Stevanović, Nevena Lj.

Link to this page

Authority KeyName Variants
orcid::0000-0003-3261-478X
  • Stevanović, Nevena Lj. (9)
  • Stevanović, Nevena (3)
  • Stevanović, Nevena Lj (1)
Projects
info:eu-repo/grantAgreement/MESTD/inst-2020/200042/RS// info:eu-repo/grantAgreement/MESTD/inst-2020/200122/RS//
Serbian Academy of Sciences and Arts [01-2019-F65, F128] info:eu-repo/grantAgreement/MESTD/inst-2020/200378/RS//
Slovenian Research Agency [P1-0175] Synthesis of new metal complexes and investigation of their reactions with peptides
Microbial diversity study and characterization of beneficial environmental microorganisms 451-03-68/2020-14
Centre for Research Infrastructure at the University of Ljubljana, Faculty of Chemistry and Chemical Technology, which is part of the Network of Research and Infrastructural Centres UL (MRIC UL) FriMat (Fribourg Center for Nanomaterials)
Funding from the Serbian Academy of Sciences and Arts under strategic projects programme - grant agreement No. 01-2019-F65 Ministry of Education, Science and Sport of the Republic of Slovenia
nfo:eu-repo/grantAgreement/MESTD/inst-2020/200122/RS// project of this institution No. F128.
Serbian Academy of Sciences and Arts [01-2019-F65, F128. N] Serbian Academy of Sciences and Arts under project No. F128
Serbian Academy of Sciences and Arts under strategic projects programme [01-2019-F65, F128] Slovenian Research Agency (grant number P1-0175)
Slovenian Research Agency (grant P1-0175) Slovenian Research Agency (grant P1-0175). The EN!FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia, is acknowledged for the use of the SuperNova diffractometer
Slovenian Research and Innovation Agency (grant P1-0175 and Infrastructure programme No. I0-0022). The EN → FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia Swiss National Science Foundation through the SupraMedChem"Balkans.Net SCOPES Institutional Partnership [IZ74Z0_160515]
This research has also received funding from the Serbian Academy of Sciences and Arts under project No. F128. University of Fribourg, Switzerland

Author's Bibliography

Silver(I) complexes with voriconazole as promising anti-Candida agents

Stanković, Mia; Škaro Bogojević, Sanja; Kljun, Jakob; Milanović, Žiko; Stevanović, Nevena; Lazić, Jelena; Vojnović, Sandra; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(Elsevier, 2024)

TY  - JOUR
AU  - Stanković, Mia
AU  - Škaro Bogojević, Sanja
AU  - Kljun, Jakob
AU  - Milanović, Žiko
AU  - Stevanović, Nevena
AU  - Lazić, Jelena
AU  - Vojnović, Sandra
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2024
UR  - https://www.sciencedirect.com/science/article/pii/S0162013424000953
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2368
AB  - Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV–Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1–3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02–1.05 μM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a – 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.
PB  - Elsevier
T2  - Journal of Inorganic Biochemistry
T1  - Silver(I) complexes with voriconazole as promising anti-Candida agents
SP  - 112572
VL  - 256
DO  - 10.1016/j.jinorgbio.2024.112572
ER  - 
@article{
author = "Stanković, Mia and Škaro Bogojević, Sanja and Kljun, Jakob and Milanović, Žiko and Stevanović, Nevena and Lazić, Jelena and Vojnović, Sandra and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2024",
abstract = "Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV–Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1–3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02–1.05 μM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a – 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.",
publisher = "Elsevier",
journal = "Journal of Inorganic Biochemistry",
title = "Silver(I) complexes with voriconazole as promising anti-Candida agents",
pages = "112572",
volume = "256",
doi = "10.1016/j.jinorgbio.2024.112572"
}
Stanković, M., Škaro Bogojević, S., Kljun, J., Milanović, Ž., Stevanović, N., Lazić, J., Vojnović, S., Turel, I., Đuran, M.,& Glišić, B.. (2024). Silver(I) complexes with voriconazole as promising anti-Candida agents. in Journal of Inorganic Biochemistry
Elsevier., 256, 112572.
https://doi.org/10.1016/j.jinorgbio.2024.112572
Stanković M, Škaro Bogojević S, Kljun J, Milanović Ž, Stevanović N, Lazić J, Vojnović S, Turel I, Đuran M, Glišić B. Silver(I) complexes with voriconazole as promising anti-Candida agents. in Journal of Inorganic Biochemistry. 2024;256:112572.
doi:10.1016/j.jinorgbio.2024.112572 .
Stanković, Mia, Škaro Bogojević, Sanja, Kljun, Jakob, Milanović, Žiko, Stevanović, Nevena, Lazić, Jelena, Vojnović, Sandra, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "Silver(I) complexes with voriconazole as promising anti-Candida agents" in Journal of Inorganic Biochemistry, 256 (2024):112572,
https://doi.org/10.1016/j.jinorgbio.2024.112572 . .
3

Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex

Stevanović, Nevena Lj.; Kljun, Jakob; Aleksić, Ivana; Škaro Bogojević, Sanja; Milivojević, Dušan; Veselinović, Aleksandar; Turel, Iztok; Djuran, Milos; Nikodinović-Runić, Jasmina; Glišić, Biljana

(Royal Soc Chemistry, Cambridge, 2022)

TY  - JOUR
AU  - Stevanović, Nevena Lj.
AU  - Kljun, Jakob
AU  - Aleksić, Ivana
AU  - Škaro Bogojević, Sanja
AU  - Milivojević, Dušan
AU  - Veselinović, Aleksandar
AU  - Turel, Iztok
AU  - Djuran, Milos
AU  - Nikodinović-Runić, Jasmina
AU  - Glišić, Biljana
PY  - 2022
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1568
AB  - In a search for novel antimicrobial metal-based therapeutic agents, mononuclear gold(III) complexes 1-7 of the general formula [AuCl3(azole)], where azole stands for imidazole (im, 1), 1-isopropylimidazole (ipim, 2), 1-phenylimidazole (phim, 3), clotrimazole (ctz, 4), econazole (ecz, 5), tioconazole (tcz, 6) and voriconazole (vcz, 7) were synthesized, characterized and biologically evaluated. In all complexes, the corresponding azole ligand is monodentately coordinated to the Au(III) via the imidazole or triazole nitrogen atom, while the remaining coordination sites are occupied by chloride anions leading to the square-planar arrangement. In vitro antimicrobial assays showed that the complexation of inactive azoles, imidazole, 1-isopropylimidazole and 1-phenylimidazole, to the Au(III) ion led to complexes 1-3, respectively, with moderate activity against the investigated strains and low cytotoxicity on the human normal lung fibroblast cell line (MRC-5). Moreover, gold(III) complexes 4-7 with clinically used antifungal agents clotrimazole, econazole, tioconazole and voriconazole, respectively, have, in most cases, enhanced antimicrobial effectiveness relative to the corresponding azoles, with the best improvement achieved after complexation of tioconazole (6) and voriconazole (7). The complexes 4-7 and the corresponding antifungal azoles inhibited the growth of dermatophyte Microsporum canis at 50 and 25 mu g mL(-1). Gold(III) complexes 1-3 significantly reduced the amount of ergosterol in the cell membrane of Candida albicans at the subinhibitory concentration of 0.5 x MIC (minimal inhibitory concentration), while the corresponding imidazole ligands did not significantly affect the ergosterol content, indicating that the mechanism of action of the gold(III)-azole complexes is associated with inhibition of ergosterol biosynthesis. Finally, complexes 5 and 6 significantly reduced the production of pyocyanin, a virulence factor in Pseudomonas aeruginosa controlled by quorum sensing, and increased cell survival after exposure to this bacterium. These findings could be of importance for the development of novel gold(III)-based antivirulence therapeutic agents that attenuate virulence without pronounced effect on the growth of the pathogens, offering a lower risk for resistance development.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex
EP  - 5334
IS  - 13
SP  - 5322
VL  - 51
DO  - 10.1039/d2dt00411a
ER  - 
@article{
author = "Stevanović, Nevena Lj. and Kljun, Jakob and Aleksić, Ivana and Škaro Bogojević, Sanja and Milivojević, Dušan and Veselinović, Aleksandar and Turel, Iztok and Djuran, Milos and Nikodinović-Runić, Jasmina and Glišić, Biljana",
year = "2022",
abstract = "In a search for novel antimicrobial metal-based therapeutic agents, mononuclear gold(III) complexes 1-7 of the general formula [AuCl3(azole)], where azole stands for imidazole (im, 1), 1-isopropylimidazole (ipim, 2), 1-phenylimidazole (phim, 3), clotrimazole (ctz, 4), econazole (ecz, 5), tioconazole (tcz, 6) and voriconazole (vcz, 7) were synthesized, characterized and biologically evaluated. In all complexes, the corresponding azole ligand is monodentately coordinated to the Au(III) via the imidazole or triazole nitrogen atom, while the remaining coordination sites are occupied by chloride anions leading to the square-planar arrangement. In vitro antimicrobial assays showed that the complexation of inactive azoles, imidazole, 1-isopropylimidazole and 1-phenylimidazole, to the Au(III) ion led to complexes 1-3, respectively, with moderate activity against the investigated strains and low cytotoxicity on the human normal lung fibroblast cell line (MRC-5). Moreover, gold(III) complexes 4-7 with clinically used antifungal agents clotrimazole, econazole, tioconazole and voriconazole, respectively, have, in most cases, enhanced antimicrobial effectiveness relative to the corresponding azoles, with the best improvement achieved after complexation of tioconazole (6) and voriconazole (7). The complexes 4-7 and the corresponding antifungal azoles inhibited the growth of dermatophyte Microsporum canis at 50 and 25 mu g mL(-1). Gold(III) complexes 1-3 significantly reduced the amount of ergosterol in the cell membrane of Candida albicans at the subinhibitory concentration of 0.5 x MIC (minimal inhibitory concentration), while the corresponding imidazole ligands did not significantly affect the ergosterol content, indicating that the mechanism of action of the gold(III)-azole complexes is associated with inhibition of ergosterol biosynthesis. Finally, complexes 5 and 6 significantly reduced the production of pyocyanin, a virulence factor in Pseudomonas aeruginosa controlled by quorum sensing, and increased cell survival after exposure to this bacterium. These findings could be of importance for the development of novel gold(III)-based antivirulence therapeutic agents that attenuate virulence without pronounced effect on the growth of the pathogens, offering a lower risk for resistance development.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex",
pages = "5334-5322",
number = "13",
volume = "51",
doi = "10.1039/d2dt00411a"
}
Stevanović, N. Lj., Kljun, J., Aleksić, I., Škaro Bogojević, S., Milivojević, D., Veselinović, A., Turel, I., Djuran, M., Nikodinović-Runić, J.,& Glišić, B.. (2022). Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 51(13), 5322-5334.
https://doi.org/10.1039/d2dt00411a
Stevanović NL, Kljun J, Aleksić I, Škaro Bogojević S, Milivojević D, Veselinović A, Turel I, Djuran M, Nikodinović-Runić J, Glišić B. Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex. in Dalton Transactions. 2022;51(13):5322-5334.
doi:10.1039/d2dt00411a .
Stevanović, Nevena Lj., Kljun, Jakob, Aleksić, Ivana, Škaro Bogojević, Sanja, Milivojević, Dušan, Veselinović, Aleksandar, Turel, Iztok, Djuran, Milos, Nikodinović-Runić, Jasmina, Glišić, Biljana, "Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex" in Dalton Transactions, 51, no. 13 (2022):5322-5334,
https://doi.org/10.1039/d2dt00411a . .
5
12
12

Silver(I) Complexes with Clinically Used Azoles: Synthesis, Structural Characterization and Antimicrobial Evaluation

Stevanović, Nevena; Lazić, Jelena; Kljun, Jakob; Stanković, Mia; Nikodinović-Runić, Jasmina; Turel, Iztok; Djuran, Miloš; Glišić, Biljana

(2022)

TY  - JOUR
AU  - Stevanović, Nevena
AU  - Lazić, Jelena
AU  - Kljun, Jakob
AU  - Stanković, Mia
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Djuran, Miloš
AU  - Glišić, Biljana
PY  - 2022
UR  - https://www.mdpi.com/2673-9992/14/1/102
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1844
AB  - Recently, we synthesized silver(I) complex with the antifungal agent itraconazole, which showed improved anti-Candida potential and therapeutic safety in comparison to itraconazole and rescued zebrafish embryos affected by lethal C. albicans infection, when used in safe doses. Inspired by these results, in the present study, three new silver(I) complexes with clinically used azoles, econazole (ecz), clotrimazole (ctz) and voriconazole (vcz), [Ag(ecz)2]SbF6 (Ag1), [Ag(ctz)2]SbF6 (Ag2) and {[Ag(vcz)2]SbF6}n (Ag3) were synthesized and structurally characterized by elemental microanalysis, mass spectrometry, spectroscopy (1H NMR, IR and UV-Vis), cyclic voltammetry, molar conductivity measurements, and single crystal X-ray diffraction analysis. The spectroscopic and crystallographic results revealed that, in the synthesized silver(I) complexes, azole ligands are monodentately coordinated to the Ag(I) ion through the nitrogen atom forming [Ag(azole)2]+ complex cation. The antimicrobial effect of complexes and azole ligands was evaluated against different Candida species, as well as Gram-positive and Gram-negative bacteria. The synthesized complexes Ag1-3 exhibited good to moderate antimicrobial activity being, in most cases, more active than the corresponding azole ligands. Complexes Ag2 and Ag3 also showed strong inhibitory activity against C. albicans biofilm formation and strong inhibition of C. albicans filamentation at subinhibitory concentrations.
T2  - Medical Sciences Forum
T2  - Medical Sciences Forum
T1  - Silver(I) Complexes with Clinically Used Azoles: Synthesis, Structural Characterization and Antimicrobial Evaluation
IS  - 1
SP  - 102
VL  - 14
DO  - 10.3390/ECMC2022-13249
ER  - 
@article{
author = "Stevanović, Nevena and Lazić, Jelena and Kljun, Jakob and Stanković, Mia and Nikodinović-Runić, Jasmina and Turel, Iztok and Djuran, Miloš and Glišić, Biljana",
year = "2022",
abstract = "Recently, we synthesized silver(I) complex with the antifungal agent itraconazole, which showed improved anti-Candida potential and therapeutic safety in comparison to itraconazole and rescued zebrafish embryos affected by lethal C. albicans infection, when used in safe doses. Inspired by these results, in the present study, three new silver(I) complexes with clinically used azoles, econazole (ecz), clotrimazole (ctz) and voriconazole (vcz), [Ag(ecz)2]SbF6 (Ag1), [Ag(ctz)2]SbF6 (Ag2) and {[Ag(vcz)2]SbF6}n (Ag3) were synthesized and structurally characterized by elemental microanalysis, mass spectrometry, spectroscopy (1H NMR, IR and UV-Vis), cyclic voltammetry, molar conductivity measurements, and single crystal X-ray diffraction analysis. The spectroscopic and crystallographic results revealed that, in the synthesized silver(I) complexes, azole ligands are monodentately coordinated to the Ag(I) ion through the nitrogen atom forming [Ag(azole)2]+ complex cation. The antimicrobial effect of complexes and azole ligands was evaluated against different Candida species, as well as Gram-positive and Gram-negative bacteria. The synthesized complexes Ag1-3 exhibited good to moderate antimicrobial activity being, in most cases, more active than the corresponding azole ligands. Complexes Ag2 and Ag3 also showed strong inhibitory activity against C. albicans biofilm formation and strong inhibition of C. albicans filamentation at subinhibitory concentrations.",
journal = "Medical Sciences Forum, Medical Sciences Forum",
title = "Silver(I) Complexes with Clinically Used Azoles: Synthesis, Structural Characterization and Antimicrobial Evaluation",
number = "1",
pages = "102",
volume = "14",
doi = "10.3390/ECMC2022-13249"
}
Stevanović, N., Lazić, J., Kljun, J., Stanković, M., Nikodinović-Runić, J., Turel, I., Djuran, M.,& Glišić, B.. (2022). Silver(I) Complexes with Clinically Used Azoles: Synthesis, Structural Characterization and Antimicrobial Evaluation. in Medical Sciences Forum, 14(1), 102.
https://doi.org/10.3390/ECMC2022-13249
Stevanović N, Lazić J, Kljun J, Stanković M, Nikodinović-Runić J, Turel I, Djuran M, Glišić B. Silver(I) Complexes with Clinically Used Azoles: Synthesis, Structural Characterization and Antimicrobial Evaluation. in Medical Sciences Forum. 2022;14(1):102.
doi:10.3390/ECMC2022-13249 .
Stevanović, Nevena, Lazić, Jelena, Kljun, Jakob, Stanković, Mia, Nikodinović-Runić, Jasmina, Turel, Iztok, Djuran, Miloš, Glišić, Biljana, "Silver(I) Complexes with Clinically Used Azoles: Synthesis, Structural Characterization and Antimicrobial Evaluation" in Medical Sciences Forum, 14, no. 1 (2022):102,
https://doi.org/10.3390/ECMC2022-13249 . .

Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential

Stevanović, Nevena Lj.; Aleksić, Ivana; Kljun, Jakob; Škaro Bogojević, Sanja; Veselinović, Aleksandar; Nikodinović-Runić, Jasmina; Turel, Iztok; Djuran, Milos ; Glišić, Biljana

(MDPI, Basel, 2021)

TY  - JOUR
AU  - Stevanović, Nevena Lj.
AU  - Aleksić, Ivana
AU  - Kljun, Jakob
AU  - Škaro Bogojević, Sanja
AU  - Veselinović, Aleksandar
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Djuran, Milos 
AU  - Glišić, Biljana
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1484
AB  - Copper(II) and zinc(II) complexes with clinically used antifungal drug fluconazole (fcz), {[CuCl2(fcz)(2)](.)5H(2)O}(n), 1, and {[ZnCl2(fcz)(2)]Greek ano teleia2C(2)H(5)OH}(n), 2, were prepared and characterized by spectroscopic and crystallographic methods. The polymeric structure of the complexes comprises four fluconazole molecules monodentately coordinated via the triazole nitrogen and two chlorido ligands. With respect to fluconazole, complex 2 showed significantly higher antifungal activity against Candida krusei and Candida parapsilosis. All tested compounds reduced the total amount of ergosterol at subinhibitory concentrations, indicating that the mode of activity of fluconazole was retained within the complexes, which was corroborated via molecular docking with cytochrome P450 sterol 14 alpha-demethylase (CYP51) as a target. Electrostatic, steric and internal energy interactions between the complexes and enzyme showed that 2 has higher binding potency to this target. Both complexes showed strong inhibition of C. albicans filamentation and biofilm formation at subinhibitory concentrations, with 2 being able to reduce the adherence of C. albicans to A549 cells in vitro. Complex 2 was able to reduce pyocyanin production in Pseudomonas aeruginosa between 10% and 25% and to inhibit its biofilm formation by 20% in comparison to the untreated control. These results suggest that complex 2 may be further examined in the mixed Candida-P. aeruginosa infections.
PB  - MDPI, Basel
T2  - Pharmaceuticals
T1  - Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential
IS  - 1
VL  - 14
DO  - 10.3390/ph14010024
ER  - 
@article{
author = "Stevanović, Nevena Lj. and Aleksić, Ivana and Kljun, Jakob and Škaro Bogojević, Sanja and Veselinović, Aleksandar and Nikodinović-Runić, Jasmina and Turel, Iztok and Djuran, Milos  and Glišić, Biljana",
year = "2021",
abstract = "Copper(II) and zinc(II) complexes with clinically used antifungal drug fluconazole (fcz), {[CuCl2(fcz)(2)](.)5H(2)O}(n), 1, and {[ZnCl2(fcz)(2)]Greek ano teleia2C(2)H(5)OH}(n), 2, were prepared and characterized by spectroscopic and crystallographic methods. The polymeric structure of the complexes comprises four fluconazole molecules monodentately coordinated via the triazole nitrogen and two chlorido ligands. With respect to fluconazole, complex 2 showed significantly higher antifungal activity against Candida krusei and Candida parapsilosis. All tested compounds reduced the total amount of ergosterol at subinhibitory concentrations, indicating that the mode of activity of fluconazole was retained within the complexes, which was corroborated via molecular docking with cytochrome P450 sterol 14 alpha-demethylase (CYP51) as a target. Electrostatic, steric and internal energy interactions between the complexes and enzyme showed that 2 has higher binding potency to this target. Both complexes showed strong inhibition of C. albicans filamentation and biofilm formation at subinhibitory concentrations, with 2 being able to reduce the adherence of C. albicans to A549 cells in vitro. Complex 2 was able to reduce pyocyanin production in Pseudomonas aeruginosa between 10% and 25% and to inhibit its biofilm formation by 20% in comparison to the untreated control. These results suggest that complex 2 may be further examined in the mixed Candida-P. aeruginosa infections.",
publisher = "MDPI, Basel",
journal = "Pharmaceuticals",
title = "Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential",
number = "1",
volume = "14",
doi = "10.3390/ph14010024"
}
Stevanović, N. Lj., Aleksić, I., Kljun, J., Škaro Bogojević, S., Veselinović, A., Nikodinović-Runić, J., Turel, I., Djuran, M.,& Glišić, B.. (2021). Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential. in Pharmaceuticals
MDPI, Basel., 14(1).
https://doi.org/10.3390/ph14010024
Stevanović NL, Aleksić I, Kljun J, Škaro Bogojević S, Veselinović A, Nikodinović-Runić J, Turel I, Djuran M, Glišić B. Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential. in Pharmaceuticals. 2021;14(1).
doi:10.3390/ph14010024 .
Stevanović, Nevena Lj., Aleksić, Ivana, Kljun, Jakob, Škaro Bogojević, Sanja, Veselinović, Aleksandar, Nikodinović-Runić, Jasmina, Turel, Iztok, Djuran, Milos , Glišić, Biljana, "Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential" in Pharmaceuticals, 14, no. 1 (2021),
https://doi.org/10.3390/ph14010024 . .
10
26
21

Tailoring copper(II) complexes with pyridine-4,5-dicarboxylate esters for anti-Candida activity

Andrejević, Tina P.; Aleksić, Ivana; Pockaj, Marta; Kljun, Jakob; Milivojević, Dušan; Stevanović, Nevena Lj.; Nikodinović-Runić, Jasmina; Turel, Iztok; Djuran, Milos; Glišić, Biljana

(Royal Soc Chemistry, Cambridge, 2021)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Aleksić, Ivana
AU  - Pockaj, Marta
AU  - Kljun, Jakob
AU  - Milivojević, Dušan
AU  - Stevanović, Nevena Lj.
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Djuran, Milos
AU  - Glišić, Biljana
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1492
AB  - Five novel copper(ii) complexes with pyridine-4,5-dicarboxylate esters as ligands, [Cu(NO3)(py-2tz)(H2O)(3)]NO3 (1), [Cu(NO3)(2)(py-2metz)(H2O)] (2), [Cu(NO3)(2)(py-2py)(H2O)]center dot H2O (3), [CuCl2(py-2tz)](2) (4) and [CuCl2(py-2metz)](n) (5) (py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2py is dimethyl 2,2 '-bipyridine-4,5-dicarboxylate), were synthesized and structurally characterized by different spectroscopic and electrochemical methods. The structure of these complexes was determined by single-crystal X-ray diffraction analysis, confirming the bidentate coordination mode of the corresponding pyridine-4,5-dicarboxylate ester to the Cu(ii) ion through the nitrogen atoms. The antimicrobial potential of copper(ii) complexes 1-5 was assessed against two bacterial and two Candida species. These complexes showed better growth inhibiting activity against Candida spp. with respect to the tested bacterial species, also being moderately toxic towards normal human lung fibroblast cells (MRC-5). Complexes 1 and 4 showed the greatest ability to inhibit the filamentation of C. albicans, which is an important process during fungal infection, and these two complexes efficiently inhibited the biofilm formation of C. albicans at subinhibitory concentrations. Complex 4 also successfully prevented the adhesion of C. albicans in an in vitro epithelial cell model. The mechanism of the antifungal activity of copper(ii) complexes 1-5 was studied through their interaction with ct-DNA, as one of the possible target biomolecules, by fluorescence spectroscopy and gel electrophoresis. Finally, the ability of these complexes to bind to bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Tailoring copper(II) complexes with pyridine-4,5-dicarboxylate esters for anti-Candida activity
EP  - 2638
IS  - 7
SP  - 2627
VL  - 50
DO  - 10.1039/d0dt04061d
ER  - 
@article{
author = "Andrejević, Tina P. and Aleksić, Ivana and Pockaj, Marta and Kljun, Jakob and Milivojević, Dušan and Stevanović, Nevena Lj. and Nikodinović-Runić, Jasmina and Turel, Iztok and Djuran, Milos and Glišić, Biljana",
year = "2021",
abstract = "Five novel copper(ii) complexes with pyridine-4,5-dicarboxylate esters as ligands, [Cu(NO3)(py-2tz)(H2O)(3)]NO3 (1), [Cu(NO3)(2)(py-2metz)(H2O)] (2), [Cu(NO3)(2)(py-2py)(H2O)]center dot H2O (3), [CuCl2(py-2tz)](2) (4) and [CuCl2(py-2metz)](n) (5) (py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2py is dimethyl 2,2 '-bipyridine-4,5-dicarboxylate), were synthesized and structurally characterized by different spectroscopic and electrochemical methods. The structure of these complexes was determined by single-crystal X-ray diffraction analysis, confirming the bidentate coordination mode of the corresponding pyridine-4,5-dicarboxylate ester to the Cu(ii) ion through the nitrogen atoms. The antimicrobial potential of copper(ii) complexes 1-5 was assessed against two bacterial and two Candida species. These complexes showed better growth inhibiting activity against Candida spp. with respect to the tested bacterial species, also being moderately toxic towards normal human lung fibroblast cells (MRC-5). Complexes 1 and 4 showed the greatest ability to inhibit the filamentation of C. albicans, which is an important process during fungal infection, and these two complexes efficiently inhibited the biofilm formation of C. albicans at subinhibitory concentrations. Complex 4 also successfully prevented the adhesion of C. albicans in an in vitro epithelial cell model. The mechanism of the antifungal activity of copper(ii) complexes 1-5 was studied through their interaction with ct-DNA, as one of the possible target biomolecules, by fluorescence spectroscopy and gel electrophoresis. Finally, the ability of these complexes to bind to bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Tailoring copper(II) complexes with pyridine-4,5-dicarboxylate esters for anti-Candida activity",
pages = "2638-2627",
number = "7",
volume = "50",
doi = "10.1039/d0dt04061d"
}
Andrejević, T. P., Aleksić, I., Pockaj, M., Kljun, J., Milivojević, D., Stevanović, N. Lj., Nikodinović-Runić, J., Turel, I., Djuran, M.,& Glišić, B.. (2021). Tailoring copper(II) complexes with pyridine-4,5-dicarboxylate esters for anti-Candida activity. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 50(7), 2627-2638.
https://doi.org/10.1039/d0dt04061d
Andrejević TP, Aleksić I, Pockaj M, Kljun J, Milivojević D, Stevanović NL, Nikodinović-Runić J, Turel I, Djuran M, Glišić B. Tailoring copper(II) complexes with pyridine-4,5-dicarboxylate esters for anti-Candida activity. in Dalton Transactions. 2021;50(7):2627-2638.
doi:10.1039/d0dt04061d .
Andrejević, Tina P., Aleksić, Ivana, Pockaj, Marta, Kljun, Jakob, Milivojević, Dušan, Stevanović, Nevena Lj., Nikodinović-Runić, Jasmina, Turel, Iztok, Djuran, Milos, Glišić, Biljana, "Tailoring copper(II) complexes with pyridine-4,5-dicarboxylate esters for anti-Candida activity" in Dalton Transactions, 50, no. 7 (2021):2627-2638,
https://doi.org/10.1039/d0dt04061d . .
12
10
9

Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I)

Stevanović, Nevena Lj.; Glišić, Biljana; Vojnović, Sandra; Wadepohl, Hubert; Andrejević, Tina P.; Durić, Sonja Z.; Savić, Nada D.; Nikodinović-Runić, Jasmina; Djuran, Milos ; Pavić, Aleksandar

(Elsevier, Amsterdam, 2021)

TY  - JOUR
AU  - Stevanović, Nevena Lj.
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Wadepohl, Hubert
AU  - Andrejević, Tina P.
AU  - Durić, Sonja Z.
AU  - Savić, Nada D.
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos 
AU  - Pavić, Aleksandar
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1424
AB  - In order to develop a novel antifungal agent, we synthesized and completely structurally characterized the silver(I) complex with the known antimycotic itraconazole (itraco), [Ag(itraco-N)(2)]NO3 center dot H2O (Agitraco). The spectroscopic and crystallographic results revealed that, in this complex, two itraco ligands are monodentately coordinated to the Ag(I) ion via the triazole nitrogen atom forming a cationic [Ag(itraco-N)(2)]+ part, which is neutralized by the nitrate anion. The antifungal effect of silver(I) complex and itraconazole was evaluated against four different Candida species (C. albicans, C. glabrata, C. parapsilosis and C. krusei) by means of minimal inhibitory concentrations (MICs). Agitraco complex shows enhanced antifungal activity than itraco, being 2.3- and 4.5-fold more active against C. albicans and C. glabrata, respectively. The complex was also more efficient in inhibiting yeast to hyphae transition process in C. albicans, which is an important step in its pathogenesis. Part of the improved activity of Agitraco could be attributed to the greater induction of reactive oxygen species in Candida spp. with respect to itraco. The toxicity evaluation in the zebrafish model (Danio rerio) suggests that the Agitraco complex has better therapeutic profile and improved antifungal efficacy with respect to the parent drug, which were also proven in vivo using the zebrafish model of lethal disseminated candidiasis. Interaction of Agitraco with bovine serum albumin (BSA) was investigated with the aim to assess its binding affinity toward this biomolecule.
PB  - Elsevier, Amsterdam
T2  - Journal of Molecular Structure
T1  - Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I)
VL  - 1232
DO  - 10.1016/j.molstruc.2021.130006
ER  - 
@article{
author = "Stevanović, Nevena Lj. and Glišić, Biljana and Vojnović, Sandra and Wadepohl, Hubert and Andrejević, Tina P. and Durić, Sonja Z. and Savić, Nada D. and Nikodinović-Runić, Jasmina and Djuran, Milos  and Pavić, Aleksandar",
year = "2021",
abstract = "In order to develop a novel antifungal agent, we synthesized and completely structurally characterized the silver(I) complex with the known antimycotic itraconazole (itraco), [Ag(itraco-N)(2)]NO3 center dot H2O (Agitraco). The spectroscopic and crystallographic results revealed that, in this complex, two itraco ligands are monodentately coordinated to the Ag(I) ion via the triazole nitrogen atom forming a cationic [Ag(itraco-N)(2)]+ part, which is neutralized by the nitrate anion. The antifungal effect of silver(I) complex and itraconazole was evaluated against four different Candida species (C. albicans, C. glabrata, C. parapsilosis and C. krusei) by means of minimal inhibitory concentrations (MICs). Agitraco complex shows enhanced antifungal activity than itraco, being 2.3- and 4.5-fold more active against C. albicans and C. glabrata, respectively. The complex was also more efficient in inhibiting yeast to hyphae transition process in C. albicans, which is an important step in its pathogenesis. Part of the improved activity of Agitraco could be attributed to the greater induction of reactive oxygen species in Candida spp. with respect to itraco. The toxicity evaluation in the zebrafish model (Danio rerio) suggests that the Agitraco complex has better therapeutic profile and improved antifungal efficacy with respect to the parent drug, which were also proven in vivo using the zebrafish model of lethal disseminated candidiasis. Interaction of Agitraco with bovine serum albumin (BSA) was investigated with the aim to assess its binding affinity toward this biomolecule.",
publisher = "Elsevier, Amsterdam",
journal = "Journal of Molecular Structure",
title = "Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I)",
volume = "1232",
doi = "10.1016/j.molstruc.2021.130006"
}
Stevanović, N. Lj., Glišić, B., Vojnović, S., Wadepohl, H., Andrejević, T. P., Durić, S. Z., Savić, N. D., Nikodinović-Runić, J., Djuran, M.,& Pavić, A.. (2021). Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I). in Journal of Molecular Structure
Elsevier, Amsterdam., 1232.
https://doi.org/10.1016/j.molstruc.2021.130006
Stevanović NL, Glišić B, Vojnović S, Wadepohl H, Andrejević TP, Durić SZ, Savić ND, Nikodinović-Runić J, Djuran M, Pavić A. Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I). in Journal of Molecular Structure. 2021;1232.
doi:10.1016/j.molstruc.2021.130006 .
Stevanović, Nevena Lj., Glišić, Biljana, Vojnović, Sandra, Wadepohl, Hubert, Andrejević, Tina P., Durić, Sonja Z., Savić, Nada D., Nikodinović-Runić, Jasmina, Djuran, Milos , Pavić, Aleksandar, "Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I)" in Journal of Molecular Structure, 1232 (2021),
https://doi.org/10.1016/j.molstruc.2021.130006 . .
10
10

Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies

Stevanović, Nevena; Aleksic, Ivana; Kljun, Jakob; Ašanin, Darko; Andrejević, Tina; Nikodinović-Runić, Jasmina; Turel, Iztok; Djuran, Miloš; Glišić, Biljana

(2020)

TY  - CONF
AU  - Stevanović, Nevena
AU  - Aleksic, Ivana
AU  - Kljun, Jakob
AU  - Ašanin, Darko
AU  - Andrejević, Tina
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Djuran, Miloš
AU  - Glišić, Biljana
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1641
AB  - Over the last few decades, invasive fungal infections represent a serious problem for modern-day healthcare. Aspergillus, Candida and Cryptococcus species are the most common pathogens causing life-threatening infections. Therapeutic options for the treatment of fungal infections are presently limited to only four classes of compounds and each of these drug classes has significant therapeutic limitations, including serious toxic-side effects, resistance development and limited routes of administration. In order to overcome resistance of the clinically used antifungal triazole agents, we synthesized zinc(II) and copper(II) complexes with fluconazole (flz), {[ZnCl2(flz)2]·2C2H5OH}n (1) and {[CuCl2(flz)2].5H2O}n (2). These complexes were obtained from the reactions between ZnCl2 or CuCl2·2H2O with this antifungal agent in 1 : 2 molar ratio in ethanol at room temperature. The compounds were characterized by elemental analysis, NMR, IR and UV-Vis spectroscopy and mass spectrometry. The crystal structure of complex 1 was determined by a single-crystal X-ray diffraction analysis. The antimicrobial effect of both complexes and fluconazole was evaluated against different Candida species as well as Gram-positive and Gram-negative bacteria by means of minimal inhibitory concentrations (MICs). The obtained results have shown that, in most cases, the coordination of fluconazole to Zn(II) and Cu(II) ions leads to the enhancement of its antifungal activity. Both complexes showed strong inhibitory activity against C. albicans biofilm formation at concentrations lower than MIC values, as well as strong inhibition of C. albicans filamentation.
C3  - Electronic Conference on Medicinal Chemistry
T1  - Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies
DO  - 10.3390/ECMC2020-07373
ER  - 
@conference{
author = "Stevanović, Nevena and Aleksic, Ivana and Kljun, Jakob and Ašanin, Darko and Andrejević, Tina and Nikodinović-Runić, Jasmina and Turel, Iztok and Djuran, Miloš and Glišić, Biljana",
year = "2020",
abstract = "Over the last few decades, invasive fungal infections represent a serious problem for modern-day healthcare. Aspergillus, Candida and Cryptococcus species are the most common pathogens causing life-threatening infections. Therapeutic options for the treatment of fungal infections are presently limited to only four classes of compounds and each of these drug classes has significant therapeutic limitations, including serious toxic-side effects, resistance development and limited routes of administration. In order to overcome resistance of the clinically used antifungal triazole agents, we synthesized zinc(II) and copper(II) complexes with fluconazole (flz), {[ZnCl2(flz)2]·2C2H5OH}n (1) and {[CuCl2(flz)2].5H2O}n (2). These complexes were obtained from the reactions between ZnCl2 or CuCl2·2H2O with this antifungal agent in 1 : 2 molar ratio in ethanol at room temperature. The compounds were characterized by elemental analysis, NMR, IR and UV-Vis spectroscopy and mass spectrometry. The crystal structure of complex 1 was determined by a single-crystal X-ray diffraction analysis. The antimicrobial effect of both complexes and fluconazole was evaluated against different Candida species as well as Gram-positive and Gram-negative bacteria by means of minimal inhibitory concentrations (MICs). The obtained results have shown that, in most cases, the coordination of fluconazole to Zn(II) and Cu(II) ions leads to the enhancement of its antifungal activity. Both complexes showed strong inhibitory activity against C. albicans biofilm formation at concentrations lower than MIC values, as well as strong inhibition of C. albicans filamentation.",
journal = "Electronic Conference on Medicinal Chemistry",
title = "Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies",
doi = "10.3390/ECMC2020-07373"
}
Stevanović, N., Aleksic, I., Kljun, J., Ašanin, D., Andrejević, T., Nikodinović-Runić, J., Turel, I., Djuran, M.,& Glišić, B.. (2020). Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies. in Electronic Conference on Medicinal Chemistry.
https://doi.org/10.3390/ECMC2020-07373
Stevanović N, Aleksic I, Kljun J, Ašanin D, Andrejević T, Nikodinović-Runić J, Turel I, Djuran M, Glišić B. Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies. in Electronic Conference on Medicinal Chemistry. 2020;.
doi:10.3390/ECMC2020-07373 .
Stevanović, Nevena, Aleksic, Ivana, Kljun, Jakob, Ašanin, Darko, Andrejević, Tina, Nikodinović-Runić, Jasmina, Turel, Iztok, Djuran, Miloš, Glišić, Biljana, "Improvement of antifungal activity and therapeutic profile of fluconazole by its complexation with copper(II) and zinc(II) ions. Complex characterization and antimicrobial activity studies" in Electronic Conference on Medicinal Chemistry (2020),
https://doi.org/10.3390/ECMC2020-07373 . .

Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules

Ašanin, Darko P.; Andrejević, Tina P.; Škaro Bogojević, Sanja; Stevanović, Nevena Lj; Aleksic, Ivana; Milivojević, Dušan; Perdih, Franc; Turel, Iztok; Djuran, Miloš I.; Glišić, Biljana

(MDPI : Basel,Switzerland, 2020)

TY  - CONF
AU  - Ašanin, Darko P.
AU  - Andrejević, Tina P.
AU  - Škaro Bogojević, Sanja
AU  - Stevanović, Nevena Lj
AU  - Aleksic, Ivana
AU  - Milivojević, Dušan
AU  - Perdih, Franc
AU  - Turel, Iztok
AU  - Djuran, Miloš I.
AU  - Glišić, Biljana
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1632
AB  - New silver(I) complex with thianthrene (tia), [Ag(NO3)(tia)(H2O)]n, was synthesized by the reaction of AgNO3 with an equimolar amount of tia in ethanol/dichloromethane (v/v 1:1) at room temperature, and characterized by NMR, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction analysis. The antimicrobial activity of the synthesized complex was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and Candida spp. This complex showed significant activity toward important human pathogens Gram-positive Staphylococcus aureus and Candida parapsilosis with minimal inhibitory concentrations (MICs) being 3.91 µg/mL. The interaction of [Ag(NO3)(tia)(H2O)]n with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied to evaluate the binding affinity towards these biomolecules for possible insights on the mode of antimicrobial activity. The binding affinity of the investigated complex to BSA is higher than that for DNA, indicating that proteins could be more favorable binding sites for this complex in comparison to the nucleic acids.
PB  - MDPI : Basel,Switzerland
C3  - The 1st International Electronic Conference on Applied Sciences
T1  - Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules
IS  - 1
SP  - 4
VL  - 67
DO  - 10.3390/ASEC2020-07534
ER  - 
@conference{
author = "Ašanin, Darko P. and Andrejević, Tina P. and Škaro Bogojević, Sanja and Stevanović, Nevena Lj and Aleksic, Ivana and Milivojević, Dušan and Perdih, Franc and Turel, Iztok and Djuran, Miloš I. and Glišić, Biljana",
year = "2020",
abstract = "New silver(I) complex with thianthrene (tia), [Ag(NO3)(tia)(H2O)]n, was synthesized by the reaction of AgNO3 with an equimolar amount of tia in ethanol/dichloromethane (v/v 1:1) at room temperature, and characterized by NMR, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction analysis. The antimicrobial activity of the synthesized complex was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and Candida spp. This complex showed significant activity toward important human pathogens Gram-positive Staphylococcus aureus and Candida parapsilosis with minimal inhibitory concentrations (MICs) being 3.91 µg/mL. The interaction of [Ag(NO3)(tia)(H2O)]n with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied to evaluate the binding affinity towards these biomolecules for possible insights on the mode of antimicrobial activity. The binding affinity of the investigated complex to BSA is higher than that for DNA, indicating that proteins could be more favorable binding sites for this complex in comparison to the nucleic acids.",
publisher = "MDPI : Basel,Switzerland",
journal = "The 1st International Electronic Conference on Applied Sciences",
title = "Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules",
number = "1",
pages = "4",
volume = "67",
doi = "10.3390/ASEC2020-07534"
}
Ašanin, D. P., Andrejević, T. P., Škaro Bogojević, S., Stevanović, N. L., Aleksic, I., Milivojević, D., Perdih, F., Turel, I., Djuran, M. I.,& Glišić, B.. (2020). Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules. in The 1st International Electronic Conference on Applied Sciences
MDPI : Basel,Switzerland., 67(1), 4.
https://doi.org/10.3390/ASEC2020-07534
Ašanin DP, Andrejević TP, Škaro Bogojević S, Stevanović NL, Aleksic I, Milivojević D, Perdih F, Turel I, Djuran MI, Glišić B. Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules. in The 1st International Electronic Conference on Applied Sciences. 2020;67(1):4.
doi:10.3390/ASEC2020-07534 .
Ašanin, Darko P., Andrejević, Tina P., Škaro Bogojević, Sanja, Stevanović, Nevena Lj, Aleksic, Ivana, Milivojević, Dušan, Perdih, Franc, Turel, Iztok, Djuran, Miloš I., Glišić, Biljana, "Polynuclear Silver(I) Complex with Thianthrene: Structural Characterization, Antimicrobial Activity and Interaction with Biomolecules" in The 1st International Electronic Conference on Applied Sciences, 67, no. 1 (2020):4,
https://doi.org/10.3390/ASEC2020-07534 . .
1
1

Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands

Durić, Sonja Z.; Vojnović, Sandra; Andrejević, Tina P.; Stevanović, Nevena Lj.; Savić, Nada D.; Nikodinović-Runić, Jasmina; Glišić, Biljana; Djuran, Milos

(Hindawi Ltd, London, 2020)

TY  - JOUR
AU  - Durić, Sonja Z.
AU  - Vojnović, Sandra
AU  - Andrejević, Tina P.
AU  - Stevanović, Nevena Lj.
AU  - Savić, Nada D.
AU  - Nikodinović-Runić, Jasmina
AU  - Glišić, Biljana
AU  - Djuran, Milos 
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1401
AB  - 1,2-Bis(4-pyridyl)ethane (bpa) and 1,2-bis(4-pyridyl)ethene (bpe) were used for the synthesis of polynuclear silver(I) complexes, {[Ag(bpa)]NO3}(n) (1), {[Ag(bpa)(2)](CF3SO3H2O)-H-.}(n) (2) and {[Ag(bpe)]CF3SO3}(n) (3). In complexes 1-3, the corresponding nitrogen-containing heterocycle acts as a bridging ligand between two Ag(I) ions. In vitro antimicrobial activity of these complexes, along with the ligands used for their synthesis, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi. The silver(I) complexes 1-3 showed selectivity towards Candida spp. and Gram-negative Escherichia coli in comparison to the other investigated bacterial strains, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MICs) between 2.5 and 25 mu g/mL and the growth of E. coli, with MIC value being 12.5 mu g/mL. Importantly, complex 2 significantly reduced C. albicans filamentation, an essential process for its pathogenesis. Antiproliferative effect on the normal human lung fibroblast cell line MRC-5 was also evaluated with the aim of determining the therapeutic potential of the complexes 1-3. The interactions of these complexes with calf thymus DNA (ctDNA) and bovine serum albumin (BSA) were studied to evaluate their binding activities towards these biomolecules for possible insights on their mode of action.
PB  - Hindawi Ltd, London
T2  - Bioinorganic Chemistry and Applications
T1  - Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands
VL  - 2020
DO  - 10.1155/2020/3812050
ER  - 
@article{
author = "Durić, Sonja Z. and Vojnović, Sandra and Andrejević, Tina P. and Stevanović, Nevena Lj. and Savić, Nada D. and Nikodinović-Runić, Jasmina and Glišić, Biljana and Djuran, Milos ",
year = "2020",
abstract = "1,2-Bis(4-pyridyl)ethane (bpa) and 1,2-bis(4-pyridyl)ethene (bpe) were used for the synthesis of polynuclear silver(I) complexes, {[Ag(bpa)]NO3}(n) (1), {[Ag(bpa)(2)](CF3SO3H2O)-H-.}(n) (2) and {[Ag(bpe)]CF3SO3}(n) (3). In complexes 1-3, the corresponding nitrogen-containing heterocycle acts as a bridging ligand between two Ag(I) ions. In vitro antimicrobial activity of these complexes, along with the ligands used for their synthesis, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi. The silver(I) complexes 1-3 showed selectivity towards Candida spp. and Gram-negative Escherichia coli in comparison to the other investigated bacterial strains, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MICs) between 2.5 and 25 mu g/mL and the growth of E. coli, with MIC value being 12.5 mu g/mL. Importantly, complex 2 significantly reduced C. albicans filamentation, an essential process for its pathogenesis. Antiproliferative effect on the normal human lung fibroblast cell line MRC-5 was also evaluated with the aim of determining the therapeutic potential of the complexes 1-3. The interactions of these complexes with calf thymus DNA (ctDNA) and bovine serum albumin (BSA) were studied to evaluate their binding activities towards these biomolecules for possible insights on their mode of action.",
publisher = "Hindawi Ltd, London",
journal = "Bioinorganic Chemistry and Applications",
title = "Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands",
volume = "2020",
doi = "10.1155/2020/3812050"
}
Durić, S. Z., Vojnović, S., Andrejević, T. P., Stevanović, N. Lj., Savić, N. D., Nikodinović-Runić, J., Glišić, B.,& Djuran, M.. (2020). Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands. in Bioinorganic Chemistry and Applications
Hindawi Ltd, London., 2020.
https://doi.org/10.1155/2020/3812050
Durić SZ, Vojnović S, Andrejević TP, Stevanović NL, Savić ND, Nikodinović-Runić J, Glišić B, Djuran M. Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands. in Bioinorganic Chemistry and Applications. 2020;2020.
doi:10.1155/2020/3812050 .
Durić, Sonja Z., Vojnović, Sandra, Andrejević, Tina P., Stevanović, Nevena Lj., Savić, Nada D., Nikodinović-Runić, Jasmina, Glišić, Biljana, Djuran, Milos , "Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands" in Bioinorganic Chemistry and Applications, 2020 (2020),
https://doi.org/10.1155/2020/3812050 . .
15
10

Silver(I) complexes with different pyridine-4,5-dicarboxylate ligands as efficient agents for the control of cow mastitis associated pathogens

Andrejević, Tina P.; Milivojević, Dušan; Glišić, Biljana; Kljun, Jakob; Stevanović, Nevena Lj.; Vojnović, Sandra; Medić, Strahinja; Nikodinović-Runić, Jasmina; Turel, Iztok; Djuran, Milos

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Milivojević, Dušan
AU  - Glišić, Biljana
AU  - Kljun, Jakob
AU  - Stevanović, Nevena Lj.
AU  - Vojnović, Sandra
AU  - Medić, Strahinja
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Djuran, Milos 
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1333
AB  - Infections of the cow udder leading to mastitis and lower milk quality are one of the biggest problems in the dairy industry worldwide. Unfortunately, therapeutic options for the treatment of cow mastitis are limited as a consequence of the development of pathogens that are resistant to conventionally used antibiotics. In the search for agents that will be active against cow mastitis associated pathogens, in the present study, five new silver(I) complexes with different chelating pyridine-4,5-dicarboxylate types of ligands, [Ag(NO3)(py-2py)](n) (1), [Ag(NO3)(py-2metz)](n) (2), [Ag(CH3CN)(py-2py)]BF4 (3), [Ag(py-2tz)(2)]BF4 (4) and [Ag(py-2metz)(2)]BF4 (5), py-2py is dimethyl 2,2'-bipyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, were synthesized, structurally characterized and assessed for in vitro antimicrobial activity using both standard bioassay and clinical isolates from a contaminated milk sample obtained from a cow with mastitis. These complexes showed remarkable activity against the standard panel of microorganisms and a selection of clinical isolates from the milk of the cow diagnosed with mastitis. With the aim of determining the therapeutic potential of silver(I) complexes, their toxicity in vivo against the model organism, Caenorhabditis elegans (C. elegans), was investigated. The complexes that had the best therapeutic profile, 2 and 5, induced bacterial membrane depolarization and the production of reactive oxygen species (ROS) in Candida albicans cells and inhibited the hyphae as well as the biofilm formation. Taken together, the presented data suggest that the silver(I) complexes with pyridine ligands could be considered for the treatment of microbial pathogens, which are causative agents of cow mastitis.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Silver(I) complexes with different pyridine-4,5-dicarboxylate ligands as efficient agents for the control of cow mastitis associated pathogens
EP  - 6096
IS  - 18
SP  - 6084
VL  - 49
DO  - 10.1039/d0dt00518e
ER  - 
@article{
author = "Andrejević, Tina P. and Milivojević, Dušan and Glišić, Biljana and Kljun, Jakob and Stevanović, Nevena Lj. and Vojnović, Sandra and Medić, Strahinja and Nikodinović-Runić, Jasmina and Turel, Iztok and Djuran, Milos ",
year = "2020",
abstract = "Infections of the cow udder leading to mastitis and lower milk quality are one of the biggest problems in the dairy industry worldwide. Unfortunately, therapeutic options for the treatment of cow mastitis are limited as a consequence of the development of pathogens that are resistant to conventionally used antibiotics. In the search for agents that will be active against cow mastitis associated pathogens, in the present study, five new silver(I) complexes with different chelating pyridine-4,5-dicarboxylate types of ligands, [Ag(NO3)(py-2py)](n) (1), [Ag(NO3)(py-2metz)](n) (2), [Ag(CH3CN)(py-2py)]BF4 (3), [Ag(py-2tz)(2)]BF4 (4) and [Ag(py-2metz)(2)]BF4 (5), py-2py is dimethyl 2,2'-bipyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, were synthesized, structurally characterized and assessed for in vitro antimicrobial activity using both standard bioassay and clinical isolates from a contaminated milk sample obtained from a cow with mastitis. These complexes showed remarkable activity against the standard panel of microorganisms and a selection of clinical isolates from the milk of the cow diagnosed with mastitis. With the aim of determining the therapeutic potential of silver(I) complexes, their toxicity in vivo against the model organism, Caenorhabditis elegans (C. elegans), was investigated. The complexes that had the best therapeutic profile, 2 and 5, induced bacterial membrane depolarization and the production of reactive oxygen species (ROS) in Candida albicans cells and inhibited the hyphae as well as the biofilm formation. Taken together, the presented data suggest that the silver(I) complexes with pyridine ligands could be considered for the treatment of microbial pathogens, which are causative agents of cow mastitis.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Silver(I) complexes with different pyridine-4,5-dicarboxylate ligands as efficient agents for the control of cow mastitis associated pathogens",
pages = "6096-6084",
number = "18",
volume = "49",
doi = "10.1039/d0dt00518e"
}
Andrejević, T. P., Milivojević, D., Glišić, B., Kljun, J., Stevanović, N. Lj., Vojnović, S., Medić, S., Nikodinović-Runić, J., Turel, I.,& Djuran, M.. (2020). Silver(I) complexes with different pyridine-4,5-dicarboxylate ligands as efficient agents for the control of cow mastitis associated pathogens. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 49(18), 6084-6096.
https://doi.org/10.1039/d0dt00518e
Andrejević TP, Milivojević D, Glišić B, Kljun J, Stevanović NL, Vojnović S, Medić S, Nikodinović-Runić J, Turel I, Djuran M. Silver(I) complexes with different pyridine-4,5-dicarboxylate ligands as efficient agents for the control of cow mastitis associated pathogens. in Dalton Transactions. 2020;49(18):6084-6096.
doi:10.1039/d0dt00518e .
Andrejević, Tina P., Milivojević, Dušan, Glišić, Biljana, Kljun, Jakob, Stevanović, Nevena Lj., Vojnović, Sandra, Medić, Strahinja, Nikodinović-Runić, Jasmina, Turel, Iztok, Djuran, Milos , "Silver(I) complexes with different pyridine-4,5-dicarboxylate ligands as efficient agents for the control of cow mastitis associated pathogens" in Dalton Transactions, 49, no. 18 (2020):6084-6096,
https://doi.org/10.1039/d0dt00518e . .
10
17
1
16

Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin

Andrejević, Tina P.; Warzajtis, Beata; Glišić, Biljana; Vojnović, Sandra; Mojicević, Marija; Stevanović, Nevena Lj.; Nikodinović-Runić, Jasmina; Rychlewska, Urszula; Djuran, Milos

(Elsevier Science Inc, New York, 2020)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Warzajtis, Beata
AU  - Glišić, Biljana
AU  - Vojnović, Sandra
AU  - Mojicević, Marija
AU  - Stevanović, Nevena Lj.
AU  - Nikodinović-Runić, Jasmina
AU  - Rychlewska, Urszula
AU  - Djuran, Milos
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1325
AB  - Three novel Zn(II) complexes, [ZnCl2(qz)(2)] (1), [ZnCl2(1,5-naph)](n) (2) and [ZnCl2(4,7-phen)(2)] (3), where qz is quinazoline, 1,5-naph is 1,5-naphthyridine and 4,7-phen is 4,7-phenanthroline, were synthesized by the reactions of ZnCl2 and the corresponding N-heterocyclic ligand in 1:2 molar ratio in ethanol at ambient temperature. The characterization of these complexes was done by NMR, IR and UV-Vis spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction analysis. Complexes 1 and 3 are mononuclear species, in which Zn(II) ion is tetrahedrally coordinated by two nitrogen atoms belonging to two qz or 4,7-phen ligands, respectively, and by two chloride anions, while complex 2 is a 1D coordination polymer that contains 1,5-naph as bridging ligand between two metal ions. In agar disc-diffusion assay, complexes 1-3 manifested good inhibitory activity against two investigated Candida strains (C. albicans and C. parapsilosis), while not inducing toxic effects on the healthy human fibroblast cell line (MRC-5). This activity was not fungicidal, as revealed by the broth microdilution assay, however complex 3 showed the ability to modulate Candida hyphae formation, which is an important process during infection and showed significant synergistic effect with clinically used antifungal polyene nystatin.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin
VL  - 208
DO  - 10.1016/j.jinorgbio.2020.111089
ER  - 
@article{
author = "Andrejević, Tina P. and Warzajtis, Beata and Glišić, Biljana and Vojnović, Sandra and Mojicević, Marija and Stevanović, Nevena Lj. and Nikodinović-Runić, Jasmina and Rychlewska, Urszula and Djuran, Milos",
year = "2020",
abstract = "Three novel Zn(II) complexes, [ZnCl2(qz)(2)] (1), [ZnCl2(1,5-naph)](n) (2) and [ZnCl2(4,7-phen)(2)] (3), where qz is quinazoline, 1,5-naph is 1,5-naphthyridine and 4,7-phen is 4,7-phenanthroline, were synthesized by the reactions of ZnCl2 and the corresponding N-heterocyclic ligand in 1:2 molar ratio in ethanol at ambient temperature. The characterization of these complexes was done by NMR, IR and UV-Vis spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction analysis. Complexes 1 and 3 are mononuclear species, in which Zn(II) ion is tetrahedrally coordinated by two nitrogen atoms belonging to two qz or 4,7-phen ligands, respectively, and by two chloride anions, while complex 2 is a 1D coordination polymer that contains 1,5-naph as bridging ligand between two metal ions. In agar disc-diffusion assay, complexes 1-3 manifested good inhibitory activity against two investigated Candida strains (C. albicans and C. parapsilosis), while not inducing toxic effects on the healthy human fibroblast cell line (MRC-5). This activity was not fungicidal, as revealed by the broth microdilution assay, however complex 3 showed the ability to modulate Candida hyphae formation, which is an important process during infection and showed significant synergistic effect with clinically used antifungal polyene nystatin.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin",
volume = "208",
doi = "10.1016/j.jinorgbio.2020.111089"
}
Andrejević, T. P., Warzajtis, B., Glišić, B., Vojnović, S., Mojicević, M., Stevanović, N. Lj., Nikodinović-Runić, J., Rychlewska, U.,& Djuran, M.. (2020). Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 208.
https://doi.org/10.1016/j.jinorgbio.2020.111089
Andrejević TP, Warzajtis B, Glišić B, Vojnović S, Mojicević M, Stevanović NL, Nikodinović-Runić J, Rychlewska U, Djuran M. Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin. in Journal of Inorganic Biochemistry. 2020;208.
doi:10.1016/j.jinorgbio.2020.111089 .
Andrejević, Tina P., Warzajtis, Beata, Glišić, Biljana, Vojnović, Sandra, Mojicević, Marija, Stevanović, Nevena Lj., Nikodinović-Runić, Jasmina, Rychlewska, Urszula, Djuran, Milos, "Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin" in Journal of Inorganic Biochemistry, 208 (2020),
https://doi.org/10.1016/j.jinorgbio.2020.111089 . .
8
11

Silver(I) complexes with 1,10-phenanthroline-based ligands: The influence of epoxide function on the complex structure and biological activity

Durić, Sonja Z.; Mojicević, Marija; Vojnović, Sandra; Wadepohl, Hubert; Andrejević, Tina P.; Stevanović, Nevena Lj.; Nikodinović-Runić, Jasmina; Djuran, Milos; Glišić, Biljana

(Elsevier Science Sa, Lausanne, 2020)

TY  - JOUR
AU  - Durić, Sonja Z.
AU  - Mojicević, Marija
AU  - Vojnović, Sandra
AU  - Wadepohl, Hubert
AU  - Andrejević, Tina P.
AU  - Stevanović, Nevena Lj.
AU  - Nikodinović-Runić, Jasmina
AU  - Djuran, Milos
AU  - Glišić, Biljana
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1369
AB  - In a continuing search for a novel metal-containing antimicrobial agents, the present study reports the synthesis, characterization and biological evaluation of two silver(I) complexes with 1,10-phenanthroline-based ligands, [Ag(1,10-phen)(2)]CF3COO center dot H2O (Ag1) and [Ag(CF3COO)(5,6-epoxy-1,10-phen)](2)(Ag2), 1,10-phen is 1, 10-phenanthroline and 5,6-epoxy-1,10-phen is 5,6-epoxy-5,6-dihydro-1,10-phenanthroline. The complexes were characterized by different spectroscopic techniques (IR, H-1 and C-13 NMR and UV-Vis), while the crystal structure of Ag2 complex was determined by a single-crystal X-ray diffraction analysis. The spectroscopic data confirmed that the structure of Ag1 complex, with silver(I) ion tetrahedrally coordinated by two bidentate 1, 10-phen ligands, is in accordance to the previous report (S.E. Paramonov et al., 2003). The crystallographic results showed that in dinuclear Ag2 complex, both Ag(I) ions are coordinated bidentately by 5,6-epoxy-1, 10-phen and monodentately by trifluoroacetate, with presence of the short Ag center dot center dot center dot Ag contact of 2.963 angstrom. Both silver (I) complexes were evaluated in vitro for antimicrobial activity against four bacterial and four Candida species, showing selectivity towards the investigated species of Candida with minimal inhibitory concentrations (MICs) between 0.9 and 12.5 mu M. Moreover, Ag2 complex manifested significant antiproliferative properties in the case of a range of human cell lines, including human breast cancer (MDA-MB 231), which resulted from the presence of epoxy functional group in the ligand. The gel electrophoresis results obtained from the studies of Ag1 and Ag2 interactions with bacteriophage lambda DNA (XDNA) suggested that these complexes did not cause DNA degradation.
PB  - Elsevier Science Sa, Lausanne
T2  - Inorganica Chimica Acta
T1  - Silver(I) complexes with 1,10-phenanthroline-based ligands: The influence of epoxide function on the complex structure and biological activity
VL  - 502
DO  - 10.1016/j.ica.2019.119357
ER  - 
@article{
author = "Durić, Sonja Z. and Mojicević, Marija and Vojnović, Sandra and Wadepohl, Hubert and Andrejević, Tina P. and Stevanović, Nevena Lj. and Nikodinović-Runić, Jasmina and Djuran, Milos and Glišić, Biljana",
year = "2020",
abstract = "In a continuing search for a novel metal-containing antimicrobial agents, the present study reports the synthesis, characterization and biological evaluation of two silver(I) complexes with 1,10-phenanthroline-based ligands, [Ag(1,10-phen)(2)]CF3COO center dot H2O (Ag1) and [Ag(CF3COO)(5,6-epoxy-1,10-phen)](2)(Ag2), 1,10-phen is 1, 10-phenanthroline and 5,6-epoxy-1,10-phen is 5,6-epoxy-5,6-dihydro-1,10-phenanthroline. The complexes were characterized by different spectroscopic techniques (IR, H-1 and C-13 NMR and UV-Vis), while the crystal structure of Ag2 complex was determined by a single-crystal X-ray diffraction analysis. The spectroscopic data confirmed that the structure of Ag1 complex, with silver(I) ion tetrahedrally coordinated by two bidentate 1, 10-phen ligands, is in accordance to the previous report (S.E. Paramonov et al., 2003). The crystallographic results showed that in dinuclear Ag2 complex, both Ag(I) ions are coordinated bidentately by 5,6-epoxy-1, 10-phen and monodentately by trifluoroacetate, with presence of the short Ag center dot center dot center dot Ag contact of 2.963 angstrom. Both silver (I) complexes were evaluated in vitro for antimicrobial activity against four bacterial and four Candida species, showing selectivity towards the investigated species of Candida with minimal inhibitory concentrations (MICs) between 0.9 and 12.5 mu M. Moreover, Ag2 complex manifested significant antiproliferative properties in the case of a range of human cell lines, including human breast cancer (MDA-MB 231), which resulted from the presence of epoxy functional group in the ligand. The gel electrophoresis results obtained from the studies of Ag1 and Ag2 interactions with bacteriophage lambda DNA (XDNA) suggested that these complexes did not cause DNA degradation.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Inorganica Chimica Acta",
title = "Silver(I) complexes with 1,10-phenanthroline-based ligands: The influence of epoxide function on the complex structure and biological activity",
volume = "502",
doi = "10.1016/j.ica.2019.119357"
}
Durić, S. Z., Mojicević, M., Vojnović, S., Wadepohl, H., Andrejević, T. P., Stevanović, N. Lj., Nikodinović-Runić, J., Djuran, M.,& Glišić, B.. (2020). Silver(I) complexes with 1,10-phenanthroline-based ligands: The influence of epoxide function on the complex structure and biological activity. in Inorganica Chimica Acta
Elsevier Science Sa, Lausanne., 502.
https://doi.org/10.1016/j.ica.2019.119357
Durić SZ, Mojicević M, Vojnović S, Wadepohl H, Andrejević TP, Stevanović NL, Nikodinović-Runić J, Djuran M, Glišić B. Silver(I) complexes with 1,10-phenanthroline-based ligands: The influence of epoxide function on the complex structure and biological activity. in Inorganica Chimica Acta. 2020;502.
doi:10.1016/j.ica.2019.119357 .
Durić, Sonja Z., Mojicević, Marija, Vojnović, Sandra, Wadepohl, Hubert, Andrejević, Tina P., Stevanović, Nevena Lj., Nikodinović-Runić, Jasmina, Djuran, Milos, Glišić, Biljana, "Silver(I) complexes with 1,10-phenanthroline-based ligands: The influence of epoxide function on the complex structure and biological activity" in Inorganica Chimica Acta, 502 (2020),
https://doi.org/10.1016/j.ica.2019.119357 . .
10
10

Different coordination abilities of 1,7-and 4,7-phenanthroline in the reactions with copper(II) salts: Structural characterization and biological evaluation of the reaction products

Stevanović, Nevena Lj.; Andrejević, Tina P.; Crochet, Aurelien; Ilić-Tomić, Tatjana; Drasković, Nenad S.; Nikodinović-Runić, Jasmina; Fromm, Katharina M.; Djuran, Milos ; Glišić, Biljana

(Pergamon-Elsevier Science Ltd, Oxford, 2019)

TY  - JOUR
AU  - Stevanović, Nevena Lj.
AU  - Andrejević, Tina P.
AU  - Crochet, Aurelien
AU  - Ilić-Tomić, Tatjana
AU  - Drasković, Nenad S.
AU  - Nikodinović-Runić, Jasmina
AU  - Fromm, Katharina M.
AU  - Djuran, Milos 
AU  - Glišić, Biljana
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1222
AB  - The reactions between equimolar amounts of CuX2 (X = NO3- and CF3SO3-) and two aromatic nitrogen-containing heterocycles differing in the position of nitrogen atoms, 1,7- and 4,7-phenanthroline (1,7-and 4,7-phen), were performed in ethanol/methanol at room temperature. When CuX 2 salts were mixed with 4,7-phen, two copper(II) complexes, [Cu(NO3)(2)(4,7-Hphen)(2)](NO3)(2) (1) and [Cu(CF3SO3)(4,7-phen)(2)(H2O)(2)]CF3SO3 (2), were formed. On the other hand, in the reaction of CuX2 salts with 1,7-phen, only 1,7-HphenNO(3) (3a/b) and 1,7-HphenCF(3)SO(3) (4) were obtained as the final products. The obtained products 1-4 were characterized by spectroscopic and X-ray diffraction techniques. In the copper(II) complexes 1 and 2, the coordination geometry around the Cu(II) ion is distorted octahedral and square pyramidal, respectively. The antimicrobial potential of the copper(II) complexes 1 and 2 and corresponding compounds used for their synthesis were assessed against four different bacterial species and Candida albicans, displaying moderate growth inhibiting activity. The cytotoxic properties of the investigated complexes were also evaluated against the normal human lung fibroblast cell line (MRC-5) indicating moderate, yet more pronounced cytotoxicity than antimicrobial properties.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Polyhedron
T1  - Different coordination abilities of 1,7-and 4,7-phenanthroline in the reactions with copper(II) salts: Structural characterization and biological evaluation of the reaction products
VL  - 173
DO  - 10.1016/j.poly.2019.114112
ER  - 
@article{
author = "Stevanović, Nevena Lj. and Andrejević, Tina P. and Crochet, Aurelien and Ilić-Tomić, Tatjana and Drasković, Nenad S. and Nikodinović-Runić, Jasmina and Fromm, Katharina M. and Djuran, Milos  and Glišić, Biljana",
year = "2019",
abstract = "The reactions between equimolar amounts of CuX2 (X = NO3- and CF3SO3-) and two aromatic nitrogen-containing heterocycles differing in the position of nitrogen atoms, 1,7- and 4,7-phenanthroline (1,7-and 4,7-phen), were performed in ethanol/methanol at room temperature. When CuX 2 salts were mixed with 4,7-phen, two copper(II) complexes, [Cu(NO3)(2)(4,7-Hphen)(2)](NO3)(2) (1) and [Cu(CF3SO3)(4,7-phen)(2)(H2O)(2)]CF3SO3 (2), were formed. On the other hand, in the reaction of CuX2 salts with 1,7-phen, only 1,7-HphenNO(3) (3a/b) and 1,7-HphenCF(3)SO(3) (4) were obtained as the final products. The obtained products 1-4 were characterized by spectroscopic and X-ray diffraction techniques. In the copper(II) complexes 1 and 2, the coordination geometry around the Cu(II) ion is distorted octahedral and square pyramidal, respectively. The antimicrobial potential of the copper(II) complexes 1 and 2 and corresponding compounds used for their synthesis were assessed against four different bacterial species and Candida albicans, displaying moderate growth inhibiting activity. The cytotoxic properties of the investigated complexes were also evaluated against the normal human lung fibroblast cell line (MRC-5) indicating moderate, yet more pronounced cytotoxicity than antimicrobial properties.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Polyhedron",
title = "Different coordination abilities of 1,7-and 4,7-phenanthroline in the reactions with copper(II) salts: Structural characterization and biological evaluation of the reaction products",
volume = "173",
doi = "10.1016/j.poly.2019.114112"
}
Stevanović, N. Lj., Andrejević, T. P., Crochet, A., Ilić-Tomić, T., Drasković, N. S., Nikodinović-Runić, J., Fromm, K. M., Djuran, M.,& Glišić, B.. (2019). Different coordination abilities of 1,7-and 4,7-phenanthroline in the reactions with copper(II) salts: Structural characterization and biological evaluation of the reaction products. in Polyhedron
Pergamon-Elsevier Science Ltd, Oxford., 173.
https://doi.org/10.1016/j.poly.2019.114112
Stevanović NL, Andrejević TP, Crochet A, Ilić-Tomić T, Drasković NS, Nikodinović-Runić J, Fromm KM, Djuran M, Glišić B. Different coordination abilities of 1,7-and 4,7-phenanthroline in the reactions with copper(II) salts: Structural characterization and biological evaluation of the reaction products. in Polyhedron. 2019;173.
doi:10.1016/j.poly.2019.114112 .
Stevanović, Nevena Lj., Andrejević, Tina P., Crochet, Aurelien, Ilić-Tomić, Tatjana, Drasković, Nenad S., Nikodinović-Runić, Jasmina, Fromm, Katharina M., Djuran, Milos , Glišić, Biljana, "Different coordination abilities of 1,7-and 4,7-phenanthroline in the reactions with copper(II) salts: Structural characterization and biological evaluation of the reaction products" in Polyhedron, 173 (2019),
https://doi.org/10.1016/j.poly.2019.114112 . .
8
6
6