Pejić, Jelena

Link to this page

Authority KeyName Variants
orcid::0000-0002-0214-4361
  • Pejić, Jelena (6)
Projects

Author's Bibliography

Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems

Bojić, Luka; Pejić, Jelena; Stojkovska, Jasmina; Stevanović, Milena; Medić, Aleksandra; Petrović, Isidora; Milivojević, Milena

(2024)

TY  - CONF
AU  - Bojić, Luka
AU  - Pejić, Jelena
AU  - Stojkovska, Jasmina
AU  - Stevanović, Milena
AU  - Medić, Aleksandra
AU  - Petrović, Isidora
AU  - Milivojević, Milena
PY  - 2024
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/1262
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2366
AB  - Osteosarcoma (OS) is a highly aggressive primary malignant bone tumor that most commonly affects children, adolescents, and young adults. The standard treatment for OS consists of surgical resection and chemotherapy, whereas radiation therapy is recommended for the unresectable tumor. Due to its easy metastasis and recurrence, the 5-year overall survival rate is only 66.5 %. Thus, there is a critical need to recognize the molecular mechanisms underlying OS development and pathogenesis. Traditionally, two-dimensional (2D) cells are widely used in cancer biology and pre-clinical studies. However, 2D models are unable to mimic cell–cell and cell-extracellular matrix interactions which are crucial for adequate cellular function. Three-dimensional (3D) model systems are able to recapitulate key features of human cancer and are recognized as a promising platform for fundamental and translational research. In the present work, we established an osteosarcoma 3D model based on alginate microbeads and studied the effect of combined treatment with doxorubicin (Doxo), widely used chemotherapeutic, and quercetin (Quer), a plant pigment with anticancer properties, on OS model systems.
C3  - Hemijska industrija (Chemical Industry)
T1  - Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems
EP  - 20
IS  - 1S
SP  - 20
VL  - 78
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2366
ER  - 
@conference{
author = "Bojić, Luka and Pejić, Jelena and Stojkovska, Jasmina and Stevanović, Milena and Medić, Aleksandra and Petrović, Isidora and Milivojević, Milena",
year = "2024",
abstract = "Osteosarcoma (OS) is a highly aggressive primary malignant bone tumor that most commonly affects children, adolescents, and young adults. The standard treatment for OS consists of surgical resection and chemotherapy, whereas radiation therapy is recommended for the unresectable tumor. Due to its easy metastasis and recurrence, the 5-year overall survival rate is only 66.5 %. Thus, there is a critical need to recognize the molecular mechanisms underlying OS development and pathogenesis. Traditionally, two-dimensional (2D) cells are widely used in cancer biology and pre-clinical studies. However, 2D models are unable to mimic cell–cell and cell-extracellular matrix interactions which are crucial for adequate cellular function. Three-dimensional (3D) model systems are able to recapitulate key features of human cancer and are recognized as a promising platform for fundamental and translational research. In the present work, we established an osteosarcoma 3D model based on alginate microbeads and studied the effect of combined treatment with doxorubicin (Doxo), widely used chemotherapeutic, and quercetin (Quer), a plant pigment with anticancer properties, on OS model systems.",
journal = "Hemijska industrija (Chemical Industry)",
title = "Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems",
pages = "20-20",
number = "1S",
volume = "78",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2366"
}
Bojić, L., Pejić, J., Stojkovska, J., Stevanović, M., Medić, A., Petrović, I.,& Milivojević, M.. (2024). Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems. in Hemijska industrija (Chemical Industry), 78(1S), 20-20.
https://hdl.handle.net/21.15107/rcub_imagine_2366
Bojić L, Pejić J, Stojkovska J, Stevanović M, Medić A, Petrović I, Milivojević M. Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems. in Hemijska industrija (Chemical Industry). 2024;78(1S):20-20.
https://hdl.handle.net/21.15107/rcub_imagine_2366 .
Bojić, Luka, Pejić, Jelena, Stojkovska, Jasmina, Stevanović, Milena, Medić, Aleksandra, Petrović, Isidora, Milivojević, Milena, "Doxorubicin and quercetin combined effect on SAOS-2 cells grown in 2D and 3D model systems" in Hemijska industrija (Chemical Industry), 78, no. 1S (2024):20-20,
https://hdl.handle.net/21.15107/rcub_imagine_2366 .

Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds

Pejić, Jelena; Mojsin, Marija; Stojkovska, Jasmina; Medić, Aleksandra; Petrović, Isidora; Stevanović, Milena; Obradović, Bojana; Milivojević, Milena

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Pejić, Jelena
AU  - Mojsin, Marija
AU  - Stojkovska, Jasmina
AU  - Medić, Aleksandra
AU  - Petrović, Isidora
AU  - Stevanović, Milena
AU  - Obradović, Bojana
AU  - Milivojević, Milena
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2151
AB  - Introduction: The NT2/D1 embryonal carcinoma cell line represents a well-established in vitro model of
human neurogenesis. It’s widely used for studying neurodevelopmental processes, neurotoxicity, and
neurodegenerative disorders. The utilization of alginate fibers as a 3D cell culture system offers a biocompatible and structurally supportive environment for neural differentiation and maturation of cells,
making it a suitable tool for investigating neurodevelopmental processes.
Methods: In thisstudy, we evaluated the alginate microfibers as a 3D modelsystem for in vitro neural differentiation of NT2/D1 cells.We described the immobilization of NT2/D1 cellsin alginate microfibers and
the effect of propagation in this 3D model on morphological features, viability, and proliferation of immobilized cells. We also assessed the RA-induced initiation of neural differentiation of NT2/D1 cellsin alginate microfibers by comparison with the initiation of neural differentiation in adherent 2D cell culture.
Results: Our results showed that immobilized NT2/D1 acquired morphological features characteristic
of cells propagated in 3D model systems and retain viability, proliferative capacity, and ability to attach
to adherent surfaces. In addition, immobilized NT2/D1 cells preserved neural differentiation capacity.
Upon RA induction we detected a marked decrease in the expression of specific pluripotency-maintaining markers, SOX2, OCT4, and NANOG. Consecutively, the expression of early neural markers, SOX3,
PAX6, and miR219 was significantly increased.
Conclusion: Neural differentiation of NT2/D1 cellsimmobilized within alginate fibersrepresents a highly
promising 3D modelsystem forstudying human neurogenesis and offers a valuable platform forscreening the effect of drugs and bioactive compounds on human neural differentiation.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds
EP  - 113
SP  - 113
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2151
ER  - 
@conference{
author = "Pejić, Jelena and Mojsin, Marija and Stojkovska, Jasmina and Medić, Aleksandra and Petrović, Isidora and Stevanović, Milena and Obradović, Bojana and Milivojević, Milena",
year = "2023",
abstract = "Introduction: The NT2/D1 embryonal carcinoma cell line represents a well-established in vitro model of
human neurogenesis. It’s widely used for studying neurodevelopmental processes, neurotoxicity, and
neurodegenerative disorders. The utilization of alginate fibers as a 3D cell culture system offers a biocompatible and structurally supportive environment for neural differentiation and maturation of cells,
making it a suitable tool for investigating neurodevelopmental processes.
Methods: In thisstudy, we evaluated the alginate microfibers as a 3D modelsystem for in vitro neural differentiation of NT2/D1 cells.We described the immobilization of NT2/D1 cellsin alginate microfibers and
the effect of propagation in this 3D model on morphological features, viability, and proliferation of immobilized cells. We also assessed the RA-induced initiation of neural differentiation of NT2/D1 cellsin alginate microfibers by comparison with the initiation of neural differentiation in adherent 2D cell culture.
Results: Our results showed that immobilized NT2/D1 acquired morphological features characteristic
of cells propagated in 3D model systems and retain viability, proliferative capacity, and ability to attach
to adherent surfaces. In addition, immobilized NT2/D1 cells preserved neural differentiation capacity.
Upon RA induction we detected a marked decrease in the expression of specific pluripotency-maintaining markers, SOX2, OCT4, and NANOG. Consecutively, the expression of early neural markers, SOX3,
PAX6, and miR219 was significantly increased.
Conclusion: Neural differentiation of NT2/D1 cellsimmobilized within alginate fibersrepresents a highly
promising 3D modelsystem forstudying human neurogenesis and offers a valuable platform forscreening the effect of drugs and bioactive compounds on human neural differentiation.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds",
pages = "113-113",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2151"
}
Pejić, J., Mojsin, M., Stojkovska, J., Medić, A., Petrović, I., Stevanović, M., Obradović, B.,& Milivojević, M.. (2023). Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 113-113.
https://hdl.handle.net/21.15107/rcub_imagine_2151
Pejić J, Mojsin M, Stojkovska J, Medić A, Petrović I, Stevanović M, Obradović B, Milivojević M. Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:113-113.
https://hdl.handle.net/21.15107/rcub_imagine_2151 .
Pejić, Jelena, Mojsin, Marija, Stojkovska, Jasmina, Medić, Aleksandra, Petrović, Isidora, Stevanović, Milena, Obradović, Bojana, Milivojević, Milena, "Immobilized NT2/D1 cells in alginate fibers: a promising 3D model system for investigating human neurogenesis and screening the effect of drugs and bioactive compounds" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):113-113,
https://hdl.handle.net/21.15107/rcub_imagine_2151 .

The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells

Balint, Vanda; Stanisavljević-Ninković, Danijela; Lazić, Stefan; Kovačević-Grujičić, Nataša; Perić, Mina; Pejić, Jelena; Mojsin, Marija; Stevanović, Milena; Lazić, Andrijana

(Belgrade : Serbian Neuroscience Society, 2023)

TY  - CONF
AU  - Balint, Vanda
AU  - Stanisavljević-Ninković, Danijela
AU  - Lazić, Stefan
AU  - Kovačević-Grujičić, Nataša
AU  - Perić, Mina
AU  - Pejić, Jelena
AU  - Mojsin, Marija
AU  - Stevanović, Milena
AU  - Lazić, Andrijana
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/2185
AB  - Astrocytes are the main homeostatic cells in the brain with important roles both in
physiological and pathological conditions. They have a unique ability to become
reactivated in response to different types of brain pathologies, which serves as a
compensatory response that modulates tissue damage and recovery. Also, senescent
astrocytes have profound implications in age-related neurodegenerative disorders. The
molecular mechanisms underlying astrocyte reactivation and senescence are still not
well understood. To investigate the roles of SOX2 and SOX9 transcription factors and
miR-21 in these phenotypic alternations of astroglia, astrocytes derived from NT2/D1
cell line (NT2/A) were used as a model system. Western blot analyses showed that the
expression of both SOX2 and SOX9 decreases during the maturation of NT2/A and
they are re-expressed upon in vitro induced injury. Further modulation of the SOX2
and SOX9 expression will reveal their roles in the regulation of astrocytes
reactivation. Down-regulation of mir-21 in both immature and mature NT2/A by
using the antisense technology, induced the decline in cell proliferation revealed by
Ki67 proliferation marker. Also the premature cellular senescence was induced as
indicated by increase in SA-ß-gal activity and the expression of p21 and p53.
Additionally, in silico analysis predicted many of the genes, previously shown to be
upregulated in senescent astrocytes, as miR-21 targets.
Clarifying the roles of SOX genes and miRNAs in astrocyte reactivation and
senescence would contribute to better understanding of the functions of these cells at
the molecular level, which holds promise for development of new therapeutic
strategies.
PB  - Belgrade : Serbian Neuroscience Society
C3  - 8th Congress of the Serbian Neuroscience Society
T1  - The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells
EP  - 99
SP  - 99
UR  - https://hdl.handle.net/21.15107/rcub_imagine_2185
ER  - 
@conference{
author = "Balint, Vanda and Stanisavljević-Ninković, Danijela and Lazić, Stefan and Kovačević-Grujičić, Nataša and Perić, Mina and Pejić, Jelena and Mojsin, Marija and Stevanović, Milena and Lazić, Andrijana",
year = "2023",
abstract = "Astrocytes are the main homeostatic cells in the brain with important roles both in
physiological and pathological conditions. They have a unique ability to become
reactivated in response to different types of brain pathologies, which serves as a
compensatory response that modulates tissue damage and recovery. Also, senescent
astrocytes have profound implications in age-related neurodegenerative disorders. The
molecular mechanisms underlying astrocyte reactivation and senescence are still not
well understood. To investigate the roles of SOX2 and SOX9 transcription factors and
miR-21 in these phenotypic alternations of astroglia, astrocytes derived from NT2/D1
cell line (NT2/A) were used as a model system. Western blot analyses showed that the
expression of both SOX2 and SOX9 decreases during the maturation of NT2/A and
they are re-expressed upon in vitro induced injury. Further modulation of the SOX2
and SOX9 expression will reveal their roles in the regulation of astrocytes
reactivation. Down-regulation of mir-21 in both immature and mature NT2/A by
using the antisense technology, induced the decline in cell proliferation revealed by
Ki67 proliferation marker. Also the premature cellular senescence was induced as
indicated by increase in SA-ß-gal activity and the expression of p21 and p53.
Additionally, in silico analysis predicted many of the genes, previously shown to be
upregulated in senescent astrocytes, as miR-21 targets.
Clarifying the roles of SOX genes and miRNAs in astrocyte reactivation and
senescence would contribute to better understanding of the functions of these cells at
the molecular level, which holds promise for development of new therapeutic
strategies.",
publisher = "Belgrade : Serbian Neuroscience Society",
journal = "8th Congress of the Serbian Neuroscience Society",
title = "The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells",
pages = "99-99",
url = "https://hdl.handle.net/21.15107/rcub_imagine_2185"
}
Balint, V., Stanisavljević-Ninković, D., Lazić, S., Kovačević-Grujičić, N., Perić, M., Pejić, J., Mojsin, M., Stevanović, M.,& Lazić, A.. (2023). The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells. in 8th Congress of the Serbian Neuroscience Society
Belgrade : Serbian Neuroscience Society., 99-99.
https://hdl.handle.net/21.15107/rcub_imagine_2185
Balint V, Stanisavljević-Ninković D, Lazić S, Kovačević-Grujičić N, Perić M, Pejić J, Mojsin M, Stevanović M, Lazić A. The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells. in 8th Congress of the Serbian Neuroscience Society. 2023;:99-99.
https://hdl.handle.net/21.15107/rcub_imagine_2185 .
Balint, Vanda, Stanisavljević-Ninković, Danijela, Lazić, Stefan, Kovačević-Grujičić, Nataša, Perić, Mina, Pejić, Jelena, Mojsin, Marija, Stevanović, Milena, Lazić, Andrijana, "The role of specific SOX genes and microRNAs in reactivation and senescence of human astrocytes derived from pluripotent NT2/D1 cells" in 8th Congress of the Serbian Neuroscience Society (2023):99-99,
https://hdl.handle.net/21.15107/rcub_imagine_2185 .

Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells

Krstić, Aleksandra; Pavić, Aleksandar; Balint, Vanda; Lazić, Stefan; Avdović, Edina; Marković, Zoran; Pejić, Jelena; Stevanović, Milena; Petrović, Isidora

(2022)

TY  - CONF
AU  - Krstić, Aleksandra
AU  - Pavić, Aleksandar
AU  - Balint, Vanda
AU  - Lazić, Stefan
AU  - Avdović, Edina
AU  - Marković, Zoran
AU  - Pejić, Jelena
AU  - Stevanović, Milena
AU  - Petrović, Isidora
PY  - 2022
UR  - https://doi.org/10.21175/rad.spr.abstr.book.2022.9.3
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1866
AB  - Pancreatic carcinoma represents one of the most lethal malignant diseases in the world although some
progress has been made in treating the disease in the past decades. Current multi-agent treatment options
have improved the overall survival of patients, but more effective treatment strategies are still needed. In this
paper we have characterized anticancer potential of coumarin-palladium(II) complex against pancreatic
carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were
assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented
results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being
effective at micromolar concentrations (0.5 M). Treatments induced apoptosis, increased BAX/BCL-2 ratio
and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in
pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma
xenografts resulted in significant reduction of tumor mass, while did not provoke any adverse toxic effects
including hepatotoxicity. Presented results indicate the great potential of tested compound and the
perspective of its further development towards pancreatic cancer therapy.
C3  - RAD International concerence on radiation in various fields of research
T1  - Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells
IS  - Spring Edition
SP  - 34
DO  - 10.21175/rad.spr.abstr.book.2022.9.3
ER  - 
@conference{
author = "Krstić, Aleksandra and Pavić, Aleksandar and Balint, Vanda and Lazić, Stefan and Avdović, Edina and Marković, Zoran and Pejić, Jelena and Stevanović, Milena and Petrović, Isidora",
year = "2022",
abstract = "Pancreatic carcinoma represents one of the most lethal malignant diseases in the world although some
progress has been made in treating the disease in the past decades. Current multi-agent treatment options
have improved the overall survival of patients, but more effective treatment strategies are still needed. In this
paper we have characterized anticancer potential of coumarin-palladium(II) complex against pancreatic
carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were
assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented
results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being
effective at micromolar concentrations (0.5 M). Treatments induced apoptosis, increased BAX/BCL-2 ratio
and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in
pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma
xenografts resulted in significant reduction of tumor mass, while did not provoke any adverse toxic effects
including hepatotoxicity. Presented results indicate the great potential of tested compound and the
perspective of its further development towards pancreatic cancer therapy.",
journal = "RAD International concerence on radiation in various fields of research",
title = "Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells",
number = "Spring Edition",
pages = "34",
doi = "10.21175/rad.spr.abstr.book.2022.9.3"
}
Krstić, A., Pavić, A., Balint, V., Lazić, S., Avdović, E., Marković, Z., Pejić, J., Stevanović, M.,& Petrović, I.. (2022). Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells. in RAD International concerence on radiation in various fields of research(Spring Edition), 34.
https://doi.org/10.21175/rad.spr.abstr.book.2022.9.3
Krstić A, Pavić A, Balint V, Lazić S, Avdović E, Marković Z, Pejić J, Stevanović M, Petrović I. Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells. in RAD International concerence on radiation in various fields of research. 2022;(Spring Edition):34.
doi:10.21175/rad.spr.abstr.book.2022.9.3 .
Krstić, Aleksandra, Pavić, Aleksandar, Balint, Vanda, Lazić, Stefan, Avdović, Edina, Marković, Zoran, Pejić, Jelena, Stevanović, Milena, Petrović, Isidora, "Coumarin-palladium(II) complex acts as a potent and nontoxic anticancer agent against pancreatic carcinoma cells" in RAD International concerence on radiation in various fields of research, no. Spring Edition (2022):34,
https://doi.org/10.21175/rad.spr.abstr.book.2022.9.3 . .

Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes

Balint, Vanda; Stanisavljević Ninković, Danijela; Anastasov, Nataša; Lazić, Stefan; Kovačević-Grujičić, Nataša; Stevanović, Milena; Lazić, Andrijana; Krstić, Aleksandra; Pejić, Jelena

(2022)

TY  - CONF
AU  - Balint, Vanda
AU  - Stanisavljević Ninković, Danijela
AU  - Anastasov, Nataša
AU  - Lazić, Stefan
AU  - Kovačević-Grujičić, Nataša
AU  - Stevanović, Milena
AU  - Lazić, Andrijana
AU  - Krstić, Aleksandra
AU  - Pejić, Jelena
PY  - 2022
UR  - https://doi.org/10.21175/rad.spr.abstr.book.2022.22.1
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1864
AB  - Astrocytes are the main homeostatic cells in the central nervous system (CNS) that provide mechanical,
metabolic, and trophic support to neurons. Disruption of their physiological role or acquisition of
senescence-associated phenotype can contribute to the CNS dysfunction and pathology. However, molecular
mechanisms underlying the complex physiology of astrocytes are explored insufficiently. Recent studies have
shown that miRNAs are involved in the regulation of astrocyte function through different mechanisms.
Although miR-21 has been reported as an astrocytic miRNA with an important role in astrogliosis, no link
between this miRNA and cellular senescence of astrocytes has been identified. To address the role of miR-21
in astrocytes, with special focus on cellular senescence, we used NT2/A (astrocytes derived from NT2/D1
cells). Downregulation of miR-21 expression in both immature and mature NT2/A by the antisense
technology induced the arrest of cell growth and premature cellular senescence, as indicated by senescence
hallmarks such as increased expression of cell cycle inhibitors p21 and p53 and augmented senescenceassociated
β-galactosidase activity. Additionally, in silico analysis predicted many of the genes, previously
shown to be upregulated in astrocytes with the irradiation-induced senescence, as miR-21 targets. Taken
together, our results point to miR-21 as a potential regulator of astrocyte senescence. To the best of our
knowledge, these are the first data showing the link between miR-21 and cellular senescence of astrocytes.
Since senescent astrocytes are associated with different CNS pathologies, development of novel therapeutic
strategies based on miRNA manipulation could prevent senescence and may improve the physiological
outcome.
C3  - RAD International concerence on radiation in various fields of research
T1  - Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes
IS  - Spring Edition
SP  - 90
DO  - 10.21175/rad.spr.abstr.book.2022.22.1
ER  - 
@conference{
author = "Balint, Vanda and Stanisavljević Ninković, Danijela and Anastasov, Nataša and Lazić, Stefan and Kovačević-Grujičić, Nataša and Stevanović, Milena and Lazić, Andrijana and Krstić, Aleksandra and Pejić, Jelena",
year = "2022",
abstract = "Astrocytes are the main homeostatic cells in the central nervous system (CNS) that provide mechanical,
metabolic, and trophic support to neurons. Disruption of their physiological role or acquisition of
senescence-associated phenotype can contribute to the CNS dysfunction and pathology. However, molecular
mechanisms underlying the complex physiology of astrocytes are explored insufficiently. Recent studies have
shown that miRNAs are involved in the regulation of astrocyte function through different mechanisms.
Although miR-21 has been reported as an astrocytic miRNA with an important role in astrogliosis, no link
between this miRNA and cellular senescence of astrocytes has been identified. To address the role of miR-21
in astrocytes, with special focus on cellular senescence, we used NT2/A (astrocytes derived from NT2/D1
cells). Downregulation of miR-21 expression in both immature and mature NT2/A by the antisense
technology induced the arrest of cell growth and premature cellular senescence, as indicated by senescence
hallmarks such as increased expression of cell cycle inhibitors p21 and p53 and augmented senescenceassociated
β-galactosidase activity. Additionally, in silico analysis predicted many of the genes, previously
shown to be upregulated in astrocytes with the irradiation-induced senescence, as miR-21 targets. Taken
together, our results point to miR-21 as a potential regulator of astrocyte senescence. To the best of our
knowledge, these are the first data showing the link between miR-21 and cellular senescence of astrocytes.
Since senescent astrocytes are associated with different CNS pathologies, development of novel therapeutic
strategies based on miRNA manipulation could prevent senescence and may improve the physiological
outcome.",
journal = "RAD International concerence on radiation in various fields of research",
title = "Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes",
number = "Spring Edition",
pages = "90",
doi = "10.21175/rad.spr.abstr.book.2022.22.1"
}
Balint, V., Stanisavljević Ninković, D., Anastasov, N., Lazić, S., Kovačević-Grujičić, N., Stevanović, M., Lazić, A., Krstić, A.,& Pejić, J.. (2022). Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes. in RAD International concerence on radiation in various fields of research(Spring Edition), 90.
https://doi.org/10.21175/rad.spr.abstr.book.2022.22.1
Balint V, Stanisavljević Ninković D, Anastasov N, Lazić S, Kovačević-Grujičić N, Stevanović M, Lazić A, Krstić A, Pejić J. Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes. in RAD International concerence on radiation in various fields of research. 2022;(Spring Edition):90.
doi:10.21175/rad.spr.abstr.book.2022.22.1 .
Balint, Vanda, Stanisavljević Ninković, Danijela, Anastasov, Nataša, Lazić, Stefan, Kovačević-Grujičić, Nataša, Stevanović, Milena, Lazić, Andrijana, Krstić, Aleksandra, Pejić, Jelena, "Inhibition of miR-21 promotes cellular senescence in NT2-derived astrocytes" in RAD International concerence on radiation in various fields of research, no. Spring Edition (2022):90,
https://doi.org/10.21175/rad.spr.abstr.book.2022.22.1 . .
1

Facile Synthesis of L-Cysteine Functionalized Graphene Quantum Dots as a Bioimaging and Photosensitive Agent

Milenković, Mila; Misović, Aleksandra; Jovanović, Dragana; Popović Bijelić, Ana; Ciasca, Gabriele; Romano, Sabrina; Bonasera, Aurelio; Mojsin, Marija; Pejić, Jelena; Stevanović, Milena; Jovanović, Svetlana

(MDPI, Basel, 2021)

TY  - JOUR
AU  - Milenković, Mila
AU  - Misović, Aleksandra
AU  - Jovanović, Dragana
AU  - Popović Bijelić, Ana
AU  - Ciasca, Gabriele
AU  - Romano, Sabrina
AU  - Bonasera, Aurelio
AU  - Mojsin, Marija
AU  - Pejić, Jelena
AU  - Stevanović, Milena
AU  - Jovanović, Svetlana
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1457
AB  - Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical, structural, and morphological properties, as well as the possibility of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S- and N-functional groups were detected in all gamma-irradiated GQDs: amino, amide, thiol, and thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment of HeLa cells with gamma-irradiated GQDs.
PB  - MDPI, Basel
T2  - Nanomaterials
T1  - Facile Synthesis of L-Cysteine Functionalized Graphene Quantum Dots as a Bioimaging and Photosensitive Agent
IS  - 8
SP  - 1879
VL  - 11
DO  - 10.3390/nano11081879
ER  - 
@article{
author = "Milenković, Mila and Misović, Aleksandra and Jovanović, Dragana and Popović Bijelić, Ana and Ciasca, Gabriele and Romano, Sabrina and Bonasera, Aurelio and Mojsin, Marija and Pejić, Jelena and Stevanović, Milena and Jovanović, Svetlana",
year = "2021",
abstract = "Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical, structural, and morphological properties, as well as the possibility of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S- and N-functional groups were detected in all gamma-irradiated GQDs: amino, amide, thiol, and thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment of HeLa cells with gamma-irradiated GQDs.",
publisher = "MDPI, Basel",
journal = "Nanomaterials",
title = "Facile Synthesis of L-Cysteine Functionalized Graphene Quantum Dots as a Bioimaging and Photosensitive Agent",
number = "8",
pages = "1879",
volume = "11",
doi = "10.3390/nano11081879"
}
Milenković, M., Misović, A., Jovanović, D., Popović Bijelić, A., Ciasca, G., Romano, S., Bonasera, A., Mojsin, M., Pejić, J., Stevanović, M.,& Jovanović, S.. (2021). Facile Synthesis of L-Cysteine Functionalized Graphene Quantum Dots as a Bioimaging and Photosensitive Agent. in Nanomaterials
MDPI, Basel., 11(8), 1879.
https://doi.org/10.3390/nano11081879
Milenković M, Misović A, Jovanović D, Popović Bijelić A, Ciasca G, Romano S, Bonasera A, Mojsin M, Pejić J, Stevanović M, Jovanović S. Facile Synthesis of L-Cysteine Functionalized Graphene Quantum Dots as a Bioimaging and Photosensitive Agent. in Nanomaterials. 2021;11(8):1879.
doi:10.3390/nano11081879 .
Milenković, Mila, Misović, Aleksandra, Jovanović, Dragana, Popović Bijelić, Ana, Ciasca, Gabriele, Romano, Sabrina, Bonasera, Aurelio, Mojsin, Marija, Pejić, Jelena, Stevanović, Milena, Jovanović, Svetlana, "Facile Synthesis of L-Cysteine Functionalized Graphene Quantum Dots as a Bioimaging and Photosensitive Agent" in Nanomaterials, 11, no. 8 (2021):1879,
https://doi.org/10.3390/nano11081879 . .
5
13
2
12