in this study we focused to understand
the mechanisms of cutaneous response to fourteen
postbiotics derived from different lactobacilli
to reduce intracellular Staphylococcus aureus
colonization and promote healing. Latilactobacillus
curvatus BGMK2-41 demonstrated the
most efficient capability to reduce intracellular infection by S. aureus in keratinocytes in vitro and
infection of human skin explants. Reduction of
bacterial number was followed by upregulation
of the expression of antimicrobial response
genes. Furthermore, BGMK2-41 postbiotic treatment
stimulates keratinocyte migration in vitro
and increases expression of anti-inflammatory
cytokine IL-10, promotes wound closure and
strengthens the epidermal barrier via upregulation
of tight junction proteins in a human ex vivo
wound model. Altogether, this study provided
evidence that postbiotics could stimulate fortification
of epithelial barrier to suppress dissemination
of intracellular pathogens which can be
used as a novel approach to treat dermatologic
and wound healing disorders associated with
persistent infections.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "HOST-MICROBIOTA INTERPLAY REGULATES EPITHELIAL BARRIER FUNCTION AND WOUND HEALING",
pages = "133-133",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2378"
}
Dinić, M., L. Burgess, J., Lukić, J., Catanuto, P., Radojević, D., Marjanović, J., Verpile, R., R. Thaller, S., Gonzalez, T., Golić, N., Tomić- Canić, M., Strahinić, I.,& Pastar, I.. (2024). HOST-MICROBIOTA INTERPLAY REGULATES EPITHELIAL BARRIER FUNCTION AND WOUND HEALING. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 133-133.
https://hdl.handle.net/21.15107/rcub_imagine_2378
Dinić M, L. Burgess J, Lukić J, Catanuto P, Radojević D, Marjanović J, Verpile R, R. Thaller S, Gonzalez T, Golić N, Tomić- Canić M, Strahinić I, Pastar I. HOST-MICROBIOTA INTERPLAY REGULATES EPITHELIAL BARRIER FUNCTION AND WOUND HEALING. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:133-133.
https://hdl.handle.net/21.15107/rcub_imagine_2378 .
Dinić, Miroslav, L. Burgess, Jamie, Lukić, Jovanka, Catanuto, Paola, Radojević, Dušan, Marjanović, Jelena, Verpile, Rebecca, R. Thaller, Seth, Gonzalez, Tammy, Golić, Nataša, Tomić- Canić, Marjana, Strahinić, Ivana, Pastar, Irena, "HOST-MICROBIOTA INTERPLAY REGULATES EPITHELIAL BARRIER FUNCTION AND WOUND HEALING" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):133-133,
https://hdl.handle.net/21.15107/rcub_imagine_2378 .

Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response

Milanović, Marijana; Bekić, Marina; Đokić, Jelena; Vučević, Dragana; Čolić, Miodrag; Tomić, Sergej

(Ivyspring International, 2024)

TY  - JOUR
AU  - Milanović, Marijana
AU  - Bekić, Marina
AU  - Đokić, Jelena
AU  - Vučević, Dragana
AU  - Čolić, Miodrag
AU  - Tomić, Sergej
PY  - 2024
UR  - https://www.ijbs.com/v20p1064.htm
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2313
AB  - Alpha-ketoglutarate (αKG) emerged as a key regulator of energetic and redox metabolism in cells, affecting the immune response in various conditions. However, it remained unclear how the exogenous αKG modulates the functions of dendritic cells (DCs), key cells regulating T-cell response. Here we found that non-toxic doses of αKG display anti-inflammatory properties in human APC-T cell interaction models. In a model of monocyte-derived (mo)DCs, αKG impaired the differentiation, and the maturation of moDCs induced with lipopolysaccharide (LPS)/interferon (IFN)-γ, and decreased their capacity to induce Th1 cells. However, αKG also promoted IL-1β secretion by mature moDCs, despite inflammasome downregulation, potentiating their Th17 polarizing capacity. αKG induced the expression of anti-oxidative enzymes and hypoxia-induced factor (HIF)-1α in moDCs, activated Akt/FoxO1 pathway and increased autophagy flux, oxidative phosphorylation (OXPHOS) and glycolysis. This correlated with a higher capacity of immature αKG-moDCs to induce Th2 cells, and conventional regulatory T cells in an indolamine-dioxygenase (IDO)-1-dependent manner. Additionally, αKG increased moDCs’ capacity to induce non-conventional T regulatory (Tr)-1 and IL-10-producing CD8+T cells via up-regulated immunoglobulin-like transcript (ILT3) expression in OXPHOS-dependent manner. These results suggested that exogenous αKG-altered redox metabolism in moDCs contributed to their tolerogenic properties, which could be relevant for designing more efficient therapeutic approaches in DCs-mediated immunotherapies.
PB  - Ivyspring International
T2  - International Journal of Biological Sciences
T2  - International Journal of Biological Sciences
T1  - Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response
EP  - 1087
IS  - 3
SP  - 1064
VL  - 20
DO  - 10.7150/ijbs.91109
ER  - 
@article{
author = "Milanović, Marijana and Bekić, Marina and Đokić, Jelena and Vučević, Dragana and Čolić, Miodrag and Tomić, Sergej",
year = "2024",
abstract = "Alpha-ketoglutarate (αKG) emerged as a key regulator of energetic and redox metabolism in cells, affecting the immune response in various conditions. However, it remained unclear how the exogenous αKG modulates the functions of dendritic cells (DCs), key cells regulating T-cell response. Here we found that non-toxic doses of αKG display anti-inflammatory properties in human APC-T cell interaction models. In a model of monocyte-derived (mo)DCs, αKG impaired the differentiation, and the maturation of moDCs induced with lipopolysaccharide (LPS)/interferon (IFN)-γ, and decreased their capacity to induce Th1 cells. However, αKG also promoted IL-1β secretion by mature moDCs, despite inflammasome downregulation, potentiating their Th17 polarizing capacity. αKG induced the expression of anti-oxidative enzymes and hypoxia-induced factor (HIF)-1α in moDCs, activated Akt/FoxO1 pathway and increased autophagy flux, oxidative phosphorylation (OXPHOS) and glycolysis. This correlated with a higher capacity of immature αKG-moDCs to induce Th2 cells, and conventional regulatory T cells in an indolamine-dioxygenase (IDO)-1-dependent manner. Additionally, αKG increased moDCs’ capacity to induce non-conventional T regulatory (Tr)-1 and IL-10-producing CD8+T cells via up-regulated immunoglobulin-like transcript (ILT3) expression in OXPHOS-dependent manner. These results suggested that exogenous αKG-altered redox metabolism in moDCs contributed to their tolerogenic properties, which could be relevant for designing more efficient therapeutic approaches in DCs-mediated immunotherapies.",
publisher = "Ivyspring International",
journal = "International Journal of Biological Sciences, International Journal of Biological Sciences",
title = "Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response",
pages = "1087-1064",
number = "3",
volume = "20",
doi = "10.7150/ijbs.91109"
}
Milanović, M., Bekić, M., Đokić, J., Vučević, D., Čolić, M.,& Tomić, S.. (2024). Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response. in International Journal of Biological Sciences
Ivyspring International., 20(3), 1064-1087.
https://doi.org/10.7150/ijbs.91109
Milanović M, Bekić M, Đokić J, Vučević D, Čolić M, Tomić S. Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response. in International Journal of Biological Sciences. 2024;20(3):1064-1087.
doi:10.7150/ijbs.91109 .
Milanović, Marijana, Bekić, Marina, Đokić, Jelena, Vučević, Dragana, Čolić, Miodrag, Tomić, Sergej, "Exogenous α-ketoglutarate Modulates Redox Metabolism and Functions of Human Dendritic Cells, Altering Their Capacity to Polarise T Cell Response" in International Journal of Biological Sciences, 20, no. 3 (2024):1064-1087,
https://doi.org/10.7150/ijbs.91109 . .

IMGGE Annual Research Program 2024

(2024)

TY  - GEN
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2316
AB  - During 2024, IMGGE researchers will continue exploring following areas:
- human molecular genetics and genomics,
- microbiology and ecology of microorganisms,
- plant molecular biology.
IMGGE researchers will focus on studying molecular mechanisms responsible for the
occurrence of selected rare and non-contagious diseases, as well as on identification of
molecular markers important for diagnosis, prognosis, therapy and prevention. Disease
modeling methodology will be developed using in vitro model systems (2D and 3D primary and
permanent cell lines, induced pluripotent stem cells) and in vivo model systems that include
different animal models. These stydies will aim at discovering the causes of the disease,
identifying new therapeutic targets, testing new therapeutics as well as individual response to
existing therapeutics.
During 2024, the existing IMGGE collection of microorganisms will be further expanded with
new isolates (industrial microorganisms, clinically relevant pathogens, and bacteriophages), and
IMGGI collaborators will devote themselves to studying the antimicrobial and antiviral potential
and application of new isolates, as well as mechanisms of resistance and virulence. The
genomes of selected microorganisms will be sequenced and analyzed to identify new genes of
interest, e.g. producers of bioactive proteins, enzymes and biosynthetic pathways.
Metagenomes of selected environmental or clinical samples will also be sequenced and
analyzed in order to study the biological diversity of complex communities of microorganisms.
When it comes to the molecular biology of plants, the response mechanisms of different model
organisms to abiotic and biotic stress will further be investigated. IMGGE researchers will
analyze the role of different proteins in maintaining cell homeostasis (eg LEA) and genome
stability (Ustilago maydis). The genomes, epigenomes and proteomes of the muscat flower will
be sequenced in order to study the response to stress.
T2  - Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Annual Research Program
T1  - IMGGE Annual Research Program 2024
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2316
ER  - 
@misc{
year = "2024",
abstract = "During 2024, IMGGE researchers will continue exploring following areas:
- human molecular genetics and genomics,
- microbiology and ecology of microorganisms,
- plant molecular biology.
IMGGE researchers will focus on studying molecular mechanisms responsible for the
occurrence of selected rare and non-contagious diseases, as well as on identification of
molecular markers important for diagnosis, prognosis, therapy and prevention. Disease
modeling methodology will be developed using in vitro model systems (2D and 3D primary and
permanent cell lines, induced pluripotent stem cells) and in vivo model systems that include
different animal models. These stydies will aim at discovering the causes of the disease,
identifying new therapeutic targets, testing new therapeutics as well as individual response to
existing therapeutics.
During 2024, the existing IMGGE collection of microorganisms will be further expanded with
new isolates (industrial microorganisms, clinically relevant pathogens, and bacteriophages), and
IMGGI collaborators will devote themselves to studying the antimicrobial and antiviral potential
and application of new isolates, as well as mechanisms of resistance and virulence. The
genomes of selected microorganisms will be sequenced and analyzed to identify new genes of
interest, e.g. producers of bioactive proteins, enzymes and biosynthetic pathways.
Metagenomes of selected environmental or clinical samples will also be sequenced and
analyzed in order to study the biological diversity of complex communities of microorganisms.
When it comes to the molecular biology of plants, the response mechanisms of different model
organisms to abiotic and biotic stress will further be investigated. IMGGE researchers will
analyze the role of different proteins in maintaining cell homeostasis (eg LEA) and genome
stability (Ustilago maydis). The genomes, epigenomes and proteomes of the muscat flower will
be sequenced in order to study the response to stress.",
journal = "Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Annual Research Program",
title = "IMGGE Annual Research Program 2024",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2316"
}
(2024). IMGGE Annual Research Program 2024. in Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Annual Research Program.
https://hdl.handle.net/21.15107/rcub_imagine_2316
IMGGE Annual Research Program 2024. in Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Annual Research Program. 2024;.
https://hdl.handle.net/21.15107/rcub_imagine_2316 .
"IMGGE Annual Research Program 2024" in Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Annual Research Program (2024),
https://hdl.handle.net/21.15107/rcub_imagine_2316 .

ACINETOBACTER BAUMANNII RESISTANT TO LAST-LINE ANTIBIOTICS: AN EMERGING THREAT IN THE WESTERN BALKANS

Novović, Katarina; Jovčić, Branko

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Novović, Katarina
AU  - Jovčić, Branko
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2385
AB  - Acinetobacter baumannii is considered one of
the greatest threats to public health on a global
scale. This Gram-negative pathogen causes
severe infections, mostly of nosocomial origin,
with a high mortality rate. In recent years, the
rapid increase in the emergence and spread of
antibiotic resistance in A. baumannii has significantly
limited the effective therapeutic options
against infections caused by this bacterium.
The last-line antibiotics used in the treatment
of multidrug-resistant (MDR) A. baumannii
are carbapenems, tigecycline and polymyxins.
However, resistance to these antibiotics is
steadily increasing, especially to carbapenems,
leading to an extensively drug-resistant (XDR)
and even pandrug-resistant (PDR) phenotype
of A. baumannii. In 2021, the European Centre
for Disease Prevention and Control (ECDC) reported
that resistance of Acinetobacter spp. to
carbapenems reached 50% or more, mostly in
Southern and Eastern European countries. Although
the Western Balkans is a part of this region,
detailed studies on the epidemiology and
antibiotic resistance of A. baumannii are mainly
limited to Serbia and Croatia. In most cases, carbapenem
resistance in A. baumannii is due to
the production of carbapenemases, in particular
b-lactamases belonging to the class D known
as oxacillinases. The studies from the Western
Balkan countries revealed that besides the intrinsic
blaOXA-51-like gene, the most prevalent
acquired oxacillinase gene was the blaOXA-
24-like followed by the blaOXA-23-like, while
the blaOXA-58-like and metallo- b-lactamase
blaNDM-1 genes were less common. Although
significantly lower compared to carbapenem-resistant,
the number of A. baumannii isolates resistant
to tigecycline and colistin is on a continual
rise in the Western Balkans. As worldwide,
the main mechanism conferring tigecycline resistance
to A. baumannii from the Western Balkans
was overexpression of efflux pumps. Also,
the majority of reported alternations leading to
colistin resistance in A. baumannii were found in
the pmrCAB operon, which is responsible for the
modification of the colistin target, LPS.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - ACINETOBACTER BAUMANNII RESISTANT TO LAST-LINE ANTIBIOTICS: AN EMERGING THREAT IN THE WESTERN BALKANS
EP  - 174
SP  - 174
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2385
ER  - 
@conference{
author = "Novović, Katarina and Jovčić, Branko",
year = "2024",
abstract = "Acinetobacter baumannii is considered one of
the greatest threats to public health on a global
scale. This Gram-negative pathogen causes
severe infections, mostly of nosocomial origin,
with a high mortality rate. In recent years, the
rapid increase in the emergence and spread of
antibiotic resistance in A. baumannii has significantly
limited the effective therapeutic options
against infections caused by this bacterium.
The last-line antibiotics used in the treatment
of multidrug-resistant (MDR) A. baumannii
are carbapenems, tigecycline and polymyxins.
However, resistance to these antibiotics is
steadily increasing, especially to carbapenems,
leading to an extensively drug-resistant (XDR)
and even pandrug-resistant (PDR) phenotype
of A. baumannii. In 2021, the European Centre
for Disease Prevention and Control (ECDC) reported
that resistance of Acinetobacter spp. to
carbapenems reached 50% or more, mostly in
Southern and Eastern European countries. Although
the Western Balkans is a part of this region,
detailed studies on the epidemiology and
antibiotic resistance of A. baumannii are mainly
limited to Serbia and Croatia. In most cases, carbapenem
resistance in A. baumannii is due to
the production of carbapenemases, in particular
b-lactamases belonging to the class D known
as oxacillinases. The studies from the Western
Balkan countries revealed that besides the intrinsic
blaOXA-51-like gene, the most prevalent
acquired oxacillinase gene was the blaOXA-
24-like followed by the blaOXA-23-like, while
the blaOXA-58-like and metallo- b-lactamase
blaNDM-1 genes were less common. Although
significantly lower compared to carbapenem-resistant,
the number of A. baumannii isolates resistant
to tigecycline and colistin is on a continual
rise in the Western Balkans. As worldwide,
the main mechanism conferring tigecycline resistance
to A. baumannii from the Western Balkans
was overexpression of efflux pumps. Also,
the majority of reported alternations leading to
colistin resistance in A. baumannii were found in
the pmrCAB operon, which is responsible for the
modification of the colistin target, LPS.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "ACINETOBACTER BAUMANNII RESISTANT TO LAST-LINE ANTIBIOTICS: AN EMERGING THREAT IN THE WESTERN BALKANS",
pages = "174-174",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2385"
}
Novović, K.,& Jovčić, B.. (2024). ACINETOBACTER BAUMANNII RESISTANT TO LAST-LINE ANTIBIOTICS: AN EMERGING THREAT IN THE WESTERN BALKANS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 174-174.
https://hdl.handle.net/21.15107/rcub_imagine_2385
Novović K, Jovčić B. ACINETOBACTER BAUMANNII RESISTANT TO LAST-LINE ANTIBIOTICS: AN EMERGING THREAT IN THE WESTERN BALKANS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:174-174.
https://hdl.handle.net/21.15107/rcub_imagine_2385 .
Novović, Katarina, Jovčić, Branko, "ACINETOBACTER BAUMANNII RESISTANT TO LAST-LINE ANTIBIOTICS: AN EMERGING THREAT IN THE WESTERN BALKANS" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):174-174,
https://hdl.handle.net/21.15107/rcub_imagine_2385 .

A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo

Ćurčić, Jovana; Dinić, Miroslav; Novović, Katarina; Vasiljević, Zorica; Kojić, Milan; Jovčić, Branko; Malešević, Milka

(Elsevier, 2024)

TY  - JOUR
AU  - Ćurčić, Jovana
AU  - Dinić, Miroslav
AU  - Novović, Katarina
AU  - Vasiljević, Zorica
AU  - Kojić, Milan
AU  - Jovčić, Branko
AU  - Malešević, Milka
PY  - 2024
UR  - https://www.sciencedirect.com/science/article/pii/S0141813024012248
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2326
AB  - Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-β-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T2  - International Journal of Biological MacromoleculesInternational Journal of Biological Macromolecules
T1  - A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo
SP  - 130421
DO  - 10.1016/j.ijbiomac.2024.130421
ER  - 
@article{
author = "Ćurčić, Jovana and Dinić, Miroslav and Novović, Katarina and Vasiljević, Zorica and Kojić, Milan and Jovčić, Branko and Malešević, Milka",
year = "2024",
abstract = "Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-β-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules, International Journal of Biological MacromoleculesInternational Journal of Biological Macromolecules",
title = "A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo",
pages = "130421",
doi = "10.1016/j.ijbiomac.2024.130421"
}
Ćurčić, J., Dinić, M., Novović, K., Vasiljević, Z., Kojić, M., Jovčić, B.,& Malešević, M.. (2024). A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo. in International Journal of Biological Macromolecules
Elsevier., 130421.
https://doi.org/10.1016/j.ijbiomac.2024.130421
Ćurčić J, Dinić M, Novović K, Vasiljević Z, Kojić M, Jovčić B, Malešević M. A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo. in International Journal of Biological Macromolecules. 2024;:130421.
doi:10.1016/j.ijbiomac.2024.130421 .
Ćurčić, Jovana, Dinić, Miroslav, Novović, Katarina, Vasiljević, Zorica, Kojić, Milan, Jovčić, Branko, Malešević, Milka, "A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo" in International Journal of Biological Macromolecules (2024):130421,
https://doi.org/10.1016/j.ijbiomac.2024.130421 . .

A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms

Ćurčić, Jovana; Malešević, Milka; Jovčić, Branko

(2024)

TY  - CONF
AU  - Ćurčić, Jovana
AU  - Malešević, Milka
AU  - Jovčić, Branko
PY  - 2024
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/1308
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2359
AB  - Biofilm-associated infections are the main cause of biomaterial implant failure today. The increasing prevalence of antibiotic-resistant pathogens often results in the only solution of implant movement, with serious consequences for patients. Recently, various antimicrobial agents have been recognized as a promising strategy to prevent biofilm formation on implant surfaces. Quorum sensing (QS) plays a central role in the control of bacterial virulence and biofilm formation. The use of quorum quenching (QQ) enzymes to target QS is therefore a promising innovative approach for the development of enzyme-based antivirulence therapeutics, which represent a potential solution to combat infections caused by multidrug-resistant pathogens. This study aimed to characterize the novel YtnP lactonase from the clinical isolate Stenotrophomonas maltophilia 6960 and to investigate its potential to combat the virulence of multidrug-resistant (MDR) Pseudomonas aeruginosa MMA83.
C3  - Hemijska industrija (Chemical Industry)
T1  - A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms
EP  - 61
IS  - 1S
SP  - 61
VL  - 78
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2359
ER  - 
@conference{
author = "Ćurčić, Jovana and Malešević, Milka and Jovčić, Branko",
year = "2024",
abstract = "Biofilm-associated infections are the main cause of biomaterial implant failure today. The increasing prevalence of antibiotic-resistant pathogens often results in the only solution of implant movement, with serious consequences for patients. Recently, various antimicrobial agents have been recognized as a promising strategy to prevent biofilm formation on implant surfaces. Quorum sensing (QS) plays a central role in the control of bacterial virulence and biofilm formation. The use of quorum quenching (QQ) enzymes to target QS is therefore a promising innovative approach for the development of enzyme-based antivirulence therapeutics, which represent a potential solution to combat infections caused by multidrug-resistant pathogens. This study aimed to characterize the novel YtnP lactonase from the clinical isolate Stenotrophomonas maltophilia 6960 and to investigate its potential to combat the virulence of multidrug-resistant (MDR) Pseudomonas aeruginosa MMA83.",
journal = "Hemijska industrija (Chemical Industry)",
title = "A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms",
pages = "61-61",
number = "1S",
volume = "78",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2359"
}
Ćurčić, J., Malešević, M.,& Jovčić, B.. (2024). A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms. in Hemijska industrija (Chemical Industry), 78(1S), 61-61.
https://hdl.handle.net/21.15107/rcub_imagine_2359
Ćurčić J, Malešević M, Jovčić B. A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms. in Hemijska industrija (Chemical Industry). 2024;78(1S):61-61.
https://hdl.handle.net/21.15107/rcub_imagine_2359 .
Ćurčić, Jovana, Malešević, Milka, Jovčić, Branko, "A novel thermostable YtnP lactonase inhibits biofilm formation and induces decomposition of preformed Pseudomonas aeruginosa biofilms" in Hemijska industrija (Chemical Industry), 78, no. 1S (2024):61-61,
https://hdl.handle.net/21.15107/rcub_imagine_2359 .

Expression Pattern and Prognostic Significance of the Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 in Chronic Lymphocytic Leukemia

Tomić Vujović, Kristina; Ugrin, Milena; Tošić, Nataša; Vuković, Vojin; Marjanović, Irena; Kostić, Tatjana; Stanković, Sanja; Otasević, Vladimir; Sarać, Sofija; Antić, Darko; Pavlović, Sonja; Karan-Đurasević, Teodora

(MDPI, 2024)

TY  - JOUR
AU  - Tomić Vujović, Kristina
AU  - Ugrin, Milena
AU  - Tošić, Nataša
AU  - Vuković, Vojin
AU  - Marjanović, Irena
AU  - Kostić, Tatjana
AU  - Stanković, Sanja
AU  - Otasević, Vladimir
AU  - Sarać, Sofija
AU  - Antić, Darko
AU  - Pavlović, Sonja
AU  - Karan-Đurasević, Teodora
PY  - 2024
UR  - https://www.mdpi.com/1422-0067/25/2/922
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2318
AB  - Dysregulated expression of the long non-coding RNA MALAT1 has been implicated in the pathogenesis and progression of a variety of cancers, including hematological malignancies, but it has been poorly investigated in chronic lymphocytic leukemia (CLL). In this study, the expression of MALAT1 was measured using a quantitative reverse-transcriptase polymerase chain reaction in the peripheral blood mononuclear cells of 114 unselected, newly diagnosed CLL patients in order to analyze its association with clinical, laboratory, and molecular patients’ characteristics at diagnosis, as well as its prognostic relevance. MALAT1 was found to be upregulated in CLL patients in comparison to healthy controls, and expression levels were not related to age, leukocyte, lymphocyte and platelet count, serum β2-microglobulin, and IGHV somatic hypermutational status. On the other hand, high MALAT1 expression was associated with several favorable prognostic markers (high hemoglobin, low serum lactate dehydrogenase, earlier clinical stages, CD38-negative status), but also with unfavorable cytogenetics. Furthermore, an association between high MALAT1 levels and longer time to first treatment and overall survival in IGHV-unmutated CLL subtype was observed. In summary, our results imply that high MALAT1 expression at diagnosis may be a predictor of better prognosis and point to MALAT1 expression profiling as a candidate biomarker potentially useful in clinical practice.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Expression Pattern and Prognostic Significance of the Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 in Chronic Lymphocytic Leukemia
IS  - 2
SP  - 922
VL  - 25
DO  - 10.3390/ijms25020922
ER  - 
@article{
author = "Tomić Vujović, Kristina and Ugrin, Milena and Tošić, Nataša and Vuković, Vojin and Marjanović, Irena and Kostić, Tatjana and Stanković, Sanja and Otasević, Vladimir and Sarać, Sofija and Antić, Darko and Pavlović, Sonja and Karan-Đurasević, Teodora",
year = "2024",
abstract = "Dysregulated expression of the long non-coding RNA MALAT1 has been implicated in the pathogenesis and progression of a variety of cancers, including hematological malignancies, but it has been poorly investigated in chronic lymphocytic leukemia (CLL). In this study, the expression of MALAT1 was measured using a quantitative reverse-transcriptase polymerase chain reaction in the peripheral blood mononuclear cells of 114 unselected, newly diagnosed CLL patients in order to analyze its association with clinical, laboratory, and molecular patients’ characteristics at diagnosis, as well as its prognostic relevance. MALAT1 was found to be upregulated in CLL patients in comparison to healthy controls, and expression levels were not related to age, leukocyte, lymphocyte and platelet count, serum β2-microglobulin, and IGHV somatic hypermutational status. On the other hand, high MALAT1 expression was associated with several favorable prognostic markers (high hemoglobin, low serum lactate dehydrogenase, earlier clinical stages, CD38-negative status), but also with unfavorable cytogenetics. Furthermore, an association between high MALAT1 levels and longer time to first treatment and overall survival in IGHV-unmutated CLL subtype was observed. In summary, our results imply that high MALAT1 expression at diagnosis may be a predictor of better prognosis and point to MALAT1 expression profiling as a candidate biomarker potentially useful in clinical practice.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Expression Pattern and Prognostic Significance of the Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 in Chronic Lymphocytic Leukemia",
number = "2",
pages = "922",
volume = "25",
doi = "10.3390/ijms25020922"
}
Tomić Vujović, K., Ugrin, M., Tošić, N., Vuković, V., Marjanović, I., Kostić, T., Stanković, S., Otasević, V., Sarać, S., Antić, D., Pavlović, S.,& Karan-Đurasević, T.. (2024). Expression Pattern and Prognostic Significance of the Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 in Chronic Lymphocytic Leukemia. in International Journal of Molecular Sciences
MDPI., 25(2), 922.
https://doi.org/10.3390/ijms25020922
Tomić Vujović K, Ugrin M, Tošić N, Vuković V, Marjanović I, Kostić T, Stanković S, Otasević V, Sarać S, Antić D, Pavlović S, Karan-Đurasević T. Expression Pattern and Prognostic Significance of the Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 in Chronic Lymphocytic Leukemia. in International Journal of Molecular Sciences. 2024;25(2):922.
doi:10.3390/ijms25020922 .
Tomić Vujović, Kristina, Ugrin, Milena, Tošić, Nataša, Vuković, Vojin, Marjanović, Irena, Kostić, Tatjana, Stanković, Sanja, Otasević, Vladimir, Sarać, Sofija, Antić, Darko, Pavlović, Sonja, Karan-Đurasević, Teodora, "Expression Pattern and Prognostic Significance of the Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 in Chronic Lymphocytic Leukemia" in International Journal of Molecular Sciences, 25, no. 2 (2024):922,
https://doi.org/10.3390/ijms25020922 . .

Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems

Bojić, Luka; Pejić, Jelena; Stojkovska, Jasmina; Stevanović, Milena; Medić, Aleksandra; Petrović, Isidora; Milivojević, Milena

(2024)

TY  - CONF
AU  - Bojić, Luka
AU  - Pejić, Jelena
AU  - Stojkovska, Jasmina
AU  - Stevanović, Milena
AU  - Medić, Aleksandra
AU  - Petrović, Isidora
AU  - Milivojević, Milena
PY  - 2024
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/1262
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2366
AB  - Osteosarcoma (OS) is a highly aggressive primary malignant bone tumor that most commonly affects children, adolescents, and young adults. The standard treatment for OS consists of surgical resection and chemotherapy, whereas radiation therapy is recommended for the unresectable tumor. Due to its easy metastasis and recurrence, the 5-year overall survival rate is only 66.5 %. Thus, there is a critical need to recognize the molecular mechanisms underlying OS development and pathogenesis. Traditionally, two-dimensional (2D) cells are widely used in cancer biology and pre-clinical studies. However, 2D models are unable to mimic cell–cell and cell-extracellular matrix interactions which are crucial for adequate cellular function. Three-dimensional (3D) model systems are able to recapitulate key features of human cancer and are recognized as a promising platform for fundamental and translational research. In the present work, we established an osteosarcoma 3D model based on alginate microbeads and studied the effect of combined treatment with doxorubicin (Doxo), widely used chemotherapeutic, and quercetin (Quer), a plant pigment with anticancer properties, on OS model systems.
C3  - Hemijska industrija (Chemical Industry)
T1  - Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems
EP  - 20
IS  - 1S
SP  - 20
VL  - 78
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2366
ER  - 
@conference{
author = "Bojić, Luka and Pejić, Jelena and Stojkovska, Jasmina and Stevanović, Milena and Medić, Aleksandra and Petrović, Isidora and Milivojević, Milena",
year = "2024",
abstract = "Osteosarcoma (OS) is a highly aggressive primary malignant bone tumor that most commonly affects children, adolescents, and young adults. The standard treatment for OS consists of surgical resection and chemotherapy, whereas radiation therapy is recommended for the unresectable tumor. Due to its easy metastasis and recurrence, the 5-year overall survival rate is only 66.5 %. Thus, there is a critical need to recognize the molecular mechanisms underlying OS development and pathogenesis. Traditionally, two-dimensional (2D) cells are widely used in cancer biology and pre-clinical studies. However, 2D models are unable to mimic cell–cell and cell-extracellular matrix interactions which are crucial for adequate cellular function. Three-dimensional (3D) model systems are able to recapitulate key features of human cancer and are recognized as a promising platform for fundamental and translational research. In the present work, we established an osteosarcoma 3D model based on alginate microbeads and studied the effect of combined treatment with doxorubicin (Doxo), widely used chemotherapeutic, and quercetin (Quer), a plant pigment with anticancer properties, on OS model systems.",
journal = "Hemijska industrija (Chemical Industry)",
title = "Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems",
pages = "20-20",
number = "1S",
volume = "78",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2366"
}
Bojić, L., Pejić, J., Stojkovska, J., Stevanović, M., Medić, A., Petrović, I.,& Milivojević, M.. (2024). Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems. in Hemijska industrija (Chemical Industry), 78(1S), 20-20.
https://hdl.handle.net/21.15107/rcub_imagine_2366
Bojić L, Pejić J, Stojkovska J, Stevanović M, Medić A, Petrović I, Milivojević M. Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems. in Hemijska industrija (Chemical Industry). 2024;78(1S):20-20.
https://hdl.handle.net/21.15107/rcub_imagine_2366 .
Bojić, Luka, Pejić, Jelena, Stojkovska, Jasmina, Stevanović, Milena, Medić, Aleksandra, Petrović, Isidora, Milivojević, Milena, "Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems" in Hemijska industrija (Chemical Industry), 78, no. 1S (2024):20-20,
https://hdl.handle.net/21.15107/rcub_imagine_2366 .

Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation

Milošević, Emilija; Novković, Mirjana; Cenni, Vittoria; Bavelloni, Alberto; Kojić, Snežana; Jasnić, Jovana

(Springer Nature, 2024)

TY  - JOUR
AU  - Milošević, Emilija
AU  - Novković, Mirjana
AU  - Cenni, Vittoria
AU  - Bavelloni, Alberto
AU  - Kojić, Snežana
AU  - Jasnić, Jovana
PY  - 2024
UR  - https://doi.org/10.1007/s00418-024-02272-2
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2325
AB  - Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.
PB  - Springer Nature
T2  - Histochemistry and Cell Biology
T2  - Histochemistry and Cell BiologyHistochem Cell Biol
T1  - Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation
DO  - 10.1007/s00418-024-02272-2
ER  - 
@article{
author = "Milošević, Emilija and Novković, Mirjana and Cenni, Vittoria and Bavelloni, Alberto and Kojić, Snežana and Jasnić, Jovana",
year = "2024",
abstract = "Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.",
publisher = "Springer Nature",
journal = "Histochemistry and Cell Biology, Histochemistry and Cell BiologyHistochem Cell Biol",
title = "Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation",
doi = "10.1007/s00418-024-02272-2"
}
Milošević, E., Novković, M., Cenni, V., Bavelloni, A., Kojić, S.,& Jasnić, J.. (2024). Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. in Histochemistry and Cell Biology
Springer Nature..
https://doi.org/10.1007/s00418-024-02272-2
Milošević E, Novković M, Cenni V, Bavelloni A, Kojić S, Jasnić J. Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. in Histochemistry and Cell Biology. 2024;.
doi:10.1007/s00418-024-02272-2 .
Milošević, Emilija, Novković, Mirjana, Cenni, Vittoria, Bavelloni, Alberto, Kojić, Snežana, Jasnić, Jovana, "Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation" in Histochemistry and Cell Biology (2024),
https://doi.org/10.1007/s00418-024-02272-2 . .

Assessment of Factor VIII Activity and D-Dimer Levels in the Post-COVID Period

Kovac, Mirjana; Balint, Milena Todorovic; Milenković, Marija; Basaric, Dušica; Tomić, Branko; Balint, Bela; Ignjatović, Vera

(Georg Thieme Verlag KG, 2024)

TY  - JOUR
AU  - Kovac, Mirjana
AU  - Balint, Milena Todorovic
AU  - Milenković, Marija
AU  - Basaric, Dušica
AU  - Tomić, Branko
AU  - Balint, Bela
AU  - Ignjatović, Vera
PY  - 2024
UR  - http://www.thieme-connect.de/DOI/DOI?10.1055/a-2238-4744
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2329
AB  - Changes in the hemostatic system during COVID infection lead to hypercoagulability. Numerous studies have evaluated hemostatic abnormalities in COVID patients during acute infection, in the period of hospitalization. However, the hemostatic status following hospital discharge has not been sufficiently assessed. Considering the importance of FVIII and D-dimer levels as markers for the assessment of thrombosis, our study aimed to evaluate changes in these markers, as well as the influence of patient's age and clinical presentation of COVID infection on those hemostatic markers in the post-COVID phase. This prospective study (July 2020 to December 2022) included 115 COVID patients, 68 (59%) with asymptomatic/mild and 47 (41%) with moderate/severe clinical presentation. Patient follow-up included laboratory evaluation of FVIII and D-dimer levels at 1, 3, and 6 months following the COVID infection. Three months after the COVID infection, elevated FVIII was recorded in 44% of younger versus 65% of older individuals, p = 0.05, respectively, and 30 versus 57% (p = 0.008) 6 months post–COVID infection. With a focus on clinical presentation, a higher number of patients with moderate/severe COVID had elevated FVIII activity, but a statistically significant difference was observed only for the 6 months (32% mild vs. 53% moderate/severe, p = 0.041) post-infection time point. Following a COVID infection, an increase in FVIII activity suggests a continued hypercoagulable state in the post-COVID period and correlates with elevated D-dimer levels. This increase in FVIII is more pronounced in patients with moderate/severe clinical picture and those patients older than 50 years.
PB  - Georg Thieme Verlag KG
T2  - Hämostaseologie
T1  - Assessment of Factor VIII Activity and D-Dimer Levels in the Post-COVID Period
DO  - 10.1055/a-2238-4744
ER  - 
@article{
author = "Kovac, Mirjana and Balint, Milena Todorovic and Milenković, Marija and Basaric, Dušica and Tomić, Branko and Balint, Bela and Ignjatović, Vera",
year = "2024",
abstract = "Changes in the hemostatic system during COVID infection lead to hypercoagulability. Numerous studies have evaluated hemostatic abnormalities in COVID patients during acute infection, in the period of hospitalization. However, the hemostatic status following hospital discharge has not been sufficiently assessed. Considering the importance of FVIII and D-dimer levels as markers for the assessment of thrombosis, our study aimed to evaluate changes in these markers, as well as the influence of patient's age and clinical presentation of COVID infection on those hemostatic markers in the post-COVID phase. This prospective study (July 2020 to December 2022) included 115 COVID patients, 68 (59%) with asymptomatic/mild and 47 (41%) with moderate/severe clinical presentation. Patient follow-up included laboratory evaluation of FVIII and D-dimer levels at 1, 3, and 6 months following the COVID infection. Three months after the COVID infection, elevated FVIII was recorded in 44% of younger versus 65% of older individuals, p = 0.05, respectively, and 30 versus 57% (p = 0.008) 6 months post–COVID infection. With a focus on clinical presentation, a higher number of patients with moderate/severe COVID had elevated FVIII activity, but a statistically significant difference was observed only for the 6 months (32% mild vs. 53% moderate/severe, p = 0.041) post-infection time point. Following a COVID infection, an increase in FVIII activity suggests a continued hypercoagulable state in the post-COVID period and correlates with elevated D-dimer levels. This increase in FVIII is more pronounced in patients with moderate/severe clinical picture and those patients older than 50 years.",
publisher = "Georg Thieme Verlag KG",
journal = "Hämostaseologie",
title = "Assessment of Factor VIII Activity and D-Dimer Levels in the Post-COVID Period",
doi = "10.1055/a-2238-4744"
}
Kovac, M., Balint, M. T., Milenković, M., Basaric, D., Tomić, B., Balint, B.,& Ignjatović, V.. (2024). Assessment of Factor VIII Activity and D-Dimer Levels in the Post-COVID Period. in Hämostaseologie
Georg Thieme Verlag KG..
https://doi.org/10.1055/a-2238-4744
Kovac M, Balint MT, Milenković M, Basaric D, Tomić B, Balint B, Ignjatović V. Assessment of Factor VIII Activity and D-Dimer Levels in the Post-COVID Period. in Hämostaseologie. 2024;.
doi:10.1055/a-2238-4744 .
Kovac, Mirjana, Balint, Milena Todorovic, Milenković, Marija, Basaric, Dušica, Tomić, Branko, Balint, Bela, Ignjatović, Vera, "Assessment of Factor VIII Activity and D-Dimer Levels in the Post-COVID Period" in Hämostaseologie (2024),
https://doi.org/10.1055/a-2238-4744 . .

Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion

Stanković, Mia; Kljun, Jakob; Stevanović, Nevena Lj.; Lazić, Jelena; Škaro Bogojević, Sanja; Vojnović, Sandra; Zlatar, Matija; Nikodinović-Runić, Jasmina; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(Royal Society of Chemistry (RSC), 2024)

TY  - JOUR
AU  - Stanković, Mia
AU  - Kljun, Jakob
AU  - Stevanović, Nevena Lj.
AU  - Lazić, Jelena
AU  - Škaro Bogojević, Sanja
AU  - Vojnović, Sandra
AU  - Zlatar, Matija
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2303
AB  - Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01–27.1 and 2.61–47.9 μM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1–3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied.
PB  - Royal Society of Chemistry (RSC)
T2  - Dalton Transactions
T1  - Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion
DO  - 10.1039/D3DT03010E
ER  - 
@article{
author = "Stanković, Mia and Kljun, Jakob and Stevanović, Nevena Lj. and Lazić, Jelena and Škaro Bogojević, Sanja and Vojnović, Sandra and Zlatar, Matija and Nikodinović-Runić, Jasmina and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2024",
abstract = "Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01–27.1 and 2.61–47.9 μM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1–3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied.",
publisher = "Royal Society of Chemistry (RSC)",
journal = "Dalton Transactions",
title = "Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion",
doi = "10.1039/D3DT03010E"
}
Stanković, M., Kljun, J., Stevanović, N. Lj., Lazić, J., Škaro Bogojević, S., Vojnović, S., Zlatar, M., Nikodinović-Runić, J., Turel, I., Đuran, M.,& Glišić, B.. (2024). Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion. in Dalton Transactions
Royal Society of Chemistry (RSC)..
https://doi.org/10.1039/D3DT03010E
Stanković M, Kljun J, Stevanović NL, Lazić J, Škaro Bogojević S, Vojnović S, Zlatar M, Nikodinović-Runić J, Turel I, Đuran M, Glišić B. Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion. in Dalton Transactions. 2024;.
doi:10.1039/D3DT03010E .
Stanković, Mia, Kljun, Jakob, Stevanović, Nevena Lj., Lazić, Jelena, Škaro Bogojević, Sanja, Vojnović, Sandra, Zlatar, Matija, Nikodinović-Runić, Jasmina, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion" in Dalton Transactions (2024),
https://doi.org/10.1039/D3DT03010E . .
4
1

Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes

Vojnović, Sandra; Aleksić, Ivana; Ilić-Tomić, Tatjana; Stevanović, Milena; Nikodinović-Runić, Jasmina

(Springer Nature, 2024)

TY  - JOUR
AU  - Vojnović, Sandra
AU  - Aleksić, Ivana
AU  - Ilić-Tomić, Tatjana
AU  - Stevanović, Milena
AU  - Nikodinović-Runić, Jasmina
PY  - 2024
UR  - https://doi.org/10.1007/s00253-023-12900-x
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2314
AB  - The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility.
PB  - Springer Nature
T2  - Applied Microbiology and Biotechnology
T1  - Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes
IS  - 1
SP  - 185
VL  - 108
DO  - 10.1007/s00253-023-12900-x
ER  - 
@article{
author = "Vojnović, Sandra and Aleksić, Ivana and Ilić-Tomić, Tatjana and Stevanović, Milena and Nikodinović-Runić, Jasmina",
year = "2024",
abstract = "The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility.",
publisher = "Springer Nature",
journal = "Applied Microbiology and Biotechnology",
title = "Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes",
number = "1",
pages = "185",
volume = "108",
doi = "10.1007/s00253-023-12900-x"
}
Vojnović, S., Aleksić, I., Ilić-Tomić, T., Stevanović, M.,& Nikodinović-Runić, J.. (2024). Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. in Applied Microbiology and Biotechnology
Springer Nature., 108(1), 185.
https://doi.org/10.1007/s00253-023-12900-x
Vojnović S, Aleksić I, Ilić-Tomić T, Stevanović M, Nikodinović-Runić J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. in Applied Microbiology and Biotechnology. 2024;108(1):185.
doi:10.1007/s00253-023-12900-x .
Vojnović, Sandra, Aleksić, Ivana, Ilić-Tomić, Tatjana, Stevanović, Milena, Nikodinović-Runić, Jasmina, "Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes" in Applied Microbiology and Biotechnology, 108, no. 1 (2024):185,
https://doi.org/10.1007/s00253-023-12900-x . .
1

Association of the methionine sulfoxide reductase A rs10903323 gene polymorphism with functional activity and oxidative modification of alpha-1-antitrypsin in COPD patients

Milovanovic, V.; Topic, A.; Milinkovic, N.; Lazic, Z.; Ivosevic, A.; Radojkovic, D.; Divac Rankov, Aleksandra

(Elsevier, 2024)

TY  - JOUR
AU  - Milovanovic, V.
AU  - Topic, A.
AU  - Milinkovic, N.
AU  - Lazic, Z.
AU  - Ivosevic, A.
AU  - Radojkovic, D.
AU  - Divac Rankov, Aleksandra
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1647
AB  - ObjectiveChronic obstructive pulmonary disease (COPD) is multi–factorial disorder which results from environmental influences and genetic factors. We aimed to investigate whether methionine sulfoxide reductase A (MSRA) rs10903323 gene polymorphism is associated with COPD development and severity in Serbian adult population.MethodsThe study included 155 patients with COPD and 134 healthy volunteers. Genotyping was determined performing home-made polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The difference between the inhibitory activities of normal and oxidized Alpha-1-Antitrypsin (A1AT) against elastase and trypsin was used for determination of Oxidized Alpha-1-Antitrypsin (OxyA1AT) (expressed as % and g/L). Functional activity of A1AT was presented as a specific inhibitor activity to elastase (SIA-Elastase, kU/g).ResultsFrequencies of the genotypes AA, AG and GG were 80.0%, 20.0%, 0% in COPD patients and 80.5%, 18.5% and 1.5% in the control group, and there was no significant difference in genotype or allele distributions between groups. Serum level of A1AT (g/L) and OxyA1AT was significantly higher in COPD patients than in the control group, but functional activity of A1AT (SIA-Elastase) was significantly lower in COPD patients than in the control group. In COPD group, increased level of OxyA1AT was present in G allele carriers who were smokers relative to G allele carriers who were not smokers. In the smoker group of patients with severe and very severe COPD (GOLD3+4), significant increase in OxyA1AT level was present in G allele carriers compared to AA homozygotes.ConclusionThese findings suggest that MSRA rs10903323 gene polymorphism is probably not a risk for COPD by itself but could represent a COPD modifier, since minor, G allele, is associated with an increased level of oxidized A1AT, indicating impaired ability of MSRA to repair oxidized A1AT in COPD-smokers, and in severe form of COPD.
PB  - Elsevier
T2  - Pulmonology
T2  - Pulmonology
T1  - Association of the methionine sulfoxide reductase A rs10903323 gene polymorphism with functional activity and oxidative modification of alpha-1-antitrypsin in COPD patients
EP  - 129
IS  - 2
SP  - 122
VL  - 30
DO  - 10.1016/j.pulmoe.2021.09.003
ER  - 
@article{
author = "Milovanovic, V. and Topic, A. and Milinkovic, N. and Lazic, Z. and Ivosevic, A. and Radojkovic, D. and Divac Rankov, Aleksandra",
year = "2024",
abstract = "ObjectiveChronic obstructive pulmonary disease (COPD) is multi–factorial disorder which results from environmental influences and genetic factors. We aimed to investigate whether methionine sulfoxide reductase A (MSRA) rs10903323 gene polymorphism is associated with COPD development and severity in Serbian adult population.MethodsThe study included 155 patients with COPD and 134 healthy volunteers. Genotyping was determined performing home-made polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The difference between the inhibitory activities of normal and oxidized Alpha-1-Antitrypsin (A1AT) against elastase and trypsin was used for determination of Oxidized Alpha-1-Antitrypsin (OxyA1AT) (expressed as % and g/L). Functional activity of A1AT was presented as a specific inhibitor activity to elastase (SIA-Elastase, kU/g).ResultsFrequencies of the genotypes AA, AG and GG were 80.0%, 20.0%, 0% in COPD patients and 80.5%, 18.5% and 1.5% in the control group, and there was no significant difference in genotype or allele distributions between groups. Serum level of A1AT (g/L) and OxyA1AT was significantly higher in COPD patients than in the control group, but functional activity of A1AT (SIA-Elastase) was significantly lower in COPD patients than in the control group. In COPD group, increased level of OxyA1AT was present in G allele carriers who were smokers relative to G allele carriers who were not smokers. In the smoker group of patients with severe and very severe COPD (GOLD3+4), significant increase in OxyA1AT level was present in G allele carriers compared to AA homozygotes.ConclusionThese findings suggest that MSRA rs10903323 gene polymorphism is probably not a risk for COPD by itself but could represent a COPD modifier, since minor, G allele, is associated with an increased level of oxidized A1AT, indicating impaired ability of MSRA to repair oxidized A1AT in COPD-smokers, and in severe form of COPD.",
publisher = "Elsevier",
journal = "Pulmonology, Pulmonology",
title = "Association of the methionine sulfoxide reductase A rs10903323 gene polymorphism with functional activity and oxidative modification of alpha-1-antitrypsin in COPD patients",
pages = "129-122",
number = "2",
volume = "30",
doi = "10.1016/j.pulmoe.2021.09.003"
}
Milovanovic, V., Topic, A., Milinkovic, N., Lazic, Z., Ivosevic, A., Radojkovic, D.,& Divac Rankov, A.. (2024). Association of the methionine sulfoxide reductase A rs10903323 gene polymorphism with functional activity and oxidative modification of alpha-1-antitrypsin in COPD patients. in Pulmonology
Elsevier., 30(2), 122-129.
https://doi.org/10.1016/j.pulmoe.2021.09.003
Milovanovic V, Topic A, Milinkovic N, Lazic Z, Ivosevic A, Radojkovic D, Divac Rankov A. Association of the methionine sulfoxide reductase A rs10903323 gene polymorphism with functional activity and oxidative modification of alpha-1-antitrypsin in COPD patients. in Pulmonology. 2024;30(2):122-129.
doi:10.1016/j.pulmoe.2021.09.003 .
Milovanovic, V., Topic, A., Milinkovic, N., Lazic, Z., Ivosevic, A., Radojkovic, D., Divac Rankov, Aleksandra, "Association of the methionine sulfoxide reductase A rs10903323 gene polymorphism with functional activity and oxidative modification of alpha-1-antitrypsin in COPD patients" in Pulmonology, 30, no. 2 (2024):122-129,
https://doi.org/10.1016/j.pulmoe.2021.09.003 . .
1
1

THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS

Golić, Nataša; Terzić Vidojević, Amarela; Tolinački, Maja; Dinić, Miroslav; Đokić, Jelena; Todorović Vukotić, Nevena; Lukić, Jovanka; Živković, Milica; Nastasijević, Branislav; Soković, Svetlana; Brdarić, Emilija; Radojević, Dušan

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Golić, Nataša
AU  - Terzić Vidojević, Amarela
AU  - Tolinački, Maja
AU  - Dinić, Miroslav
AU  - Đokić, Jelena
AU  - Todorović Vukotić, Nevena
AU  - Lukić, Jovanka
AU  - Živković, Milica
AU  - Nastasijević, Branislav
AU  - Soković, Svetlana
AU  - Brdarić, Emilija
AU  - Radojević, Dušan
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2372
AB  - There has been an epidemic of various non-communicable
degenerative and autoimmune diseases,
strongly associated with the modern
lifestyle. Among them, neurodegenerative and
psychiatric disorders represent a huge burden on
society. Recently, all these diseases have been associated
with the gut microbiota dysbiosis. Gut
microbiota-host interaction research has been
greatly improved due to development of molecular
high-throughput techniques based on
various ‘omics’ techniques coupled with bioinformatics
and data science developments. However,
the mechanisms of the host–microbiota crosstalk
are still poorly understood. The NextGenBiotics
project proposes an innovative integrative
multi-omics research strategy for deciphering
the mechanism behind the cross-talk among
microbiota and gut-brain-axis. The 118 novel
NGPs candidates belonging to Dorea sp., Blautia
sp., Bacteroides sp., Roseburia sp., Sellimonas
sp., Faecalicatena sp., Phascolarctobacterium faecium,
and Faecalimonas sp. were cultivated. The
25 NGPs with confirmed safe status and potential
probiotic potential were screened in C. elegans
model for their effects on behavioural and neuronal
activity. The most prominent candidates
with ability to upregulate expression of genes
involved in neurotransmiting are further tested
in EAE (an animal model for MS) and CUMS depression
model. The specific microbiota-derived
metabolites have been identified as potential
neuro- and psycho-biotics. The NextGenBiotics is
highly ambitious project, dedicated to pioneering
work in the field of multi-omics studies related
to the cultivation of novel anaerobic NGPs
and the studying of their effect on MGBA. This
concept enabled studying bidirectional communication
between gut microbiota and brain
on the functional level that will significantly
contribute to the growing body data related to
MGBA. The results obtained during NextGenBiotics
determined the genes/metabolites and the
associated mechanisms involved in health-promoting
effects of NGPs in MGBA beyond stateof-
the-art, broadening the scientific knowledge
and opening up the possible novel therapeutic
approaches in prevention and therapy of neurodegenerative
and psychiatric diseases.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS
EP  - 106
SP  - 106
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2372
ER  - 
@conference{
author = "Golić, Nataša and Terzić Vidojević, Amarela and Tolinački, Maja and Dinić, Miroslav and Đokić, Jelena and Todorović Vukotić, Nevena and Lukić, Jovanka and Živković, Milica and Nastasijević, Branislav and Soković, Svetlana and Brdarić, Emilija and Radojević, Dušan",
year = "2024",
abstract = "There has been an epidemic of various non-communicable
degenerative and autoimmune diseases,
strongly associated with the modern
lifestyle. Among them, neurodegenerative and
psychiatric disorders represent a huge burden on
society. Recently, all these diseases have been associated
with the gut microbiota dysbiosis. Gut
microbiota-host interaction research has been
greatly improved due to development of molecular
high-throughput techniques based on
various ‘omics’ techniques coupled with bioinformatics
and data science developments. However,
the mechanisms of the host–microbiota crosstalk
are still poorly understood. The NextGenBiotics
project proposes an innovative integrative
multi-omics research strategy for deciphering
the mechanism behind the cross-talk among
microbiota and gut-brain-axis. The 118 novel
NGPs candidates belonging to Dorea sp., Blautia
sp., Bacteroides sp., Roseburia sp., Sellimonas
sp., Faecalicatena sp., Phascolarctobacterium faecium,
and Faecalimonas sp. were cultivated. The
25 NGPs with confirmed safe status and potential
probiotic potential were screened in C. elegans
model for their effects on behavioural and neuronal
activity. The most prominent candidates
with ability to upregulate expression of genes
involved in neurotransmiting are further tested
in EAE (an animal model for MS) and CUMS depression
model. The specific microbiota-derived
metabolites have been identified as potential
neuro- and psycho-biotics. The NextGenBiotics is
highly ambitious project, dedicated to pioneering
work in the field of multi-omics studies related
to the cultivation of novel anaerobic NGPs
and the studying of their effect on MGBA. This
concept enabled studying bidirectional communication
between gut microbiota and brain
on the functional level that will significantly
contribute to the growing body data related to
MGBA. The results obtained during NextGenBiotics
determined the genes/metabolites and the
associated mechanisms involved in health-promoting
effects of NGPs in MGBA beyond stateof-
the-art, broadening the scientific knowledge
and opening up the possible novel therapeutic
approaches in prevention and therapy of neurodegenerative
and psychiatric diseases.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS",
pages = "106-106",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2372"
}
Golić, N., Terzić Vidojević, A., Tolinački, M., Dinić, M., Đokić, J., Todorović Vukotić, N., Lukić, J., Živković, M., Nastasijević, B., Soković, S., Brdarić, E.,& Radojević, D.. (2024). THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 106-106.
https://hdl.handle.net/21.15107/rcub_imagine_2372
Golić N, Terzić Vidojević A, Tolinački M, Dinić M, Đokić J, Todorović Vukotić N, Lukić J, Živković M, Nastasijević B, Soković S, Brdarić E, Radojević D. THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:106-106.
https://hdl.handle.net/21.15107/rcub_imagine_2372 .
Golić, Nataša, Terzić Vidojević, Amarela, Tolinački, Maja, Dinić, Miroslav, Đokić, Jelena, Todorović Vukotić, Nevena, Lukić, Jovanka, Živković, Milica, Nastasijević, Branislav, Soković, Svetlana, Brdarić, Emilija, Radojević, Dušan, "THE USE OF INTEGRATIVE MULTI-OMICS APPROACH IN CULTIVATION AND CHARACTERIZATION OF GUT BACTERIA RELATED TO MICROBIOTA-GUT-BRAIN AXIS AS A SOURCE FOR NEXT GENERATION PROBIOTICS" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):106-106,
https://hdl.handle.net/21.15107/rcub_imagine_2372 .

MORPHOLOGICAL CHANGES OF STAPHYLOCOCCUS AUREUS AND SALMONELLA ENTERITIDIS UPON EXPOSURE TO THE EXTRACT OBTAINED FROM PLEUROTUS OSTREATUS MUSHROOM

Matijašević, Danka; Pavlović, Vladimir; Kljajević, Nemanja; Gardijan, Lazar

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Matijašević, Danka
AU  - Pavlović, Vladimir
AU  - Kljajević, Nemanja
AU  - Gardijan, Lazar
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2367
AB  - In last decades, bacterial resistance to first choice
antibiotics has been drastically increasing, therefore,
the research of new antimicrobial substances
is of great importance. This rising problem
with bacterial resistance to existing antibiotics
affects not only the health care institutes but also
food plants. S. aureus and S. enteritidis pose a
number of challenges to the food industry and
cause foodborne illness in humans. In addition,
due to their favourable elemental composition,
oyster mushrooms (Pleurotus sp.) are a reservoir
of bioactive compounds that give them remarkable
antibacterial potential. P. ostreatus is of
great economic importance and is the second
most cultivated edible mushroom, therefore information
about its possible targets on bacterial
cells is of great importance for use as a dietary
supplement or medicinal purposes. The results of
the antibacterial assay showed that tested bacterial
strains were susceptible to the methanol extract of P. ostreatus (PoME), while microbicidal
activity was only detected against Gram-positive
bacteria. Scanning electron microscopy (SEM)
micrographs suggested that extract acted on
cytoplasmic membrane of S. aureus, while the
cell envelope of S. Enteritidis was the most likely
target. Natural extracts may outperform individual
bioactive compounds due to the synergistic
interaction between the metabolites, which can
enhance the effects of the individual components.
Extracts rich in antibacterials are emerging
as alternatives to synthetic antibiotics in the food
and health sectors. Among these, crude mushroom
extracts are particularly sought after for
their diverse bioactive ingredients, as they can
combat resistant strains of bacteria due to their
different targets and modes of action. PoME can
be used as an effective antimicrobial agent, suitable
for applications aiming to eradicate foodborne
pathogens, thus enhancing food safety.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - MORPHOLOGICAL CHANGES OF STAPHYLOCOCCUS AUREUS AND SALMONELLA ENTERITIDIS UPON EXPOSURE TO THE EXTRACT OBTAINED FROM PLEUROTUS OSTREATUS MUSHROOM
EP  - 37
SP  - 37
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2367
ER  - 
@conference{
author = "Matijašević, Danka and Pavlović, Vladimir and Kljajević, Nemanja and Gardijan, Lazar",
year = "2024",
abstract = "In last decades, bacterial resistance to first choice
antibiotics has been drastically increasing, therefore,
the research of new antimicrobial substances
is of great importance. This rising problem
with bacterial resistance to existing antibiotics
affects not only the health care institutes but also
food plants. S. aureus and S. enteritidis pose a
number of challenges to the food industry and
cause foodborne illness in humans. In addition,
due to their favourable elemental composition,
oyster mushrooms (Pleurotus sp.) are a reservoir
of bioactive compounds that give them remarkable
antibacterial potential. P. ostreatus is of
great economic importance and is the second
most cultivated edible mushroom, therefore information
about its possible targets on bacterial
cells is of great importance for use as a dietary
supplement or medicinal purposes. The results of
the antibacterial assay showed that tested bacterial
strains were susceptible to the methanol extract of P. ostreatus (PoME), while microbicidal
activity was only detected against Gram-positive
bacteria. Scanning electron microscopy (SEM)
micrographs suggested that extract acted on
cytoplasmic membrane of S. aureus, while the
cell envelope of S. Enteritidis was the most likely
target. Natural extracts may outperform individual
bioactive compounds due to the synergistic
interaction between the metabolites, which can
enhance the effects of the individual components.
Extracts rich in antibacterials are emerging
as alternatives to synthetic antibiotics in the food
and health sectors. Among these, crude mushroom
extracts are particularly sought after for
their diverse bioactive ingredients, as they can
combat resistant strains of bacteria due to their
different targets and modes of action. PoME can
be used as an effective antimicrobial agent, suitable
for applications aiming to eradicate foodborne
pathogens, thus enhancing food safety.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "MORPHOLOGICAL CHANGES OF STAPHYLOCOCCUS AUREUS AND SALMONELLA ENTERITIDIS UPON EXPOSURE TO THE EXTRACT OBTAINED FROM PLEUROTUS OSTREATUS MUSHROOM",
pages = "37-37",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2367"
}
Matijašević, D., Pavlović, V., Kljajević, N.,& Gardijan, L.. (2024). MORPHOLOGICAL CHANGES OF STAPHYLOCOCCUS AUREUS AND SALMONELLA ENTERITIDIS UPON EXPOSURE TO THE EXTRACT OBTAINED FROM PLEUROTUS OSTREATUS MUSHROOM. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 37-37.
https://hdl.handle.net/21.15107/rcub_imagine_2367
Matijašević D, Pavlović V, Kljajević N, Gardijan L. MORPHOLOGICAL CHANGES OF STAPHYLOCOCCUS AUREUS AND SALMONELLA ENTERITIDIS UPON EXPOSURE TO THE EXTRACT OBTAINED FROM PLEUROTUS OSTREATUS MUSHROOM. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:37-37.
https://hdl.handle.net/21.15107/rcub_imagine_2367 .
Matijašević, Danka, Pavlović, Vladimir, Kljajević, Nemanja, Gardijan, Lazar, "MORPHOLOGICAL CHANGES OF STAPHYLOCOCCUS AUREUS AND SALMONELLA ENTERITIDIS UPON EXPOSURE TO THE EXTRACT OBTAINED FROM PLEUROTUS OSTREATUS MUSHROOM" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):37-37,
https://hdl.handle.net/21.15107/rcub_imagine_2367 .

FROM GUT TO LAB: UNLOCKING ANTI-INFLAMMATORY POTENTIAL WITH GABA-PRODUCING BACTERIA

Mitrović, Hristina; Brdarić, Emilija; Bisenić, Aleksandar; Jakovljević, Stefan; Dinić, Miroslav; Đokić, Jelena; Terzić-Vidojević, Amarela; Tolinački, Maja; Radojević, Dušan; Golić, Nataša; Soković Bajić, Svetlana

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Mitrović, Hristina
AU  - Brdarić, Emilija
AU  - Bisenić, Aleksandar
AU  - Jakovljević, Stefan
AU  - Dinić, Miroslav
AU  - Đokić, Jelena
AU  - Terzić-Vidojević, Amarela
AU  - Tolinački, Maja
AU  - Radojević, Dušan
AU  - Golić, Nataša
AU  - Soković Bajić, Svetlana
PY  - 2024
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2389
AB  - Psychobiotics are live bacterial strains impacting the central nervous system, producing
neuroactive substances like GABA. GABA from
microbiota influences neural signals, affecting
neurological parameters, sleep, appetite, mood,
and cognition, traversing the intestinal barrier to bind to receptors on enteric neurons and
the vagus nerve. Lactobacillus and Bifidobacterium species can synthesize GABA from dietary
glutamate, with Lactobacillus rhamnosus shown
to reduce anxiety and depressive behavior, elevating hippocampal GABA. Limited knowledge
exists about anaerobic GABA producers, warranting further research for a comprehensive
understanding. Material for isolation comprised
fecal samples from healthy donors, with isolation conducted in an anaerobic chamber within
a maximum of 1 hour after sampling. Isolated
bacteria were identified through sequencing
the 16S rRNA gene. For bacterial cultivation, different types of media were used. PYG medium
contains hematine and vitamin K, essential supplements for the cultivation of anaerobic bacteria. All media included 0.1% L-cysteine, playing a
role in oxygen reduction, and 0.5% glutamate, a
precursor for GABA production. After identification, the presence of GABA in 8 tested bacterial
species was determined using the TLC method.
Quantification of GABA was performed using the
HPLC method. Furthermore, the positive effects
observed in Caco2 cells with induced inflammation, after treatment with certain anaerobic postbiotics producing GABA, indicate the potential
anti-inflammatory effects of these postbiotics.
The study implies anti-inflammatory effects of
anaerobic GABA producers, offering insights into the complex interplay among gut microbiota,
immune function, and mental health. Recognizing inflammation’s role in depressive symptoms,
targeting anaerobic bacteria involved in GABA
synthesis could modulate neurotransmitters and
inflammatory responses, presenting a comprehensive approach to mental well-being. Advancing research in this area contributes to a holistic
understanding of anaerobic bacteria, GABA production, gut microbiota, and mental health. This
offers avenues for novel therapeutic approaches
and enhances overall quality of life.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
T1  - FROM GUT TO LAB: UNLOCKING ANTI-INFLAMMATORY POTENTIAL WITH GABA-PRODUCING BACTERIA
EP  - 111
SP  - 111
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2389
ER  - 
@conference{
author = "Mitrović, Hristina and Brdarić, Emilija and Bisenić, Aleksandar and Jakovljević, Stefan and Dinić, Miroslav and Đokić, Jelena and Terzić-Vidojević, Amarela and Tolinački, Maja and Radojević, Dušan and Golić, Nataša and Soković Bajić, Svetlana",
year = "2024",
abstract = "Psychobiotics are live bacterial strains impacting the central nervous system, producing
neuroactive substances like GABA. GABA from
microbiota influences neural signals, affecting
neurological parameters, sleep, appetite, mood,
and cognition, traversing the intestinal barrier to bind to receptors on enteric neurons and
the vagus nerve. Lactobacillus and Bifidobacterium species can synthesize GABA from dietary
glutamate, with Lactobacillus rhamnosus shown
to reduce anxiety and depressive behavior, elevating hippocampal GABA. Limited knowledge
exists about anaerobic GABA producers, warranting further research for a comprehensive
understanding. Material for isolation comprised
fecal samples from healthy donors, with isolation conducted in an anaerobic chamber within
a maximum of 1 hour after sampling. Isolated
bacteria were identified through sequencing
the 16S rRNA gene. For bacterial cultivation, different types of media were used. PYG medium
contains hematine and vitamin K, essential supplements for the cultivation of anaerobic bacteria. All media included 0.1% L-cysteine, playing a
role in oxygen reduction, and 0.5% glutamate, a
precursor for GABA production. After identification, the presence of GABA in 8 tested bacterial
species was determined using the TLC method.
Quantification of GABA was performed using the
HPLC method. Furthermore, the positive effects
observed in Caco2 cells with induced inflammation, after treatment with certain anaerobic postbiotics producing GABA, indicate the potential
anti-inflammatory effects of these postbiotics.
The study implies anti-inflammatory effects of
anaerobic GABA producers, offering insights into the complex interplay among gut microbiota,
immune function, and mental health. Recognizing inflammation’s role in depressive symptoms,
targeting anaerobic bacteria involved in GABA
synthesis could modulate neurotransmitters and
inflammatory responses, presenting a comprehensive approach to mental well-being. Advancing research in this area contributes to a holistic
understanding of anaerobic bacteria, GABA production, gut microbiota, and mental health. This
offers avenues for novel therapeutic approaches
and enhances overall quality of life.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health",
title = "FROM GUT TO LAB: UNLOCKING ANTI-INFLAMMATORY POTENTIAL WITH GABA-PRODUCING BACTERIA",
pages = "111-111",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2389"
}
Mitrović, H., Brdarić, E., Bisenić, A., Jakovljević, S., Dinić, M., Đokić, J., Terzić-Vidojević, A., Tolinački, M., Radojević, D., Golić, N.,& Soković Bajić, S.. (2024). FROM GUT TO LAB: UNLOCKING ANTI-INFLAMMATORY POTENTIAL WITH GABA-PRODUCING BACTERIA. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health
Serbian Society for Microbiology., 111-111.
https://hdl.handle.net/21.15107/rcub_imagine_2389
Mitrović H, Brdarić E, Bisenić A, Jakovljević S, Dinić M, Đokić J, Terzić-Vidojević A, Tolinački M, Radojević D, Golić N, Soković Bajić S. FROM GUT TO LAB: UNLOCKING ANTI-INFLAMMATORY POTENTIAL WITH GABA-PRODUCING BACTERIA. in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health. 2024;:111-111.
https://hdl.handle.net/21.15107/rcub_imagine_2389 .
Mitrović, Hristina, Brdarić, Emilija, Bisenić, Aleksandar, Jakovljević, Stefan, Dinić, Miroslav, Đokić, Jelena, Terzić-Vidojević, Amarela, Tolinački, Maja, Radojević, Dušan, Golić, Nataša, Soković Bajić, Svetlana, "FROM GUT TO LAB: UNLOCKING ANTI-INFLAMMATORY POTENTIAL WITH GABA-PRODUCING BACTERIA" in XIII Congress of microbiologists of Serbia: From biotechnology to human and planetary health (2024):111-111,
https://hdl.handle.net/21.15107/rcub_imagine_2389 .